
New Preconditioners for Semi-linear
PDE-Constrained Optimal Control
in Annular Geometries

Lasse Hjuler Christiansen and John Bagterp Jørgensen

1 Introduction

Large-scale optimization problems that are constrained by partial differential
equations (PDEs) play a key role in various fields of science and engineering [2, 10].
As a challenge, the size and complexity of the PDE-constraints presents severe
computational difficulties that often prevent the use of general-purpose black-box
optimizers. As a consequence, cost efficient, specialized solvers become essential
[1, 3, 7, 8]. As a contribution in this direction, this paper demonstrates how to extend
seminal ideas of Shen [15–17] to construct fast and memory-efficient optimizers
for the class of semi-linear PDE-constrained optimization problems with non-linear
reaction kinetics

min
y, u∈Uad

1

2

∫
Ω

(y(x) − yd(x))2dx + ρ

2

∫
Ω

u(x)2dx, (1a)

s.t. − Δy + G(y) = u in Ω. (1b)

The paper focuses on the specific cases of either homogeneous (1) Dirichlet or (2)
Neumann boundary conditions, where Ω ⊂ R

2 is an annular domain of the type

Ω := {(x, y) ∈ R
2| a ≤ x2 + y2 ≤ b}, 0 < a < b. (2)

For a given non-linear reaction term, G(·), and Tikhonov regularization parameter,
ρ > 0, the control problem (1) aims to determine the optimal state and control
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variables, (y∗, u∗), that minimize the objective (1a). Here the optimal solution must
belong to the set of feasible pairs, (y, u), that satisfy the PDE-constraints (1b) and
the additional admissibility condition, u ∈ Uad. To be concrete, this paper focuses
on the case of bi-lateral point-wise control constraints

Uad := {u ∈ L2(Ω) : ua ≤ u(x) ≤ ub a.e. in Ωd}. (3)

Point-wise bounds of the type (3) appear in a number of practical applications,
where the control must satisfy, e.g., operational limitations that are not naturally
captured by the underlying PDE (1b). In the limiting case, where ua := −∞ and
ub := ∞, the admissible set becomes Uad = L2(Ωd). This corresponds to the case
where the PDE (1b) constitutes the only constraint.

1.1 Main Contributions and Outline

This paper contributes to a recent series of efforts by the authors that seek
to construct fast, iterative solvers for a range of PDE-constrained optimization
problems by exploiting the properties of customized spectral bases [4–6]. This series
of work aims to introduce a high-order alternative to the widely-used constellation
of low-order finite-element methods and Schur-complement preconditioners that
currently predominates the literature on PDE control [12–14]. Previous efforts have
mainly considered distributed control of elliptic and parabolic non-linear diffusion-
reaction systems. The main focus has been on problems in rectangular domains,
where PDEs constitute the only constraints. As a natural extension, this paper
investigates how to modify the existing methods to account for (1) bound constraints
of the type (3) and (2) different geometries. For the sake of brevity, the paper restricts
attention to annular domains (2). However, with slight modifications, the approach
generalizes to cylindrical geometries of the type

ΩC := {(x, y, z) ∈ R
3| a ≤ x2 + y2 ≤ b, z ∈ (0, h)}, 0 < a < b. (4)

As the main contribution, this work proposes a collection of Poisson-like precon-
ditioners that are customized for efficient solution of the control problems (1) by a
semi-smooth Newton (SSN) strategy [9]. Similar to a traditional Newton method,
the SSN scheme solves (1) iteratively by finding a locally optimal solution to the
non-linear Karuhn-Kush-Tucker (KKT) optimality conditions by solving a sequence
of linearized, variable-coefficient subproblems. Direct solution of the subproblems
is often time consuming and requires considerable memory-allocation. To this end,
the new preconditioners are designed to promote efficient solution of the SSN
subproblems by appropriate Krylov subspace (KSP) methods. Following seminal
ideas of Shen [16], the preconditioners rely on fast direct solvers for constant-
coefficient problems that exploit (1) the structure of boundary-adapted spectral
bases and (2) the separable nature of annular domains. As the main feature, inversion
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of the preconditioners decouples to form to a sequence of independent 2×2 systems.
This implies that the preconditioners can be applied matrix-free and scale linearly
with the problem size. In addition, the independence of the 2 × 2 systems makes
the preconditioners amenable to parallelization. To establish proof-of-concept, a
numerical case study solves (1), where G(·) is given by a cubic non-linearity.
The results demonstrate computational efficiency and show that the preconditioners
respond well to different problem sizes, boundary conditions, point-wise bound
constraints and various choices of the regularization parameter, ρ > 0.

