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1 Introduction

Hybrid formulations [1, 3, 10] are classical domain decomposition methods which
reduce the problem of solving one global system to many small local systems. The
local systems can then be efficiently solved independently of each other in parallel.

In this work we present a hybrid mimetic spectral element formulation to solve
Darcy flow. We follow [8] which render the constraints on divergence of mass flux,
the pressure gradient and the inter-element continuity metric free. The resulting
system is extremely sparse and shows a reduced growth in condition number as
compared to a non-hybrid system.

This document is structured as follows: In Sect. 2 we define the weak formulation
for Darcy flow. The basis functions are introduced in Sect. 3. The evaluation of
weighted inner product and duality pairings are discussed in Sect. 4. In Sect. 5 we
discuss the formulation of discrete algebraic system. In Sect. 6 we present results
for a test case taken from [7].
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2 Darcy Flow Formulation

For � ∈ R
d , where d is the dimension of the domain, the governing equations for

Darcy flow, are given by,

⎧
⎨

⎩

u + A ∇p = 0

∇ · u = f
in � and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂� = �D ∪ �N

p = p̂ on �D

u · n = ûn on �N

,

where, u is the velocity, p is the pressure, f the prescribed RHS term, A is a d × d

symmetric positive definite matrix, p̂ and ûn are the prescribed pressure and flux
boundary conditions, respectively.

2.1 Notations

For f, g ∈ L2 (�),
(
f, g

)

�
denotes the usual L2-inner product.

For vector-valued functions in L2 we define the weighted inner product by,

(u, v)A−1,� =
∫

�

(
u,A−1v

)
d� , (1)

where (· , ·) denotes the pointwise inner product.
Duality pairing, denoted by 〈·, ·〉�, is the outcome of a linear functional on

L2 (�) acting on elements from L2 (�).
Let �K be a disjoint partitioning of � with total number of elements K , and Ki

is any element in �K , such that, Ki ∈ �K . We define the following broken Sobolev
spaces [2], H

(
div;�K

) =∏i H
(
div;Ki

)
, and H 1/2 (∂�K) =∏i H 1/2 (∂Ki).

2.2 Weak Formulation

The Lagrange functional for Darcy flow is defined as,

L (u, p, λ; f
) = 1

2

∫

�K
uT

A
−1u d�K − ∫

�K
p
(∇ · u − f

)
d�K

+ ∫
∂�K\�D

λ (u · n) d� + ∫
�D

p̂ (u · n) d� − ∫
�N

λ
(
ûn

)
d�

.
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The variational problem is then given by: For given f ∈ L2 (�K), p̂ ∈ H 1/2(ΓD)

and ûn ∈ H−1/2(ΓN) find u ∈ H(div;�K), p ∈ L2 (�K), λ ∈ H
1
2 (∂�K), such

that,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(v,u)A−1,�K
− 〈∇ · v, p

〉

�K
+ 〈

(v · n) , λ
〉

∂�K\�D
= − 〈v · n, p̂

〉

�D
∀ v ∈ H(div;�K)

− 〈q,∇ · u
〉

�K
= − 〈q, f

〉

�K
∀ q ∈ L2 (�K)

〈
μ, (u · n)

〉

∂�K\�D
= 〈μ, ûn

〉

�N
∀ μ ∈ H

1
2 (∂�K)

.

(2)

3 Basis Functions

3.1 Primal and Dual Nodal Degrees of Freedom

Let ξj , j = 0, 1, . . . , N , be the N + 1 Gauss–Lobatto–Legendre (GLL) points in
I ∈ [−1, 1

]
. The Lagrange polynomials hi(ξ) through ξj , of degree N , given by,

hi

(
ξ
) =

(
ξ2 − 1

)
L′

N

(
ξ
)

N (N + 1) LN

(
ξi

) (
ξ − ξi

) ,

form the 1D primal nodal polynomials which satisfy, hi(ξj ) = δij .
Let ah and bh be two polynomials expanded in terms of hi

(
ξ
)
. The L2—inner

product is then given by,

(
ah, bh

)

I
= aT

M
(0)b , where M

(0)
i,j =

∫ 1

−1
hi(ξ) hj (ξ) dξ ,

and, a = [a0 a1 . . . aN ] and b = [b0 b1 . . . bN

]
are the nodal degrees of freedom.

