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1 Introduction

In the last decades, CFD simulations of free surface flows have become a key tool
in engineering analysis in the design of marine structures. To be able to obtain
valid estimates of environmental stress on ship-wave hydrodynamics, offshore wind
turbines, wave energy converters, and offshore production systems the CFD tools
need to be able to account for non-linear wave-wave and wave-body interaction.
Traditionally free surface water simulation has been simulated using lower order
methods, however recently spectral element methods have been used [2]. In contrast
to earlier work, in the present article, we simulate 2D free surface waves using a
mimetic spectral element method. This ensures that the invariants of the system
mass, momentum, and energy are conserved throughout the simulation.

The governing equation for incompressible, Newtonian fluids is the Navier—
Stokes equation. Free surface waves can be assumed to be governed by an inviscid
and irrotational fluid flow. Assuming first the fluid to be inviscid we arrive at the
Euler equations,

ou
P §+U-Vu =—Vp+pg,

together with the continuity equation

V.-u=0.
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Using the vector identity %V(u -u) = (u- V)u+u x (V x u) and using that the fluid
is irrotational (V x u = 0), we can rewrite the momentum and continuity equations,

0o _

P 2
—=VI|V —Vp — pg, 1
o1 5 Vol P — P8 (1

Vi =0, )

where ¢ is a vector potential defined as u = V¢, ¢ = ¢(x, z,t). We can now
rewrite the momentum equation as,

9
v [pa—f + §IV¢I2 +p+pg2} =0,

which we can integrate in space to obtain the time dependent Bernoulli’s equation.

022 4 LI9OR + p+ pge = Q).

ar 2

where C(¢) is an arbitrary function of integration. We assign C(¢) = 0 by recalling
that ¢ and ¢ + [ C(¢)dt yield exactly the same flow. Redefining ¢ and retaining the
symbol ¢ := ¢ + [ C(t)dr we obtain the time dependent Bernoulli’s equation for
the problem as,

o0 4 21VeP 4 p+ pgz=0. 3)
t 2

The governing equations for inviscid and irrotational flows for an incompressible
fluid are stated through (2) and (3), where the unknowns are the velocity potential, ¢,
and the pressure, p. Equations (2) and (3) together with proper boundary conditions
constitute a well-posed problem. The velocity potential, ¢, can be solved from the
Laplace equation and then substituted into the Bernoulli’s equation to obtain the
pressure field.

1.1 Boundary Conditions

The physical domain is shown in Fig. 1, where the notations are also illustrated.
The fluid domain 2 C R,d = 2 is a bounded, connected domain with piecewise
bathymetry "> ¢ R?~!. The time domain is taken as 7' : ¢ > 0. The unknowns for
the problem become the velocity potential and the free surface elevation n(x, t) :
'S x T — R. The pressure can hereafter be determined through (3).
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Fig. 2 Computational domain

The unsteady kinematic and dynamic free surface boundary conditions are given
by Zakharov [8],

o = —3mdxd + 0(1 + i) € I'FSxT, “)

~ 1 - ~
W =—gn— 5(<ax¢>2 —V2(1+dmdem) € I'FSxT, )

where ~ signify functions defined only on the free surface. The vertical component of
the velocity U = 9,¢|,—, is calculated by solving the Laplace problem (2) together
with the Zakharov boundary conditions (4) and (5) on the free surface. On the
bottom we have the no penetration condition,

3.0 + ,hdyp = 0, forz = —h(x) on I'". (©6)

On the inlet and outlet boundaries (I"'\I"'¥S U I'?) the gradient of the velocity
potential is specified. The computational domain is shown in Fig. 2.

2 Discretization of Governing Equations

The developed method adopts elements from differential geometry. The unknowns
of our system are described by use of differential forms. In a three-dimensional
setting we are making use of four types of sub-manifolds: points, curves, surfaces,
and volumes, both as inner and outer oriented objects, see an example in Fig. 3. The
mimetic spectral element method uses an approach similar to the Galerkin method of
the finite element method where the numerical residual is weighted by an arbitrary
weight function. In contrast to the traditional finite element method the arbitrary
weight functions are taken from the dual space of the function space used by the
unknowns.
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Fig. 3 Three-dimensional dual De Rahm complex showing the four types of sub-manifolds and
their different orientations
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2.1 Basis Functions