To establish the necessary background, Sect. 2 outlines how to solve the optimal
control problem (1) using the SSN scheme. Further, to motivate the contributions
of this paper, the section discusses some of the computational challenges that
arise from discretization of the associated linearized subproblems. These challenges
naturally leads to the construction of the new Poisson-like preconditioners in Sect. 3.
Section 4 presents numerical results, while Sect. 5 draws overall conclusions and
addresses future work.

2 Motivation: A Semi-smooth Newton Method

This paper solves the control problem (1) by a semi-smooth Newton strategy [9].
The SSN scheme seeks to generate a locally optimal solution, (y, u), by solving the
first-order necessary optimality system

−Δy + G(y) − H(p) = 0 in Ω, (5a)

−Δp + Gy(y)p + ϕy(y) = 0 in Ω. (5b)

Here the boundary conditions of the original problem (1) are preserved, Gy denotes
the Fréchet derivative of G with respect to the state variable, y, and the optimal
control satisfies u = H(p) = max(ua, min(ρ−1p(x), ub)). In the special case
Uad := L2(Ω), it can be shown that u = H(p) = ρ−1p [18]. In the concrete
case of annular domains (2), the system (5) can be recast to polar coordinates. To
this end, define the functions

Y (t, θ) := y(r(t) cos(θ), r(t) sin(θ)), P (t, θ) := p(r(t) cos(θ), r(t) sin(θ)),

(6)

where r(t) := b−a
2 (t +c), t ∈ [−1, 1], c = b+a

b−a
. The optimality system then reads

−ΔtY + κG(Y ) − κH(P ) = 0 in QR (7a)

−ΔtP + κGY (Y )P + κϕY (Y ) = 0 in QR, (7b)
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where ΔtY :=
(
((t + c)Yt )t + 1

(t+c)
Yθθ

)
, κ = (t+c)(b−a)2

4 and QR := [−1, 1] ×
[0, 2π). To solve the KKT conditions (7), the SSN scheme considers the system as
an operator equation F(y, p) = 0 and solves it by generating a recursive sequence
of iterates, xi := (Yi, Pi), 1 ≤ i ≤ k, where the next iterate, xk+1 := (Y, P ), is
found by solution of the linearized optimality conditions:

−ΔtY + C0(xk)Y − C1(xk)P = f (xk) in Ω, (8a)

−ΔtP + C0(xk)P + C2(xk)Y = g(xk) in Ω. (8b)

Here C0(xk) := κGY (Yk), C1(xk) := κHP (Pk), C2(xk) := κ(GYY (Yk)Pk +
ϕYY (Yk)) and

f (xk) := κ(GY (Yk)Yk − G(Yk) − (HP (Pk)Pk − H(Pk))), (9a)

g(xk) := κ(GYY (Yk)PkYk + ϕYY (Yk)Yk − ϕY (Yk)), (9b)

where Hp denotes the generalized Newton derivative of H with respect to the
adjoint variable, P, i.e.,

HP (P ) = 1

ρ

⎧⎨
⎩

1 if ua ≤ 1
ρ
P ≤ ub,

0 otherwise.
(10)

2.1 Numerical Challenges: Discretization of the SSN
Subproblems

As a numerical challenge, the SSN scheme relies on successive solution of coupled
PDEs in the form (8). Upon discretization, this leads to repeated solution of
large saddle-point problems. To illustrate the associated difficulties, consider a
spectral-Galerkin discretization of the linear subproblems (8). To this end, define
the boundary-adapted approximation spaces

VN := {v ∈ PN : av(±1)+bv′(±1) = 0}, FM := span{eik(·), M/2 ≤ k ≤ M/2−1}.
(11)

Let K := N · M and define SK := VN × FM. The discrete Galerkin approximation
of (8) then seeks to find Y, P ∈ SK such that

〈(t + c)Yt , vt 〉 + 〈(t + c)−1Yθ , vθ 〉 + 〈C0Y − C1P, v〉 = 〈f, v〉 ∀v ∈ SK,

(12a)