We define the algebraic dual degrees of freedom, ã, such that the duality pairing is
simply the vector dot product between primal and dual degrees of freedom,

〈
ah, bh

〉

I
= ãT b := aT

M
(0)b ⇒ ã = M

(0)a .

Thus, the dual degrees of freedom are linear functionals of primal degrees of
freedom.
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3.2 Primal and Dual Edge Degrees of Freedom

The edge polynomials, for the N edges between N + 1 GLL points
(
ξj−1, ξj

)
, of

polynomial degree N − 1, are defined as [4],

ej (ξ) = −
j−1∑

k=0

dhk

dξ
(ξ) , such that

∫ ξj

ξj−1

ei(ξ) = δij .

Let ph and qh be two polynomials expanded in edge basis functions. The inner
product in L2 space is given by,

(
ph, qh

)

I
= pT

M
(1)q , where M

(1)
i,j =

∫ 1

−1
ei(ξ) ej (ξ) dξ ,

and, p = [p1 p2 . . . pN

]
and q = [q1 q2 . . . qN

]
are the edge degrees of freedom.

As before, we define the dual degrees of freedom such that,

〈
ph, qh

〉

I
= p̃T q := pT

M
(1)q ⇒ p̃ = M

(1)p .

A similar construction can be used for dual degrees of freedom in higher dimen-
sions. For construction of the dual degrees of freedom in 2D see [8] and for 3D
see [9].

3.3 Differentiation of Nodal Polynomial Representation

Let ah
(
ξ
)

be expanded in Lagrange polynomials, then

d

dξ
ah
(
ξ
) = d

dξ

N∑

i=0

aihi

(
ξ
) =

N∑

i=1

(
ai − ai−1

)
ei

(
ξ
)

. (3)

Therefore, taking the derivative of a polynomial involves two steps: First, take the
difference of degrees of freedom; second, change of basis from nodal to edge [4].

4 Discrete Inner Product and Duality Pairing

For 2D domains, the higher dimensional primal basis are constructed using the
tensor product of the 1D basis.
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For the weak formulation (2) we expand the velocity uh in primal edge basis as,

uh
(
ξ, η
) =

N∑

i=0

N∑

j=1

uxi,j hi(ξ) ej (η) ı̂ +
N∑

i=1

N∑

j=0

uyi,j
ei(ξ) hj (η) ĵ , (4)

where ux i,j denotes the flux,
∫

u · n, over the vertical edges and uy i,j
the flux over

the horizontal edges, see Fig. 1.

4.1 Weighted Inner Product

Using (1) and the expansions in (4), the weighted inner product is evaluated as,

(
vh,uh

)

A−1,�K

=
∑

Ki

vT
Ki

M
(1)

A−1,Ki
uKi

,

Fig. 1 Discretized domain for K = 3 × 3, N = 3. The blue dots represent the pressure boundary
condition p̂, and the blue edges represent the velocity boundary condition ûn
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where, uKi
are the degrees of freedom in element Ki , and

M
(1)

A−1,Ki
=
∫

Ki

⎛

⎝
hi(ξ) ej (η)

ei(ξ) hj (η)

⎞

⎠

T

A
−1 (ξ, η

)

⎛

⎝
hi(ξ) ej (η)

ei(ξ) hj (η)

⎞

⎠ dKi .

For mapping of elements please refer to [6].

4.2 Divergence of Velocity

Divergence of velocity, ∇ · uh, is evaluated using (3), but now for 2D,

∇ · uh = ∂
∂x

∑N
i=0
∑N

j=1 uxi,j hi(ξ)ej (η) + ∂
∂y

∑N
i=1
∑N

j=0 uyi,j
ei(ξ)hj (η)

=∑N
i,j=1

(
uxi,j − uxi−1,j + uyi,j

− uyi,j−1

)
ei

(
ξ
)
ej

(
η
) .

