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1 Introduction

The interface problems which involve partial differential equations having dis-
continuous coefficients across certain interfaces are often encountered in fluid
dynamics, electromagnetics and materials science. Because of the low global
regularity and the irregular geometry of the interface, the standard numerical
methods which are efficient for smooth solutions usually lead to loss in accuracy
across the interface.

For arbitrarily shaped interface �, it is known that optimal or nearly optimal
convergence rate can be recovered if body-fitted finite element meshes are used,
see e.g. [6, 8, 20, 29]. Here, by “body-fitted meshes” we mean an element of
the underlying mesh is required to intersect with the interface only through its
boundaries (Fig. 1). Unfortunately, when the geometry is complex, this usually leads
to a nontrivial interface meshing problem. Therefore, numerous modified finite
difference methods based only on simple Cartesian grids have been proposed in the
literature. We refer to the immersed boundary method [24], the immersed interface
method [17, 18], the ghost fluid method [21], and the references therein. In the
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Fig. 1 A body-fitted, shape
regular mesh

finite element setting, we refer to the work of the immersed finite element method
[7, 11, 19], the multiscale finite element method [9], the penalty finite element
method [1].

In the past decade, a combination of the extended finite element method (XFEM)
with the Nitsche scheme has become a popular discretization method. As the first
attempt, an unfitted finite element method was proposed in [13] which can be
viewed as a linear and consistent modification of [1]. This approach has motivated
a number of works, e.g., the unfitted finite element method [4, 5, 12], the Ghost
penalty method [2, 3], the unfitted discontinuous Galerkin methods [22]. Although
significant progresses in the error analyses of some methods have been made, the
development of high-order accurate unfitted FEMs with rigorous error analysis is
still challenging. We refer to the work of [14–16, 22, 27, 28] which claim high
order approximations. In [22], an hp-unfitted discontinuous Galerkin method for
Problem (1) was considered, and optimal h-convergence for arbitrary p was shown
for the two-dimensional case in the energy norm and in the L2-norm. With an
extra flux penalty term applied on the interface, [27] gave better hp a priori error
estimates in both two and three dimensions. In [15, 16], an isoparametric finite
element method with a high order geometrical approximation of level set domains
was presented. The analysis reveals optimal order error bounds with respect to h for
the geometry approximation and for the finite element approximation. In [14, 28],
various issues related to unfitted methods was addressed, including the dependence
of error estimates on the diffusion coefficients, the condition number of the discrete
system, and the choice of stabilization parameters.

The Nitsche-XFEM can be interpreted as applying interior penalty (IP) methods
on the interface, and our method falls into this category. The major step in our variant
is an appropriate choice of the mesh and geometry dependent weights in the average
(see (6)), which lead to trace and inverse inequalities for possibly degenerated sub-
elements (see (9)). We note that in our approach, the penalization is applied only
to the jump of the solution values across the interface (compared with the bilinear
form in [27]). The optimal h-convergence rate for arbitrary high-order discretization
in the energy and L2-norm are proved regardless of the dimension. We refer to [14–
16] for the similar estimates with respect to h and [27] for a refined version with
respect to both h and p.
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Efficient implementations of this method are then discussed in two aspects. We
first consider an optimal multigrid solver for the generated linear system. We use the
continuous FE space as a “background” subspace, with some smoothing operations
added near the interface, to formulate a nested geometrical multigrid method. We
prove the optimality of this special multiplicative multigrid method, which means
the method converges uniformly with respect to the mesh size, and is independent
of the location of the interface relative to the meshes. Since the assembling of the
stiffness matrix will require integration over curved surfaces and volumes, we then
implement a robust and arbitrarily high order numerical quadrature algorithm by
transforming surface and volume integrals into multiple 1-D integrals. The code for
the algorithm is freely available in the open source finite element toolbox Parallel
Hierarchical Grid (PHG) [26]. We also refer to [23, 25] for different approaches to
compute integrals on curved sub-elements and their curved boundaries.

