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1 Introduction

This work presents a numerical algorithm for the system of the Navier-Stokes
equations coupled with the balance of internal energy

9 1
,0(8—:+V~Vv)=—Vp+ﬁv-[2uD+A(V~v)]I]+fv (1a)
9
Lrv.(pvy=m (1b)
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where v = [u, v, w]T is the velocity vector (by setting w = const. = 0 we restrict
to 2D problem), p is a variable related to the thermodynamic pressure,] T denotes

the temperature, D = % [Vv + (VV)T] is the symmetric part of the rate of strain

'We call thermodynamic pressure the variable acting in the equation of state, e.g. p = pRT for
ideal gas. Quantities with physical units (superscript star) are normalized by its farfield values

(subscript infinity), e.g. v = |va*| T = ;—: etc. The dimensionless pressure in (la) is p =
P
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tensor, constant Re is the Reynolds number and constant Pr is the Prandtl number
(for sake of simplicity we set Re = Pr = 1 for the testing on exact solution).

The fluid is expected to be (calorically) perfect,” Newtonian,> whose heat flux
obeys the Fourier law.* In system (1), we consider those fluids, which become
nonhomogeneous in variable temperature fields due to temperature dependence of
its material parameters, namely the density p = p(T'), dynamic viscosity u = u(T)
and thermal conductivity ¥ = «(T').

Instead of (1a), we solve

p(ﬂ+V-VV)=—Vﬁ+LV~|:2MD—2M(V~V)H]+fV, 2)
ot Re 3

where p = p — upV - v is mean or mechanical pressure, while pp = A + % W is the
bulk viscosity. Equation (2) has the same structure as (1a) while setting A = — % u (or
equivalently up = 0, c.f. Stokes hypothesis), but physical interpretation of pressure
changes.

Without loss of generality, solving (2) instead of (1a), we avoid specification of
the second viscosity coefficient A.

The forcing terms fy , f7, may represent action of volumetric forces, e.g. gravity
or viscous heating, but m is set zero in most of realistic situations. In case of testing
of our algorithm on a given solution [v,, pe, 7,17, we construct the forcing terms
such, that Egs. (2), (1b) and (1c) are satisfied.

Our computational scheme is developed for simulations based on the spec-
tral/hp element approximation in spatial coordinates. We use the polynomial
approximations of degree 15 in our tests, what eliminates the numerical error in
spatial coordinates and we are getting an overview of error production, which
belongs directly to the algorithm/discretisation in time. The high order spatial
approximations also naturally include approximations of higher-order derivatives,
what is utilized in the scheme.

The previous results from literature are, up to the authors knowledge, restrictions
of (1) setting at least one of the material parameters constant, the velocity field to be
divergence-free or modelling a stationary flow, see Table 1.

2Internal energy e of the calorically perfect fluids obeys e = ¢y T, where specific heat at constant
volume is independent of temperature (cy = const.).

3We use the term Newtonian fluid in a general sense for fluids, whose stress tensor is linearly
dependent on the strain rate tensor. However, the viscous part of the stress tensor is not traceless as
often expected if fluid is called Newtonian.

4The Fourier law relates the heat flux q to the thermal conductivity « and the temperature gradient
VT asq=—«VT.
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Table 1 Chosen results

) . Eq.type |V-v |1 K P

concerning equation systems

with variable material (1] nonst. 0 p(p) |const. |var.

parameters [4, 5] nonst. 0 const. | const. | var.
[6] nonst. 0 var. const. | const.
[9] stat. 0 u(T) |«(T) | const.
[10] nonst. 0 w(T) |k(T) |const.
[11,12] | stat. 0 w(T) |k(T) |const.
[13] nonst. # 0 |const. |const. |var.
[14] nonst. 0 u(T) |«x(T) | const.
[16] nonst. 0 w(T) |k(T) |const.

Stationary and non-stationary models are denoted stat.
and nonst., unspecified variability of a property is
denoted var.

2 Algorithm

Our approach is inspired by the velocity-correction scheme with the high order
pressure boundary condition (HOPBC) proposed for the incompressible Navier-
Stokes equations in [7]. The constant property case, [7], is widely used for its
efficiency and was already extended to problems with variable viscosity in [6].
Its modification was used also to the incompressible Navier-Stokes-Fourier system
with temperature dependent viscosity and thermal conductivity in [10]. Efficiency
of the approach comes from the implicit-explicit IMEX) formulation, which allows
decoupling of the system.