〈(t + c)Pt , vt 〉 + 〈(t + c)−1Pθ , vθ 〉 + 〈C0P + C2Y, v〉 = 〈g, v〉 ∀v ∈ SK,

(12b)



New Preconditioners for Semi-linear PDE-Constrained Optimization 445

where 〈v,w〉 :=
∫ 2π

0

∫ 1

−1
vw dtdθ. To represent the approximate solutions, YN,M

and PN,M, consider the truncated series expansions

YN,M(t, θ) :=
M/2−1∑

k=−M/2

N−2∑
m=0

ŷl(k)mψm(t)eikθ , PN,M(t, θ) :=
M/2−1∑

k=−M/2

N−2∑
m=0

p̂l(k)mψm(t)eikθ ,

(13)

where l(k) := k + M
2 . Now, define the (N − 1) × (N − 1) matrices associated with

the basis {ψk}N−2
k=0 :

aij = 〈(c + t)ψ ′
j , ψ

′
i 〉, A = (aij )i,j=0..N−2, (14)

bij = 〈(c + t)−1ψj ,ψi〉, B = (bij )i,j=0..N−2. (15)

Note that appropriate choices of the basis functions {ψk}N−2
k=0 ∈ Vn will be

constructed in Sect. 3. Further, let Γ and Ξ denote the M × M diagonal matrices
defined by

γmn = 〈ein(·), eim(·)〉 = 2πδmn, ξmn = mn〈ein(·), eim(·)〉 = 2πnmδmn, (16)

where δmn denotes the Kronecker delta. Finally, consider the (MN × 1) vectors

ŷ := (ŷ0, . . . , ŷM−1), ŷk = {ŷjk}N−2
j=0 , (17)

p̂ := (p̂0, . . . , p̂M−1), p̂k = {p̂jk}N−2
j=0 , (18)

Ĝ := (ĝ0, . . . , ĝM−1), ĝk = {〈g,ψj e
ik(·)〉}N−2

j=0 , (19)

F̂ := (f̂0, . . . , f̂M−1), f̂k = {〈f,ψj e
ik(·)〉}N−2

j=0 . (20)

The discretized linear subproblem (8) can then be written in matrix form

[
MC2 B + MC0

B + MC0 −MC1

]

︸ ︷︷ ︸
A

[
ŷ

p̂

]

︸ ︷︷ ︸
x

=
[

Ĝ

F̂

]

︸ ︷︷ ︸
b

, (21)

where B = Γ ⊗ A + Ξ ⊗ B. Here the matrices MC�
, � = 1, 2, 3 are defined by the

elements

(mc�)ij = 〈Ciψke
im(·), ψle

in(·)〉, (22)
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where i, j satisfy that

i = n(N − 1) + (l + 1), j = m(N − 1) + (k + 1), (23a)

0 ≤ k, l ≤ N − 2, 0 ≤ n,m ≤ M − 1. (23b)

3 New Poisson-Like Preconditioners

As a significant challenge to the numerical solution of (7), the SSN scheme relies
on repeated solution of saddle-point problems (21) of dimension 2(N − 1)M ×
2(N − 1)M . Consequently, direct solution strategies often become computational
intractable. As a cost efficient alternative, the following introduces new precondi-
tioners that seek to accelerate the inner SSN subproblems (8) by using appropriate
Krylov subspace methods to solve the associated preconditioned linear systems

P −1
k Akxk = P −1

k bk. (24)

Concretely, this paper proposes approximative constraint preconditioners of the type

Pk =
[

M̂C2 B̂ + M̂C0

B̂ + M̂C0 −M̂C1

]
. (25)

Following ideas of traditional Poisson preconditioners, the new preconditioners
are constructed by approximating each block of the SSN subproblem (21) by the
matrices, B̂ and M̂c�

, � = 0, 1, 2, that come from a spectral Galerkin discretization
of the corresponding constant-coefficient problem that determines Y, P ∈ SK such
that

〈CAYt , vt 〉 + 〈CBYθ , vθ 〉 + 〈C0Y − C1P, v〉 = 〈f, v〉 ∀v ∈ SK, (26a)

〈CAPt , vt 〉 + 〈CBPθ , vθ 〉 + 〈C0P + C2Y, v〉 = 〈g, v〉 ∀v ∈ SK, (26b)

where CA = c, CB = c

c2 − 1
and Ci = 1

2

(
max

Ω
Ci(xk) + min

Ω
Ci(xk)

)
, i =

0, 1, 2.

