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1 Introduction

High order Discontinuous Galerkin (DG) methods provide accurate solutions by
enabling arbitrarily high polynomial approximations inside each grid element. For
high order polynomials, the numerical errors are not distributed along all wave-
numbers but localised at high wave-numbers [1–5]. This characteristic of high order
methods results in very accurate simulations with low dissipative and dispersive
errors. Although this characteristic seems a-priori beneficial for well resolved
simulations, when computing under-resolved Large Eddy Simulations (LES), it can
prove difficult to obtain stable simulations. In implicit (or under-resolved) Large
Eddy Simulations (iLES), the smallest numerical eddies are larger than would have
been in a finer mesh, leading to numerical under-resolution (i.e. coarse grid or low
polynomial order) and aliasing [6]. Various methods have been proposed to stabilise
under-resolved computations with aliasing. Among others, split forms or skew
symmetric variants [7, 8]), localised interior penalty fluxes [9], over-integration [10–
12] or filtering [13] may be incorporated into the solver to stabilize the computations
and remove or alleviate the aliasing.

Contrarily to low order methods, high order methods do not have enough
inherent numerical dissipation in under-resolved simulations, to dissipate large flow
structures (when compared to Kolmogorov scales). Therefore, computation of iLES
flows using high order DG solvers require localised dissipative mechanisms to
dissipate flow structures close to cut-off size. In what follows, we compare two
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dissipative stabilising mechanisms that enable the simulation of turbulent under-
resolved flows. On the one hand, we use a compressible formulation with an
energy conserving split-form and dissipation through Roe fluxes [14]. On the other
hand, the incompressible solver uses the viscous discretisation through interior
penalty formulation to enhance stability [9]. We challenge both formulations with
a NACA0012 airfoil at various angles of attack in turbulent regimes, to explore
both accuracy and stability. We compare simulated results to experimental data and
simulations using low order methods (Xfoil and Ansys-Fluent).

2 Methodologies

We first introduce the two different mechanisms used to stabilise both compressible
and incompressible high order DG formulations. The explanation included here is
brief and aims only at introducing the fundamental concepts and motivating ideas.
Further details can be found in the following references by the authors [9, 14].

The 3D Navier-Stokes equations can be written as:

ut + ∇ · F e = ∇ · F v, (1)

where u is the vector of conservative variables u = (ρ, ρv1, ρv2, ρv3, ρe)T in
compressible solvers. For incompressible solvers u = (v1, v2, v3)

T and Eq. (1) is
complemented with ∇ · u. Details on the definition of inviscid and viscous solvers
can be found in [9, 14]. To derive discontinuous Galerkin schemes, we consider
Eq. (1) for one mesh element el, multiply by a locally smooth test function φj , for
0 ≤ j ≤ P , where P is the polynomial degree, and integrate on el:

∫
el

ut φj +
∫

el

∇ · F eφj =
∫

el

∇ · F vφj . (2)

We can now integrate by parts the inviscid fluxes, F e, integral to obtain a local weak
form of the equations (one per mesh element):

∫
el

ut φj +
∫

∂el

F e · nφj −
∫

el

F e · ∇φj =
∫

el

∇ · F vφj , (3)

where n is the normal vector at element boundaries ∂el. We replace discontinuous
fluxes at inter-element faces by a numerical inviscid flux, F ∗

e , to obtain a weak form
for the equations for each element,

∫
el

ut · φj +
∫

∂el

F ∗
e · nφj −

∫
el

F e · ∇φj =
∫

el

∇ · F vφj , (4)
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where, we have omitted the fluxes at external boundaries, for simplicity. This set of
equations for each element is coupled through the inviscid fluxes F ∗

e and governs
flow behaviour. Note that one can proceed similarly and integrate by parts the
viscous terms (see [9, 15]), but here for simplicity we retain the volume integral.

∫
el

ut · φj +
∫

∂el

F ∗
e · n︸ ︷︷ ︸

Riemann solver

φj −
∫

el

F e · ∇φj =
∫

el

( ∇ · F v︸ ︷︷ ︸
Viscous term

) · φj (5)

The non-linear inviscid and viscous terms that can be discretised to control
dissipation in the numerical scheme have been underlined.

Riemann solvers are the classic option to include numerical dissipation in
DG schemes [16, 17], since they naturally arise when discretising the non-linear
terms. Comparison of different fluxes for homogeneous turbulence can be found in
[14, 18]. A different option is to modify the viscous terms to enhance its dissipative
properties. The latter has been proposed in [9] using an increased penalty parameter
(compared to the minimum required to ensure coercivity of the scheme) when
discretising the viscous terms using a interior penalty formulation.