The main contribution of the present work, which is a continuation of [10], is
in extension to the problems with temperature dependent density. However, the
velocity divergence cannot be further neglected in the momentum balance, what
is the substantial difference from the previously discussed models and algorithms.

2.1 Decoupled System

We use the IMEX scheme in which the Backward difference formula (BDF) of order
Q approximates the temporal derivative and a consistent extrapolation is applied to
chosen terms (N)

0-1 0-1

ou IMEX YUnt1l = D0 Qglin—g

5 = L0+ Nw o =Lop1+ Y BeNay-
9=0

3)

In (3), u is the searched solution, £ denotes the terms solved implicitly, which we
expect to be constant in time. Subscript n 4 1 (or operator in square brackets with
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subscript) denotes evaluation at time t,,+1 to+ (n+1)At, where At is the discrete
time step. Coefficients {otq}qQ:_0 . ﬂq}Q o and y for particular Q can be found, e.g.,
in [10]. Henceforward, we use ‘x’ in the superscript to denote extrapolation, N* =
[N = 2020 BoNog.

The extrapolated terms are evaluated using data from previous time steps,
{NL— q}Q o and {u, q} —o , what allows separate/decoupled solution of the (gener-
alized) Nav1er Stokes equatlons (2)—(1b) and the non-linear energy equation (1c).

Solution during one time step may be summarized to the scheme

1. Update u, «, p, V - v, and HOPBC using already known values {v,_ q}

{Tn—q }q=0
2. Solve the system of momentum and mass balance

qO’

(a) Solve the pressure-Poisson equation for p,1
(b) Solve velocity-correction for v,

3. Solve the non-linear advection-diffusion problem for 7}, 1.

2.2 Balance of Momentum and Mass

The scheme decouples solution of the Navier-Stokes system (2)—(1b) to the
pressure-Poisson equation and an elliptic equation for velocity. The equation for
pressure is derived as a projection to the irrotational space by application of the
divergence operator to (2)

) y 8,0 sk 1 %
Vp=E<[E] =it | = g [V (VX V xw)]

rvi il Ly (v +(V)T)*
ey — A\ _— . vV \4 .
APV TR M

1 2 * 4
+o— | =3 [VUIIV Vi1 + 20 VIV Vg )+
Re 3 3

“)

where we applied (1b), identities V x V x v = VV . v — Vyand V- Vx = 0,
dv/0t was substituted by BDF and v = quz_ol oy Vn—g— At [V - VV]*. The temporal
derivative of the density, which is extrapolated in (4), is approximated by Q-th order
BDF

op VP = Ly agpu-i—g )
ot |, At '
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We denote the extrapolation of the derivative approximation by superscript “s’.

Note, that we have to specify the initial value [g—’t’]o or both pg, p— to initialise the

scheme of the lowest order Q = 1.

Our model assumes, that the density is entirely determined by the temperature
distribution. Then, the divergence of velocity, whose forward estimate, [V - V],
is required in (4), follows from (1b)

1 . ap Hok
Vvl = o {mn+l —[v-Vp]" - [5] . (6)
The forward estimate of velocity divergence is the crucial step in the proposed
scheme.
HOPBC is the natural boundary condition for (4). It is derived as projection of
the momentum equation (2) to the direction of normal n to the domain boundary 92

*

—=n{—p | = +|—pv-Vv+ — —/J,VXVXV—i—V/,L-I:VV-i—(VV) ]
on ot Re

+2 —g[w] [V Va1 + 30 VIV ) + gy

)

The forward estimate of velocity divergence follows from (6) again. Similarly to

(4), we approximate the acceleration term % by the BDF of Q-th order, whose

initialisation requires value [g—:]o or both the values vp and v_;. The problem of
*% ek

initialisation of [g—f] and [g—‘;] is circumvented in many realistic simulations,

which begin from a constant fields.