The layout of this paper is as follows. In Sect. 2 we introduce the XFE spaces
and reformulate the interface problem (1) in DG schemes. The H 1- and L2- error
estimates of both schemes—which attain the optimal order of the convergence rate
in respect to mesh size h—are given. In Sect. 3, we give an optimal multigrid
method for the aforementioned DG-XFE schemes. Numerical examples for both
two and three dimensions are reported in Sect. 4, to illustrate the high accuracy of
the algorithm.

2 XFE and DG Schemes for Interface Problems

We consider the following elliptic interface problem for u: Let � = �1 ∪ � ∪ �2
be a bounded and convex polygonal or polyhedral domain in R

d , d = 2 or 3, where
�1 and �2 are two subdomains of � and are separated by a C2-smooth interface �

(see Fig. 2 for an illustration of a unit square that contains a circle as an interface),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (α(x)∇u) = f, in �1 ∪ �2,[
α(x)∇u

] = gN, on �,

[u] = gD, on �,

u = 0, on ∂�.

(1)

Here α(x) = αi, i = 1, 2, is a piecewise constant function on the partition �1 ∪�2.
Denote by {Th}, a family of conforming, quasi-uniform, and regular partitions

of � into triangles and parallelograms/tetrahedrons and parallelepipeds. As K is of
regular shape, there is a constant γ0 such that

hd
K ≤ γ0|K|, ∀K ∈ Th. (2)

We define the set of all elements intersected by � as T�
h = {K ∈ Th : |K ∩�| �= 0}.

Each T�
h induces a partition of interface �, which we denote by E�

h = {eK : eK =
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Fig. 2 Domain
� = �1 ∪ � ∪ �2 with an
unfitted mesh

Ω2

Ω1

K ∩ �,K ∈ T�
h }. For any K ∈ T�

h , let Ki = K ∩ �i denote the part of K in �i

and ni be the unit outward normal vector on ∂Ki with i = 1, 2. As � is of class C2,
it is easy to prove that (cf.[6, 31]) each interface segment/patch eK is contained in a
strip of width δ and satisfies

δ ≤ γ1h
2
K and |ni (x) − ni (y)| ≤ γ2hK, ∀x, y ∈ eK. (3)

We define the weighted average {·} and the jump [·] on e ∈ E�
h by

{v} = κ1v1 + κ2v2, [v] = v1n1 + v2n2, (4)

{q} = κ1q1 + κ2q2, [q] = q1 · n1 + q2 · n2. (5)

For the stability analysis of our schemes, we define (κ1, κ2) on each element as
follows:

κi =

⎧
⎪⎪⎨

⎪⎪⎩

0, if |Ki ||K| < c0hK,

1, if |Ki ||K| > 1 − c0hK,
|Ki ||K| , otherwise .

(6)

Clearly, 0 ≤ κi ≤ 1 and κ1 + κ2 = 1 so that {·} is a convex combination along �.
Roughly speaking, we adopt the weight κi = |Ki ||K| suggested in [13] for general sub-

elements and we set κi = 0 for |Ki | < chd+1
K . Here, the user-defined constant c0 ≥

2γ0γ1 and γ0, γ1 are constants defined in (2) and (3), respectively. The dependence
of c0 on these generic constants is elaborated in Lemma 1.

Let χi be the characteristic function on �i with i = 1, 2. Given a mesh Th, let
Vh be the continuous piecewise polynomial function space of degree p ≥ 1 on the
mesh. Let V 0

h := Vh ∩ H 1
0 (�), V 1

h := V 0
h · χ1 and V 2

h := V 0
h · χ2. We define the

XFE space as V �
h = V 1

h + V 2
h .