2.1 Compressible DGSEM Solver

The compressible solver uses conservative variables to solve the Navier-Stokes
equations. We use a particular nodal variant of DG methods: the Discontinuous
Galerkin Spectral Element Method (DGSEM), see for example [19]. In addition,
the compressible formulation is modified to be energy preserving [20]. The required
split-form necessitate Gauss–Lobatto points to cancel out boundary terms using the
summation-by-parts simultaneous-approximation-term property (SBP-SAT). The
interested reader is referred to [5, 20–22]. These energy conserving schemes
are designed to remain stable and energy conserving and consequently do not
necessitate additional localised numerical dissipation. Nonetheless, in this work we
introduce dissipation through Roe fluxes, to enhance robustness at high Reynolds
numbers. Additionally, viscous terms are discretised using the Bassi-Rebay 1 (BR1)
scheme, which is equivalent to the interior penalty formulation when using Gauss-
Lobatto points and hexahedral elements [23]. Let us note that this formulation for
the viscous fluxes is neutrally stable [24] and adds the minimum dissipation required
to achieve a stable scheme, whilst others may introduce some extra dissipation.
Other techniques are available to discretise second order derivatives and can be
found in the classic review by Arnold et al. [15].
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2.2 Incompressible DG-Fourier Solver

Flow solutions of the incompressible Navier-Stokes equations, are obtained from
the 3D unsteady high order h/p Discontinuous Galerkin-Fourier solver [9, 25–
28]. The solver uses a second order stiffly stable approach to discretise the NS
equations in time whilst spatial discretisation is provided by the discontinuous
Galerkin-Symmetric Interior Penalty formulation with modal basis functions in
the x-y plane. Here, x represents the streamwise flow direction and y is the
normal direction. Spatial discretisation in the z-direction (here defining the spanwise
airfoil length) is provided by a purely spectral method that uses Fourier series and
allows computation of spanwise periodic three-dimensional flows. Since high order
methods (e.g. discontinuous Galerkin and Fourier) are unable to provide enough
numerical dissipation to enable under-resolved high Reynolds computations (e.g. as
necessary in Large Eddy Simulations), we have adapted the original laminar version
of the solver to increase (controllably) the dissipation and enhance the stability in
under-resolved simulations [9]. This dissipative formulation has minimal impact on
well resolved flow regions and its implicit treatment does not restrict the use of
relatively large time steps, thus providing an efficient stabilization mechanism for
Large Eddy Simulations. The solver has been widely validated for a variety of flows,
including bluff body flows, airfoil and blade aerodynamics and vertical axis turbines
under static and rotating conditions [9, 25–30].

3 Numerical Results

This section considers a NACA0012 airfoil at Re = 1 × 104, Re = 1 × 105 and
Re = 1 × 106 (based on the airfoil chord c) for a range of Angles of Attack (AoA):
0◦ ≤ AoA ≤ 10◦. In what follows we compare incompressible and compressible
simulations using polynomial orders P = 3 and P = 4. The averaged values have
been computed after the development of three dimensional flow. The compressible
solver uses a hexahedral mesh with 18,000 elements, which for P = 3 and 4 result
in 1.1 and 2.2 million degrees of freedom. The incompressible solver, uses a mixed
tri-quad 2D mesh and is expanded using Fourier in the homogeneous third direction
(here 16 Fourier modes). Depending on the angle of attack, the resulting meshes
include 0.6 to 1 million degrees of freedom. Meshes for the two solvers and for
AoA = 0◦ are depicted in Fig. 1. Finally, all the simulations are computed with both
DG solvers and consider a periodic spanwise lengths of Lz/c = 0.1. Note that we
have not observed significant differences in the results when increasing the spanwise
length. Statistics are accumulated during at least 40 convective time scales (based
on the airfoil chord) and starting after the turbulent flow has developed (typically an
initial transient of 10 convective time scales).
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b)a)

Fig. 1 Meshes for NACA0012 airfoil: (a) Hexahedral mesh for compressible solver and (b) mixed
tri-quad mesh for incompressible solver. Inset figures show high order polynomial mesh for order
P = 4

Fig. 2 NACA0012 airfoil at Re = 1 × 106, from left to right: AoA: 0◦, AoA: 5◦ and AoA: 10◦.
Simulations are obtained using the incompressible DG solver

3.1 Re = 1 × 106 and Various Angles of Attack

We start by illustrating the highest Reynolds number case, which is the most
challenging in terms of stability and robustness. To illustrate the range of the flow
behaviour at various AoAs, we show in Fig. 2, velocity contours for AoA: 0◦,5◦
and 10◦, computed using the incompressible DG solver. It can be seen that at
Re = 1×106 the flow remains attached for all angles, and that only mild separation
is seen near the trailing edge. We will see in the next section that at lower Reynolds
numbers this is not necessarily the case.

Figure 3 compares the aerodynamic coefficients with experimental data for
various angles of attack and the two solvers. Figure 3a shows the lift coefficient
against the AoA and Fig. 3b depicts the Lift-Drag Polar for Re = 1 × 106. We
observe very good agreement with experimental data for both solvers.
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Fig. 3 NACA0012 airfoil at Re = 1 × 106: (a) Lift coefficient vs angle of attack and (b) Lift-
Drag Polar. Compressible (comp.) and incompressible (incomp.) DG simulations are compared to
experimental data sets of Ladson [31], Gregory and O’Reilly [32], Abbot and Von Doenhoff [33]

3.2 AoA = 5◦ and Various Reynolds Numbers

Having shown the overall good performance in terms of aerodynamic quantities
at the most challenging Reynolds numbers, we now focus our attention on the
angle AoA = 5◦ and compare the usability of the solvers to study the NACA0012
boundary layer evolution.