The solution of (4) gives estimate/prediction of p,4; and we can solve (2) as an
elliptic problem for v,41. However, in the case of temperature dependent viscosity
and density, the algebraic system derived for operators with variable coefficients has
time dependent matrices, whose direct solution is inefficient. To preserve efficiency
of the scheme, we split such operators to the time independent part, which is solved
implicitly using a direct method and a variable part, which is extrapolated together
with the non-linear terms. We introduce material properties in form

p= (M) =i+, k=xT) =7+, L=<1>+<l> ®)
p(T) p /i

where [t and k are time-independent, while ©; = w;(x,t) and x; = k;(x,t). The
variable density p = p(T) acts in our scheme as an inverse value, c.f. (10), so the
splitting is done accordingly.
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To demonstrate the splitting, we consider the second order operator with variable
viscosity and density

, (IT) [rm 0T = (% e+ (%)iv[ﬁ (Vv"]
29 [u o] ©)
0

Only the term with time independent operator (%) V- [[L (VV)T] is solved implicitly,

while we apply extrapolation to terms containing variable parameters (%) and p;.
1
This approach is valid for g = i(x), k = k(x), resp. (%) = (%)(X), but if

is constant in space, the constant operator simplifies to (%)Vzv (resp. V2v if the

properties are normalized to & = k = p = 1, what is the case of (1), the balance
equations in form independent of physical units).
The final form of the equation for velocity becomes

BRevn_H =

)4
V2Vn—‘,—l AL i

=i

o Yoo, 1 N *
L {—Remv—l— e [Re(v;;,,ﬂ —fup1) — [vu Vv + (VV)T]]
+ SIVAPLY Va1 = SHVIV Vo

— (VIV - Vlpg1 = [V x V x vI*¥) [’f (i) W+ fu?‘}
123 i W

o*
(10)

2.3 Balance of Energy

The energy equation with temperature dependent thermal conductivity is strongly
non-linear. We split the diffusion operator to the time independent and the variable
part, following the technique shown for the velocity-correction (10). We set « = 1
for simplicity and the discretized energy equation (1c) gets form

yRe Pr

> T .
VT — Thy1 = RePr (_E - an+1) —[V-&VT]", (11)
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where T = ZqQ:_Ol agTy—q — At [v : VT]*. Operator <V2 - @) is time

independent and allow inversion using a direct method, what results in good
performance in computations on long time intervals.

3 Temporal Convergence on Manufactured Solution
and Application

Our convergence tests are based on the method of manufactured solutions, alterna-
tive to estimates of numerical analysis on simplified system. This approach lacks
generality, because we always restrict to particular data and some representative of
the solution space, but we get rough convergence estimate for unrestricted equation
system (1), while proving also the correctness of method implementation.

As an exact solution, we take a smooth functions v, : 2 x (0 : T) — R”,
Pe:Q2x0:T)—->R,T,:2x0:T)—> R

Ue 2 cos(rx) cos(y) sin(t)
‘:e e | L sin(rx) sin(wy) sin(z) (12)
‘;e | pe | | 2sin(x)sin(y) cos(r)
‘ T, sin(x)sin(y)cos(t)

and derive the forcing terms fy, m and fr such, that Egs.(2), (1b), (lc) are
fulfilled (in all cases we set Re = Pr = 1). Divergence of velocity in (12)
is V - v, = —msin(wrx)cos(ry)sin(t), variable in both the spatial and temporal
coordinates and with amplitude comparable with the solution itself. We choose
a computational domain 2 = [0:2] x [0.5:2.5] consisting of two elements 2 =
[0:1] x [0.5:2.5] U [1:2] x [0.5:2.5]. Extent of 2 and form of the exact solution, is
inspired by [3], where the velocity-correction scheme of [7] was tested on a similar,
manufactured solution.

The incompressible Navier-Stokes equations define the pressure up to a constant
value and only the boundary condition for velocity is needed. In this sense, we set
the Dirichlet boundary condition for velocity on whole 9€2. However, the pressure-
Poisson equation (4) requires setting a boundary condition as a consequence of the
decoupling. We set HOPBC (7) at 2 and solve the fully Neumann problem, which
defines the solution up to a constant value, which we set by fixing the solution to zero
in one of the grid points. The boundary condition for pressure is an artificial element
of the computational scheme and its existence is related to the splitting error. The
boundary condition for energy equation (11) is of Dirichlet type for whole 9€2.

We present the first and second order schemes in time in the convergence tests.
The technique is applicable to higher-order schemes as well. A multi step schemes
use data from multiple time steps, what complicates its initialisation. We apply
the first order BDF method for initialisation of the second order scheme. The first
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order scheme needs data of only one backward time step, but the time step must be
appropriately shortened. ‘

As mentioned already, the acceleration in HOPBC (7) and the term ‘;—’; in (4)
require an initial value or one other backward value for proper initialisation also in
case of the first order scheme, what is in contradiction to standard initial conditions
for system (1), which require only the initial values. However, setting the correct
values for calculation of the first time step is crucial for the final accuracy of the
solution.