To be efficient, the new preconditioners crucially rely on carefully chosen basis
functions {ψk}N−2

k=0 for the discrete approximation space, VN (11). To this end, this
paper uses Fourier-like (FL) bases that were originally introduced by Shen and
Wang in the context of traditional initial-boundary-value problems [17]. As a key
property to construction of the preconditioners, the FL bases lead to diagonal mass-
and stiffness matrices, i.e.,

Mij = (〈ψj ,ψi〉)ij = λj δj,i , Sij = (〈∂tψj , ∂tψi〉)ij = δj,i . (27)
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The FL bases can be constructed as part of an offline preprocessing stage in two
steps:

1. Let {Lk(·)}Nk=0 be the Legendre polynomials. Then there exists a unique set of
coefficients {ak, bk}N−2

k=0 such that

φk := ck

(
Lk + akLk+1 + bkLk+2

) ∈ Vk+2, ck := (
√−bk(4k + 6))−1.

Furthermore, the mass matrix, MA = (〈φj , φi〉)ij , is penta-diagonal and
symmetric positive definite, whereas the stiffness matrix, SA = (〈∂xφj , ∂xφi〉)ij ,
becomes diagonal [15]. In the concrete cases of Dirichlet and Neumann boundary
conditions, the coefficients, {ak, bk}N−2

k=0 are given by respectively

ak = 0, bk = −1 and ak = 0, b0 = 1/2, bk = −k(k + 1)/((k + 2)(k + 3)).

(28)

2. The second step computes the diagonalization Λ = QT MAQ, where Q = (qij )

denotes the matrix of eigenvectors and {λi}N−2
i=1 are the associated eigenvalues.

Using the matrix Q, the FL basis can be constructed by the linear combinations:

ψk(x) =
N−2∑
j=0

qjkφj (x), 0 ≤ k ≤ N − 2. (29)

3.1 Efficient Inversion of the Preconditioners

As the main feature of the preconditioners, Pk, the following describes an efficient
inversion procedure that exploits the orthogonal structures of the FL bases (27). To
this end, consider the following preconditioning problem that is solved during each
iteration of the KSP method:

[
M̂C2 B̂ + M̂C0

B̂ + M̂C0 −M̂C1

]

︸ ︷︷ ︸
Pk

[
ŷk

p̂k

]

︸ ︷︷ ︸
zk

=
[

Ĝk

F̂ k

]

︸ ︷︷ ︸
Akxk

. (30)
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Note that (30) corresponds to the discrete first-order necessary optimality conditions
associated with the constant-coefficient optimal control problem (26). Hence, by
definition (22), it follows that

B̂ = CAΓ ⊗ S + CBΞ ⊗ M, M̂C�
= C�Γ ⊗ M, (31)

where Sij = (〈∂tψj , ∂tψi〉)ij and Mij = (〈ψj ,ψi〉)ij . Further, by the orthogonal
properties of the Fourier bases (16), the matrices, Γ and Ξ , are diagonal. Therefore,
using the notation,

ŷk
l = {ŷk

lm}N−2
m=0 , p̂k

l = {p̂k
lm}N−2

m=0 , Ĝk
l = {Ĝk

lm}N−2
m=0 , F̂ k

l = {F̂ k
lm}N−2

m=0 ,

it follows that the preconditioning problem (30) can be written as M independent
linear systems

[
2πC2M Σl

Σl −2πC1M

] [
ŷk
l

p̂k
l

]
=

[
Ĝk

l

F̂ k
l

]
, 0 ≤ l ≤ M − 1, (32)

where Σl := CAS + (CBk(l)2 + 2πC0)M. In addition, the properties of the FL
basis, {ψk}N−2

k=0 , implies that S and M become diagonal (29). Hence, the system
(32) reduces to M(N − 1) independent 2 × 2 linear systems in the form

[
2πC2λm σnm

σnm −2πC1λm

] [
ŷk
lm

p̂k
lm

]
=

[
Ĝk

nm

F̂ k
nm

]
, 0 ≤ l ≤ M − 1, 0 ≤ m ≤ N − 2,

(33)

where σlm := CA + (CBk(l)2 + 2πC0)λm. By (33), it follows that the original
preconditioning problem (30) decouples into (N − 1)M independent 2 × 2
subsystems. As a consequence, the Poisson-like preconditioners (25) scale linearly
with the problem size and can be applied matrix-free.