For the polynomial representation we use Lagrange polynomials /; (x) and edge
polynomials e;(£), see [5]. The Lagrange polynomials are based on a Gauss-
Lobatto-Legendre (GLL) point distribution for the nodal values. The Lagrange
polynomials and edge polynomials satisfy the properties,

ey 1 ifi=j . . 1 ifi=j
h@»{Oiﬁ#L L&®_L)m¢ﬁ

and the edge polynomials are explicitly given in terms of the nodal Lagrange basis
functions /; (x) as

ei(®) =—Y dl(&), (7)

where dli () is the exterior derivative applied to the O-form ;. (¢). This definition of
the edge polynomial also implies, see [4] and [5],

dll- =€ —€j+]- (8)
2.2 Mimetic Discretization in 2D
If we let the O-form ¢@ € A%(M) be expanded as

¢ = Z@ﬂ@“% ©)

i,j=0
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then we can write ¢}(10) as a matrix-vector product

o)) =[LoL]¢ =M . ¢, (10)

where L; ; = [;(§;) and &; are the Gauss-Lobatto-Legendre points, GLL points.
If we let the 1-form uD € Al(M) be defined as

u® = uf dg +u" dn, (11)

we can expand u¢ and u” using edge polynomials as,

N N

wy =YY ui e )1, (12)
i=1 j=0
N N

wp =Y ul liE)e;n). (13)
i=0 j=1

The discrete one-form 1) can also be written as a matrix-vector product, where u
is evaluated in the GLL points,

ud = |:[L®E] 0 :| . |:u5:| —MD ., (14)

0 [E®L] u”

where E; ; = ¢;(§)).
The 2-form P® e A%(M) is expanded using only edge polynomials,

N
i)=Y pijei©rejon = [EQE] . p=M? p. (13
ij=1

The Laplace equation can be reformulated using a mixed formulation, see [1], where
the equilibrium equation and the constitutive relationship are separated into two
equations.

Vép=u, V-u=0. (16)

Writing (16) using differential geometry for a 3-D geometry we obtain,
dp© = 4O, a7
dg@® =09, (18)

q(z) =V, (19)
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where we have utilized the Hodge star operator. The Hodge star operator is a map,
which maps p-forms onto (n — p)-forms, where n is the dimension of the domain,
£2. Given a p-form, AP the hodge star maps as follows:

*A P (2 = 2P (), (20)

where ~ denotes the change of orientation of the new form. The Hodge star is also
the coupling between the outer oriented domain and the inner oriented dual space,
as seen in Fig. 3.

In 2-D, using differential geometry, equations (16) take the form,

dp©® = u®, V=50 g0 = (5O 1)

When the exterior derivative is applied to the balance equation of (21) we obtain,
see [5]

N
~(1
g =Y (@ —aiy +al; —al_Dei®e;n), (22)
ij=1

where we have utilized (8). The equilibrium equation, the first equation in (21), is
equated to a zero valued 2-form. Expanding the last equation in (21) yields,

N N
3o fjei®ej)y =Y (g5 —aiy; +al — a4l _pei®e;n,  (23)

i,j=1 i,j=1
where f; ; = 0. The basis can then be cancelled and we can rewrite (23) as,
f=E®Dq, (24)

where E@D is an incidence matrix, only consisting of 0, 1 and —1. This matrix

relates the fluxes of q to the volume integral of the balance equation, see Fig. 4.
The first step in developing the discrete system is the formulation of the weak

form, where we make use of duality pairing between an arbitrary k-form, &®, and

Fig. 4 Three-dimensional
representation of surface
fluxes making up the
divergence of a volume
integral
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an arbitrary (n — k)-form, 80 The duality pairing is defines as,
<a(’<>, gwk))m _ / o® p fOb). 25)

The pairing with the (n — k)-form, "% takes the role of a weight function in
traditional finite element analysis and lives in the dual space and carry the opposite
orientation. The result of duality pairing can also be represented as a matrix-vector
product,

BT . MOOT Ww.J.M® . g =7 . M® . g, (26)

where W contains the Gauss weights and J is the Jacobian matrix. M®) is a mass
matrix of the corresponding discretized k- and (n — k)-form pairing, and (~) denotes
a matrix of opposite orientation.

Using Stokes generalized theorem [3] and applying integration by parts to the
balance equation (the last equation of (21)), we obtain.