Then, the DG-XFE method for the interface problem is: Find uh ∈ V �
h such that

Bh(uh, vh) = Fh(vh), ∀vh ∈ V �
h , (7)
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where

Bh(w, v) :=
∫

�1∪�2

α(x)∇w · ∇v −
∫

�

{α(x)∇w} · [v]

− β

∫

�

[w] · {α(x)∇v} +
∑

K∈T�
h

ηβ

hK

∫

K∩�

[w] · [v],

Fh(v) :=
∫

�

f v +
∫

�

gN(κ1v2 + κ2v1)

− β

∫

�

gD · {α(x)∇v} +
∑

K∈T�
h

ηβ

hK

∫

K∩�

gD · [v],

For ηβ sufficiently large, the norm corresponding to the bilinear form Bh(·, ·) is
uniformly equivalent to ‖ · ‖Bh

, which is defined by

‖v‖2
Bh

= |v|21,�1∪�2
+

∑

K∈T�
h

ηβh−1
K

‖[v]‖2
L2(eK)

+
∑

K∈T�
h

η−1
β hK‖{α(x)∇v}‖2

L2(eK)
. (8)

The crucial component in regard to establishing this equivalence result and also
the stability of bilinear forms is the control on the weighted normal derivatives,
which is stated as a trace and inverse inequality in Lemma 1.

Lemma 1 ([27, 28]) Let γ0 and γ1 be constants defined in (2) and (3), respectively.
If we choose c0 ≥ 2γ0γ1 in the definition (6) of κ , there exists a positive constant h0
such that for all h ∈ (0, h0] and any interface segment/patch eK = K ∩ � ∈ E�

h ,
the following estimates hold on both sub-elements of K:

‖κ1/2
i vi‖L2(eK) ≤ C

h
1/2
K

‖vi‖L2(Ki)
, vi ∈ Pp(Ki), i = 1, 2. (9)

The coercivity and boundedness of Bh(·, ·) in its norm ‖ · ‖2
Bh

is then a direct
consequence of the Cauchy–Schwarz inequality.

Lemma 2 Let V = H 2(�1 ∪ �2) and V (h) = V �
h + V , we have

Bh(w, v) ≤ Cb‖w‖Bh
‖v‖Bh

, ∀w, v ∈ V (h), (10)

and

Bh(v, v) ≥ Cs‖v‖2
Bh

, ∀ v ∈ V �
h , (11)

provided the penalty parameter ηβ is chosen sufficiently large.
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The XFE space has optimal approximation quality for piecewise smooth func-
tions in Hp(�1 ∪ �2). The following theorem is proved in [28] as an analogue of
Cea’s lemma.

Theorem 1 Assume that the interface � is C2 smooth and that the solution of the
elliptic interface problem (1) satisfies u ∈ Hs(�1 ∪ �2), where s ≥ 2 is an integer.
Let μ = min{p + 1, s}. The following error estimates hold for any h ∈ (0, h0]: If
ηβ is chosen sufficiently large (see (11)) and uh is the solution to the first scheme
of (7), then

‖u − uh‖Bh
� hμ−1‖u‖Hs(�1∪�2), ∀ 0 < h ≤ h0. (12)

The hidden constants in the above estimates are dependent on the angle condition of
the mesh Th, the degree of the polynomials, the parameter in the scheme, and α(x),
but are independent of the location of the interface relative to the mesh. Here, the
constant h0 is from Lemma 1.

3 An Optimal Multigrid Method for (7)

In this section, we propose a two-level geometric multigrid solver of the finite
element problem (7). It is well known that the element K with a “small” cut (i.e.
|K ∩ �i |/|K| � 1) would have adverse effect on the conditioning of the resulting
stiffness matrices (see e.g. [3]). Our approach is based on the general theory of the
successive subspace correction (SSC) method of solving on a linear vector space
Ṽ = ∑J

i=0 Vi with inner product (·, ·) the equation (Au, v) = (f, v), where
A : Ṽ → Ṽ is a symmetric positive definite operator.