(5)

For pressure we will use dual degrees of freedom. Therefore the weak constraint on
divergence of velocity is a duality pairing evaluated as,

〈
qh,∇ · uh

〉

�K

=
∑

Ki

q̃T
Ki

E
2,1 uKi

,

where E2,1 represents the discrete divergence operator. It is an incidence matrix that
is metric-free and topological, and remains the same for each element in �K . For an
extensive discussion on the incidence matrix, see for instance [6]. For an element of
degree N = 3,

E
2,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 1 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 1 0 0 0

0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0

0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0

0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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4.3 Connectivity Matrix

The connectivity matrix ensures continuity of the velocity flux across the elements.
λ is the interface variable defined between the elements, shown as red dots in Fig. 1.
λ acts as Lagrange multiplier that imposes the continuity constraint given by,

〈
μh,uh · n

〉

∂�K\�D

=
∑

K

μ̃T
Ki

N uKi
= μ̃T

EN u ,

where N is the discrete trace operator. It is a sparse matrix that consists of 1, −1
and 0 only. For construction of N please refer to [5]. EN is the assembled N for all
elements. For, K = 2 × 2, N = 2, EN is shown in (6). The matrix size of EN is
8 × 64, but it has only 16 non-zero entities. It is an extremely sparse matrix that
is metric free and the location of ± valued entries depend only on the connection
between different elements.

EN =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(6)

5 Discrete Formulation

Using the weighted inner product and duality pairings discussed in Sect. 4, we can
write the discrete form of weak formulation in (2) as,

⎡

⎣
B EN

T

EN 0

⎤

⎦

⎡

⎣
X

λ

⎤

⎦ =
⎡

⎣
F

0

⎤

⎦ , (7)
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where, B is an invertible block diagonal matrix given by,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M
(1)

A−1,K1
E

2,1T

E
2,1 0

M
(1)

A−1,K2
E

2,1T

E
2,1 0

. . .
. . .

. . .
. . .

M
(1)

A−1,KK
E

2,1T

E
2,1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8)

EN is as given in (6), X = ∑
i

⎡

⎣
u

p

⎤

⎦

Ki

, and F = ∑
i

⎡

⎣
p̂

f

⎤

⎦

Ki

, where f are the

expansion coefficients of f h
(
x, y

) =∑N
i,j fij ei (x) ej

(
y
)
.

In (8), the mass matrix M
(1)

A−1,Ki
is the only dense matrix and also the only

matrix that changes with each local element, Ki . EN is a sparse incidence matrix
for the global system and E

2,1 is a sparse incidence matrix for the local systems that
remains the same for each element.

Using the Schur complement method, the global system (7) can be reduced to
solve for λ, [1],

λ =
(
ENB

−1
EN

T
)−1 ·

(
ENB

−1F
)

. (9)

To evaluate λ in (9) we need B
−1 that can be calculated efficiently by taking inverse

of each block of B separately. This part is trivially parallelized. Once the λ is
determined the solution in each element, Ki , can be evaluated independent of each
other.

The system (9) solves for interface degrees of freedom between the elements and
will always be smaller than the full global system. For a comparison of the size of
λ system with full system see Table 1 (for 2D), and Table 2 (for 3D). On the left of
Tables 1 and 2 we see that, for constant K , increasing the order of polynomial basis
the growth in size of λ system is less than the growth in size of full system. Thus,
hybrid formulations are beneficial for high order methods where local degrees of
freedom of an element are much higher than interface degrees of freedom.
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Table 1 For 2D

N Full system λ only λ/full

5 825 60 0.07

10 3000 120 0.04

15 6525 180 0.03

20 11,400 240 0.02

25 17,625 300 0.02

K Full system λ only λ/full

400 15,480 2280 0.15

1600 62,160 9360 0.15

3600 140,040 21,240 0.15

6400 249,120 37,920 0.15

10,000 389,400 59,400 0.15

Left: Number of total unknowns as a function of N , for K = 3 × 3. Right: Number of total
unknowns as a function of the number of elements K , for N = 3