4 Numerical Results

To investigate the potential of the Poisson-like preconditioners, the following case
study solves the control problem (1), where the reaction term is given by the cubic
non-linearity G(y) := y3. The corresponding problem serves as a recurring example
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in the control literature [18]. In this case study, the goal is to track the desired state
of the type

zd(r, θ) =
⎧⎨
⎩

Z, (r, θ) ∈ [α, β] × [0, π/2] ∪ [π, π/3]
0, otherwise

, (34)

where a ≤ α < β ≤ b. The following example uses the parameters, Z =
4, a = 30, α = 40 and β = b = 60. The main purpose of the study is to
investigate efficiency and robustness of the preconditioners (25). To this end, the
study solves (1) for different choices of (1) problem size, (2) boundary conditions,
(3) regularization parameter, and (4) point-wise bound constraints of the type (3).1

As a benchmark reference, the results are compared to MATLABs state-of-the-art
direct solver. All computations are carried out in [11] on a 2.9 GHz Intel processor.
The SSN scheme is said to have converged when the 2-norm difference between
successive iterates is below η = 10−4. The KSP iterations are performed using the
MATLAB function GMRES with a tolerance of ε = 10−9. The direct solver relies
on MATLABs backslash command. Table 1 lists the results, where KSP iter
denotes the average number of KSP iterations required for each SSN step. Note
also that DOF denotes the number of degrees of freedom for each individual SSN
subproblem. Hence, the total degrees of freedom, DOFT , is therefore given by
#SSN steps × DOF. The results reflect some overall tendencies that generalize
to other choices of the parameters, Z, a, α, β and b. Firstly, the preconditioners
provide significant reductions in CPU-time compared to the direct strategy. In
particular, the results show that the non-linear control problem with up to DOFT =
875,000 unknowns can be solved in less than a minute using modest hardware.
Secondly, the preconditioners prove robust with respect to the problem size and
the choice of boundary conditions. Thirdly, as a drawback, the number of SSN
steps and KSP iterations increase as the point-wise bounds become more strict. The
authors suspect that these increases in SSN steps and KSP iterations are caused by
the combination of a decrease in regularity of the solution and an increase in non-
linearity of the KKT system (Fig. 1).

1By the choices of parameters, the study strives to provide a representative example of the general
tendencies of performance and robustness that can be expected from the preconditioners. To allow
for more diverse and elaborate experiments, the MATLAB source code of this study has been made
publicly available from https://github.com/LHCH-DK/PDE_Control_Annular.git.

https://github.com/LHCH-DK/PDE_Control_Annular.git
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Fig. 1 The computed states for (1) Dirichlet boundary conditions, (2) Neumann boundary
conditions and (3) the desired state for ua = −35, ub = 35, ρ = 10−4 . Note that both solutions
manage to approximate the desired state well, despite of the bound constraints

5 Conclusions and Outlook

This paper has proposed new Poisson-like preconditioners for semi-linear PDE-
constrained optimization problems with non-linear reaction kinetics and point-wise
bound constraints. The preconditioners specifically target problems in annular
domains. Inspired by [16], the new preconditioners exploit the orthogonal prop-
erties of customized, boundary-adapted spectral bases. This leads to matrix-free
preconditioners that scale linearly with the problem size. Numerical results have
demonstrated that the preconditioners lead to fast solution of large-scale opti-
mization problems with significant computational benefits compared to MATLABs
state-of-the-art direct methods. Furthermore, the preconditioners have proven to
be robust with respect to the problem size for both homogeneous Dirichlet and
Neumann boundary conditions. As a challenge, numerical experiments indicated
that the non-linearity of the problem increases as the point-wise bound constraints
become more strict. In turn, this leads to an increase in the number of SSN steps
and KSP iterations that are required to reach convergence. A future study seeks to
improve this situation by providing the SSN scheme with an educated starting guess
that uses a coarse-grid solution to a similar control problem with less restrictive
constraints.
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