Finally, we trace appropriate norms of difference between the exact and com-
puted solutions on a set of computations with time steps At = Af7/2"%, AT =
02,n=0,...,9fort €[0:1].

We use the power laws for approximation of dependence of material parameters
on temperature

w(T) = (amT + 1.0 | «(T) = (T +1.0)%, p(T) = (&, T + 1.0)% .
(13)

The temporal convergence of the above scheme for o, = o = o, = 0.1, 8, =
Bx = Br = 2 is shown in Fig. 1.

A detail view of error production, Fig.2, shows, that the dominant error
production arises at the grid point, which was used to set the unknown constant
for the Neumann problem.

The scheme was successfully applied in a 2D simulation of flow around the
heated cylinder and the results were compared with experimental data [15], where
the dependence of the vortex shedding frequency (Strouhal number St) on the wall
temperature of the cylinder, Ty, was observed. Figure 3 shows the substantial
difference in results between the model neglecting the thermal expansion, [10], and
the present one. Fig. 4 shows value range and structure of velocity divergence in a
chosen realistic simulation.

Fig. 1 The temporal 10° . r T
convergence for the 100
Navier-Stokes-Fourier system 3 k
with temperature dependent 107 -
material properties. The 102k ]
number of steps in BDF 3
QO =1lor Q =2,is denoted g 107 E
by subscripts /1 and 72. The 5 1074 F b
label “Errors” refers to 5

. 107 F -
[la — ael|ry, where a is the
computed function and a, the 10°°F E
exact value from (12), at 107k b
t=1

1078
1074 1073 1072 107! 10°
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-

Fig. 2 Test on manufactured
solution: difference

v_err = v, — v at the final
time ¢ = 1 for computation
with Q =2, Ar = 0.2/27,
c.f. Fig. 1. Polynomial
approximation of degree 15

Fig. 3 Frequency of the
vortex shedding (Strouhal no.
“St”) as dependent on the
normalized wall temperature
Ty in the flow around heated
cylinder (Re ~ 121.2).
Comparison of the data from
[10] (o = const.) “const.”, the
present scheme with Q =1
“p(T)”, experimental data of
[15] “exp.” and empirical
formula “emp.”[8]

Fig. 4 Computed field of
divergence, div(v) =V -v,
caused by the thermal
expansion in the flow around
heated cylinder (Re = 121.2,
Tw /T = 1.494), c.f. Fig.3
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v_err
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emp. -
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Ty, /TS
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div(v)
-1.9e-01 0 0.1 02 3.7e-01
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4 Conclusion

The numerical scheme proposed for the Navier-Stokes-Fourier system with variable
parameters allows to solve the highly complex mathematical model, which has an
impact to understanding the processes connected with the heat exchange, transport
and energy storage in fluids.

The computational scheme for a fluid flows influenced by temperature as mod-
elled by system (2), (1b), (1c) was developed and tested. The scheme was primarily
constructed for spatial discretisations based on spectral/hp finite elements and
presented results were obtained after implementation to the Nektar++ framework
[2], modified version 3.3.

We did not impose restrictions to the type of functional dependency of the
material parameters on temperature. Graph of error convergence in Lo, norm, Fig. 1,
results from testing on a manufactured solution and shows a good convergence
properties of the scheme, what is promising for applications.

Considered model neglects compressibility in the sense of direct dependence of
density on pressure, but the velocity field is not divergence free as a consequence of
the thermal expansion. A forward estimate of velocity divergence is needed in the
proposed scheme and its successful approximation is one of the main contributions
presented in this work. For these reasons, the scheme is unique among numerical
schemes based on the finite element approximations in space.

Proposed scheme is an extension of the efficient semi-implicit solver for
Incompressible Navier-Stokes system [7] and it is suitable for a fast and highly
accurate simulations of problems on long time intervals. The present results inspire
implementation of high order BDF schemes and extension of the solver to 3 spatial
coordinates.

Derivation of the scheme includes a number of sub-steps, whose detail descrip-
tion is beyond the scope of this article and will be published separately, together with
extension of the scheme for energy equation with variable density and further testing
of performance as dependent on various physical parameters in the equations.

Also the results from application of the scheme to computations of a physically
realistic problem and comparison of its results with experimental data exhibit a good
coincidence and will be presented with detail description in a separate article.
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