Table 2 For 3D

N Full system λ only λ/full

5 16,875 1350 0.08

10 121,500 5400 0.04

15 394,875 12,150 0.03

20 918,000 21,600 0.02

25 1,771,875 33,750 0.02

K Full system λ only λ/full

8000 1,285,200 205,200 0.16

64,000 10,324,800 1,684,800 0.16

216,000 34,894,800 5,734,800 0.16

512,000 82,771,200 13,651,200 0.16

1,000,000 161,730,000 26,730,000 0.17

Left: Number of total unknowns as a function of N , for K = 3 × 3 × 3. Right: Number of total
unknowns as a function of the number of elements K , for N = 3

On the right of Tables 1 and 2 we see that, for constant N , the λ system is smaller
than the full system, although the growth ratio of the size of λ and full systems do
not change significantly.

6 Results

In this section we present the results for a test problem from [7] by solving system
(7). The domain of the test problem is, � ∈ [0, 1

]2. The RHS term is defined as,

fex = ∇ · (−A∇pex) , where ,

A = 1
x2+y2+α

⎛

⎜
⎝

10−3x2 + y2 + α
(

10−3 − 1
)

xy
(

10−3 − 1
)

xy x2 + 10−3y2 + α

⎞

⎟
⎠ ; α = 0.1

pex = sin (2πx) sin
(
2πy

)

,

and Dirichlet boundary conditions are imposed along the entire boundary, �D = ∂�

and �N = ∅. We solve this problem on an orthogonal and a curved mesh, see Fig. 2.
The same problem was earlier addressed in [6], but for a method with continuous

elements and primal basis functions only. For the configuration K = 3 × 3, N = 6,
we compare the sparsity structure of the two approaches in Fig. 3. On the left we see
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Fig. 2 Mesh configuration: K = 3 × 3, N = 6. Left: orthogonal. Right: curved

Fig. 3 Sparsity plots K = 3×3, N = 6. Left: hybrid elements method. Right: continuous element
method

the hybrid formulation, and on the right we see the continuous elements formulation
[6]. The number of non zero entries are almost half in the hybrid formulation,
66,384, as compared to the continuous element formulation, 117,504. Here, the
sparsity is due to use of algebraic dual degrees of freedom and is not because of
hybridization of the scheme.

In Fig. 4, on the left we compare the growth in condition number, for the λ

system (9) with full continuous element system, for N = 7 on the curved mesh,
with increasing number of elements, K . We observe similar growth rates for hybrid
and continuous formulation, however the condition number for continuous elements
formulation is almost O

(
102
)

higher. On the right we see the growth in condition

number with increasing polynomial degree for K = 9 × 9 on the curved mesh. A
reduced growth rate in condition number for hybrid formulation is observed. Thus
hybrid formulations are beneficial for high order methods.
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2.4

2.1

4.7

2.7

Fig. 4 Growth in condition number for hybrid elements in dark line, and continuous elements in
dotted line. Left: h-refinement; Right: N -refinement. ‘c’ refers to the curved mesh

Fig. 5 L2-error in divergence of velocity: Left: h-refinement; Right: N -refinement. ‘o’ refers to
the orthogonal mesh and ‘c’ to the curved mesh

In Fig. 5 we show the L2-error for ‖∇ ·uh −f h‖. On the left side as a function of
element size, h = 1/

√
K , and on the right side as a function of polynomial degree

of the basis functions. In both cases the maximum error observed is of O
(

10−12
)

.

In Fig. 6, on the top two figures we show the error in the H
(
div;�

)
norm for

the velocity; and at the bottom two figures we show the error in L2 (�) norm for
the pressure. On the left we have h-convergence plots, and on the right we have
N -convergence plots. In all the figures, for the same number of elements, K , and
polynomial degree, N , the error is higher for the curved mesh.

On the left we see that the error decreases with the element size. The slope of
error rate of convergence is N , which is optimal for both curved and orthogonal
meshes. On the right we see exponential convergence of the error with increasing
polynomial degree of basis for both orthogonal and curved meshes.
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4

7

7

4

4

4

7

7

Fig. 6 Top row: error in H
(
div; �

)
norm for velocity; Bottom row: L2-error in pressure. Left:

h-refinement; Right: N -refinement. ‘o’ refers to the orthogonal mesh and ‘c’ to the curved mesh
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