First, we compare the aerodynamic coefficients for AoA = 5◦, and Reynolds
numbers Re = 1 × 105 and Re = 1 × 106, using the incompressible and
compressible solvers, both with polynomial order P = 3 and P = 4, in Table 1. We
observe good agreement for the highest polynomial order. Small discrepancies are
attributed to post-processing of statistics and lack of near wall resolution when
using P = 3, which influences mainly the drag coefficient and particularly viscous
drag. For completeness, we depict the flow evolution within the boundary layer
using both solvers in Fig. 4. It can be seen that detachment near the trailing edge
is similar for both solvers. Regarding transition to turbulence (represented by
fluctuations in velocity contour), both solvers capture transition on the suction side.
The compressible solver shows a transition location near the maximum thickness

Table 1 NACA0012 airfoil
at AoA = 5◦ for
Re = 1 × 105 and
Re = 1 × 106

Re = 1 × 105 Re = 1 × 106

Cl Cd Cl Cd

DG comp. P = 3 0.588 0.028 0.567 0.005

DG comp. P = 4 0.575 0.025 0.558 0.008

DG incomp. P = 3 0.484 0.028 0.538 0.017

DG incomp. P = 4 0.545 0.018 0.551 0.007

Comparison of Lift and Drag using the DG com-
pressible and DG incompressible solvers and two
polynomial orders P = 3 and P = 4
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Fig. 4 NACA0012 airfoil at Re = 1 × 105 and AoA = 5◦ for P = 4: (a) Compressible DG solver.
(b) Incompressible DG solver

Fig. 5 NACA0012 airfoil at AoA: 5◦ for (a) Re = 1×104, (b) Re = 1×105 and (c) Re = 1×106.
Velocity magnitude isocontours and unstructured mesh details are included

(x/c ≈ 0.4), whilst the incompressible solver shows transition closer to the leading
edge (x/c ≈ 0.2). We have observed significant variations of the transition location
for the compressible solver when varying the polynomial order, that we have not
seen in the incompressible solver. Further studies are necessary to completely assess
the influence of discretisation in the transition location for the two solvers.

Second, we explore the pressure coefficient distribution along the airfoil profile
when varying the Reynolds number. We only depict results for the incompressible
DG solver since these are very similar to the results provided by the compressible
solver. Note that this is not surprising, since the lift coefficients at Re = 1 × 105

and Re = 1 × 106 are very similar for P = 4 at AoA = 5◦, see Table 1. Figure 5
shows velocity contours for Re = 1 × 104, Re = 1 × 105 and Re = 1 × 106 at
AoA = 5◦. It can be seen that for the lowest Reynolds, the boundary layer remains
laminar until it detaches after the maximum thickness, showing a highly unsteady
wake. When the Reynolds number increases, the boundary layer shows transition
to turbulence before the maximum thickness, as appreciated by the fluctuations and
small scales appearing in Fig. 5.

To quantify these results, we depict in Fig. 6, the pressure distribution (Cp) for the
three Reynolds numbers. In the top row, we show instantaneous Cp against averaged
for incompressible DG solver. In the bottom row, we compare mean Cp distributions
against Xfoil [34] (with critical N-factor Ncr = 1) and Fluent SST (fully turbulent
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simulation) [35]. At Re = 1 × 104, the top figure shows that the boundary layer
detaches before transition occurs and after the maximum thickness, as shown by the
velocity contours in Fig. 5. Since the flow detaches leading to a highly unsteady
wake, there is little hope that the averaged Cp captures the actual behaviour of
the boundary layer. This is why, in the bottom figure, the mean values obtained
using the incompressible DG solver do not agree with the mean Xfoil and Fluent
values that assume steady turbulent flow. At Re = 1 × 105 and At Re = 1 × 106,
the instantaneous Cp values (top row) show scattering in the data associated to
transition. This occurs close to the leading edge on the suction side, whilst it is
delayed towards the trailing edge on the pressure side. The bottom row shows that
the DG results compare very well to Xfoil when using a critical N = 1 (to set the
transition point close to the leading edge), whilst Fluent SST (fully turbulent) shows
lower Cp values associated to simulating the complete boundary layer as turbulent
(no laminar region). This results suggest that DG solvers using iLES approaches
(compressible and incompressible) can capture transitional behaviour in boundary
layers even when relatively coarse meshes are selected.

4 Conclusions

In this contribution, we have presented results for turbulent flows over a NACA0012
airfoil. High order discontinuous Galerkin formulations require localised dissipation
to remain stable for under-resolved turbulent flow conditions, often referred to as
implicit Large Eddy Simulations. Here we have presented compressible and an
incompressible DG formulations (with different stabilising mechanisms) that are
able to cope with high Reynolds number flows. Both DG formulations provide
aerodynamic coefficients and boundary layer information that compare favorably
to experimental data and well established low order solvers. We conclude that the
compressible and incompressible formulations included in this work can be very
useful in aeronautical applications.
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