We apply SSC for a relatively simple case of two subspaces (i.e. J = 2), that is,
Ṽ = V �

h = V1 ⊕ V2, with V1 = V 0
h and V2 = Ṽ �

h , where Ṽ �
h ⊂ V �

h is the space
of nodal basis functions that vanish on Ñh := {xj : |supp(ψj ) ∩ �| = 0}. With a
slight abuse of notation, the DG-XFE scheme induces a symmetric positive definite
operator Bh for β = 1. Let B̃h and B̃�

h be the restrictions of Bh on V 0
h and Ṽ �

h ,
respectively. Let R̃h : V 0

h → V 0
h be approximately an inverse of B̃h. We have this

two-level successive subspace correction method (Algorithm 1). The similar idea
has been employed in a special linear case in [32] and analyzed using the framework
given in [30, 33].

Algorithm 1 The multigrid method for (7)
Implement this iterative procedure until converge:

1. do subspace correction on V 0
h with an inexact solver R̃h;

2. do subspace correction on Ṽ �
h with an exact solver (B̃�

h )−1.
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Obviously, Algorithm 1 defines an iterative method for solving Bhuh = fh.
Denote by Ah the iterator of the method, then the error contract property is
summarized as the following theorem.

Theorem 2 ([28]) Assume that ‖I − R̃hB̃h‖B̃h
� ρ < 1. Then Algorithm 1 is

uniformly convergent with respect to the mesh size with

‖I − AhBh‖2
Bh

� �

1 − ρ2 + �
,

where � is a constant independent of h.

When Th is a shape-regular grid with a geometrical multilevel structure, then
a geometric multigrid process can be implemented on V 0

h , and the approximate
inverse R̃h of B̃h can be chosen to be the iterator of V -cycle multigrid method.

4 Numerical Tests

In this section, we present some initial results to demonstrate the high-order
accuracy and robustness of our method. A 2-D example was implemented in
MATLAB. The numerical experiment for a 3-D case was carried out in the open
source finite element toolbox PHG [26].

4.1 High-Order Numerical Quadratures on “cut” Elements

Assembling the local stiffness matrix and the corresponding RHS for K ∈ T�
h

requires integration over irregularly shaped manifolds:

I =
∫

K∩�i

u(x)dx and I =
∫

K∩�

u(x)d�, (13)

where � is defined by the zero level set of a piecewise smooth function.
Our implementation of (13) relies on a general-purpose and arbitrarily high

order numerical quadrature algorithm proposed in [10]. The basic idea is to choose
a local coordinate system with three orthogonal directions, decompose integrals
in (13) into multiple 1-D integrals along these directions, and use 1-D Gaussian
quadratures to compute these integrals. For 1-D Gaussian quadratures to work, the
local coordinate system should be suitably chosen according to properties of K and
� to prevent essential singularities from appearing in the 1-D integrands, and the
integration intervals are divided into subintervals at the non essential singularities
of the integrands. We note that the proposed algorithm only requires finding roots
of univariate nonlinear functions in given intervals and evaluating the integrand, the
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level set function, and the gradient of the level set function at given points. It can
achieve arbitrarily high order by increasing the orders of Gaussian quadratures, and
does not need extra a priori knowledge about the integrand and the level set function.

This algorithm has been implemented in the file src/quad-interface.c
and include/phg/quad-interface.h in PHG [26]. Extensive h− and
p−convergence tests have been performed in [10] and included in a sample code
test/quad_test2.c.

4.2 2-D Numerical Examples

Let domain � be the unit square (0, 1)2 and interface � be the zero level set of the
function ϕ(x) = (x1 −0.5)2 +(x2 −0.5)2 −1/7. The subdomain �1 is characterized
by ϕ(x) < 0 and �2 by ϕ(x) > 0. The domain � is partitioned into grids of squares
with the same size h. The exact solution is chosen as

u(x1, x2) =
{

1/α1 exp(x1x2), (x1, x2) ∈ �1,

1/α2 sin(πx1) sin(πx2), (x1, x2) ∈ �2.