/dc;(”/\a(o):/ d(g“)/\a@)—/ g" A da® 27)
2 2 2

Z/ (q“)/\a“’))—/ GV Ada©. (28)
82 2

Using duality pairing, an inner product projection for the term with the Hodge star
operator, the expansions in (9)—(15), and appropriate boundary conditions we can
set up the matrix system for the discrete Laplace operator as shown in (29).

0 0 ELO.THM ® 0
0 MO MO ul=10 (29)
MDOE0) ppD 0 (1 0

Using the forward Euler scheme for the temporal term and pairing it with an
arbitrary 0-form, &0 we can rewrite the Bernoulli’s equation as,

O _ 4O
— . 1 . B
<(p<2> ATl ; ol oy E’O(Z) A <1d¢(°_>1d¢’(’0)> +p@ =@ AnO gy, a<°>>

2
(30)

The density is considered a 2-form, which leaves (30) Hodge invariant. The interior
product i is defined in [7]. The discrete version of (30) takes the form,

0
[ £M® + MMt M@ |- [ﬂ =—pgM®h + =M%, (D)
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M? ‘D5 derived from the interior product of the two 1-forms in the convective term,
and contains information of ¢ from the previous time step and consequently has to
be updated at each new time step.

The simulation is initialized by first solving the Laplace equation with the
prescribed boundary conditions. The initial velocity potential ¢ on the free surface,
is set to <t;(x, t = 0) = x, and the free surface height is set to n(x, = 0) = 0. At
the following time steps, the Zakharov free surface equations are solved to obtain
new values of ¢ as well as the free surface elevation, .

3 Numerical Results

The method is first applied to a non-temporal problem without a free surface. The
geometry sketched in Fig.5 contains a cylinder in the middle of a square. On the
horizontal walls of the square and the cylinder wall the no penetration condition is
applied. On the left vertical boundary a fully developed velocity profile is specified
and on the right vertical boundary a constant velocity potential is defined. The
velocity potential ¢ and streamlines are shown in the middle section of Fig.5. In
the right part of Fig. 5 the pressure field is shown. Figure 6 shows that we obtain
spectral convergence for both unknowns.

Furthermore, the balance equation V - u = 0 (conservation of mass) is satisfied
both globally and point-wise independent of polynomial order as shown in Fig. 7.

Next we apply the method to a temporal and free surface problem where we have
included a bump on the bottom boundary. The Zakharov free surface equations are
applied on the top horizontal boundary. In Fig. 8 the pressure field and the free
surface are plotted at ¢+ = 1,100,200.

d¢
dy

')o.;.- ISR \ D) g
ETa o ™~ ] ¢=c

do
i

Fig. 5 Left: multi-element mesh of the cylinder problem with corresponding boundary conditions.
Middle: solved velocity potential ¢ in black with corresponding streamlines in red. Right: Solved
pressure field from the Bernoulli equation
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Fig. 6 The two unknowns of the system, the velocity potential, ¢, and the pressure field, P, are
shown to carry spectral convergence
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Fig. 7 The mass balance equation of (16) (V - u = 0) is satisfied both globally and locally for any
order of the expanding polynomial

P
r

Fig. 8 Time progression of the pressure fields, P, at time steps = 1, 100 and 200 are shown to
the left. To the right the height of free surface wave n is shown (a scaling factor of 10 is used)
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4 Discussion and Conclusion

Using an isoparametric, multi-element formulation the solution of the discretized
Laplace equation shows spectral convergence. In addition, we observe that mass is
conserved both globally and locally.

In (31), the discretized Bernoulli equation was kept Hodge-invariant, leaving the
equation metric free. This suggests that the fundamental invariant of the equation
is conserved. The Bernoulli equation conserves the total energy of the system.
However, in Fig. 9 it is observed that a small amount of energy is gained and lostin a
periodic manner. It is also observed that the mean energy is constant. It was possible
to time integrate over very long time periods without noticing any degradation of
data and we conclude that energy is conserved over long time periods even though
fluctuations were observed for short time periods. In the future we plan on using
a mimetic time integration scheme, which was used in [6], as well as the mimetic
spatial discretization that was used in the present work.

x 1073

4 . . . . . . . . . )
0 50 100 150 200 250 300 350 400 450 500
t

Fig. 9 Potential and kinetic energy is summed for the entire system at every time step and plotted
against time
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