The right-hand side can be computed accordingly.
We implement Algorithm 1, with V -cycle geometric multigrid based on the

unfitted grid Th playing as the coarse grid corrector. In each pre- and post-smoothing
stage of V -cycle iterator, we perform Gauss-Seidel for two times. We record the
numerical results in Table 1. In these examples, the initial guess is 0, and the
stopping criterion is

‖fh − Bhu
(k)
h ‖∞/‖fh − Bhu

(0)
h ‖∞ < 10−10.

From Table 1, we can see that the multigrid method converges uniformly with
respect to the mesh size, which confirms our theoretical results.

Table 1 Numerical performance of Algorithm 1 (2-D example)

h 2−2 2−3 2−4 2−5 2−6

α1 : α2 = 1 : 10 p = 1 #iter 7 10 10 11 12

p = 2 #iter 13 10 12 13 14

α1 : α2 = 10 : 1 p = 1 #iter 24 30 29 27 25

p = 2 #iter 24 23 22 21 20
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4.3 3-D Numerical Examples

The settings of this numerical experiment are as follows. The domain � = (0, 1)3.
The interfaces are two touched spheres of radius 0.1 centered at (0.4, 0.5, 0.5) and
(0.6, 0.5, 0.5). The exact solution is given by

u(x1, x2, x3) =
⎧
⎨

⎩

exp(x1 + x2 + x3), (x1, x2, x3) ∈ �1,

sin(x1) sin(x2) sin(x3), (x1, x2, x3) ∈ �2.

The discontinuous coefficient function is defined such that α1 = 1 and α2 = 100.
A convergence study is performed on a series of meshes generated by uniform

refinements of an initial mesh consisting of 6 congruent tetrahedra. Relative errors
and convergence rates of numerical solutions for Pp elements for p = 1, 2, 3 and 4
are listed in Table 2, with the quadrature order q = 2p + 3. The convergence rates
are optimal for both H 1(�)-errors (order p) and L2(�)-errors (order p+1). For the

Table 2 Errors and convergence orders of the numerical solutions (3-D example)

Number of Degrees of Relative H 1 error Relative L2 error

elements freedom Error Order Error Order

P1 element(p = 1, q = 2p + 3 = 5)

768 189 1.690e−01 – 1.686e−02 –

6144 1241 7.510e−02 1.17 3.403e−03 2.31

49,152 9009 3.514e−02 1.10 9.618e−04 1.82

393,216 68,705 1.658e−02 1.08 2.272e−04 2.08

3,145,728 536,769 8.145e−03 1.03 4.869e−05 2.22

P2 element(p = 2, q = 2p + 3 = 7)

768 1241 9.041e−03 – 4.150e−04 –

6144 9009 2.026e−03 2.16 4.323e−05 3.26

49,152 68,705 4.973e−04 2.03 5.171e−06 3.06

393,216 536,769 1.234e−04 2.01 6.413e−07 3.01

3,145,728 4,243,841 3.070e−05 2.01 7.965e−08 3.01

P3 element (p = 3, q = 2p + 3 = 9)

768 3925 2.175e−03 – 8.394e−05 –

6144 29,449 3.793e−05 5.84 5.864e−07 7.16

49,152 228,241 4.743e−06 3.00 3.683e−08 3.99

393,216 1,797,409 5.932e−07 3.00 2.321e−09 3.99

3,145,728 14,266,945 7.414e−08 3.00 1.456e−10 3.99

P4 element (p = 4, q = 2p + 3 = 11)

768 9009 2.971e−03 – 9.606e−05 –

6144 68,705 6.042e−07 12.26 7.560e−09 13.63

49,152 536,769 3.778e−08 4.00 2.380e−10 4.99

393,216 4,243,841 2.362e−09 4.00 7.481e−12 4.99
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time being, however, the design of multigrid solver for 3-D case is still on-going.
The computations for P1, P2 and P3 elements were done using the 64-bit double
precision and the linear systems were solved using MUMPS, but for P4 element, to
eliminate influences of roundoff errors, the computations were done using the 80-
bit extended double precision and the linear systems were solved using the GMRES
method with MUMPS in double precision as its preconditioner. The performance of
Algorithm 1 will be reported in a future work.
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