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1 Introduction

The ingredients for a reliable numerical method for the approximation of partial
differential equations, e.g. one that will not blow up, include stable inter-element and
physical boundary condition implementations. The recognition that the discontinu-
ous Galerkin spectral element method (DGSEM) with Gauss-Lobatto quadratures
satisfies a summation-by-parts (SBP) operators [4, 7] has allowed for the analysis
of these schemes and to connect them with penalty collocation and SBP finite
difference schemes. For instance, in [5], we showed that a split form approximation
of the compressible Navier–Stokes equations was both linearly and entropy stable
provided that the boundary conditions were properly imposed.

The importance of stable boundary condition procedures for hyperbolic equa-
tions has long been studied, especially in relation to finite difference methods,
e.g. [3, 9, 10]. Only recently have they been studied for discontinuous Galerkin
approximations. In [12], the authors showed that the reflection approach is stable
when using an entropy conserving flux and an additional entropy stable dissipation
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term (EC-ES). In [2], the authors show that the reflection condition is stable if the
numerical flux is either the Godunov or HLL flux.

In this paper, we analyze both the linear and entropy stability of two types
of commonly used wall boundary condition procedures used with the DGSEM
applied to the compressible Euler equations. In both cases, wall boundary conditions
are implemented through a numerical flux. The boundary condition might be
implemented through a special wall numerical flux that includes the boundary
condition, or a fictitious external state applied to a Riemann solver approximation.
We show how to construct special wall numerical fluxes that are stable, and study
the behavior of the approximations. In particular, we show that the use of Riemann
solvers at the boundaries introduce numerical dissipation in an amount that depends
on the size of the normal Mach number at the wall.

2 The Compressible Euler Equations and the Wall Boundary
Condition

We write the Euler equations as

ut +
3∑

i=1

∂fi
∂xi

= 0. (1)

The state vector contains the conservative variables

u = [
� ��v E

]T = [
� �v1 �v2 �v3 E

]T
. (2)

In standard form, the components of the advective fluxes are

f1 =

⎡

⎢⎢⎢⎢⎢⎣

�v1

�v2
1 + p

�v1 v2

�v1 v3

(E + p)v1

⎤

⎥⎥⎥⎥⎥⎦
f2 =

⎡

⎢⎢⎢⎢⎢⎣

�v2

�v2 v1

�v2
2 + p

�v2 v3

(E + p)v2

⎤

⎥⎥⎥⎥⎥⎦
f3 =

⎡

⎢⎢⎢⎢⎢⎣

�v3

�v3 v1

�v3 v2

�v2
3 + p

(E + p)v3

⎤

⎥⎥⎥⎥⎥⎦
, (3)

Here, �, �v = (v1, v2, v3)
T , p, E are the mass density, fluid velocities, pressure and

total energy. We close the system with the ideal gas assumption, which relates the
total energy and pressure

p = (γ − 1)

(
E − 1

2
�
∥∥�v∥∥2

)
, (4)
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where γ denotes the adiabatic coefficient. For a compact notation that simplifies the
analysis, we define block vectors (with the double arrow)

↔
f = [

f1 f2 f3
]T

, (5)

so that the system of equations can be written in the compact form

ut + �∇x ·↔
f = 0. (6)

The linear Euler equations are derived by linearizing about a constant mean state
(�̄, v̄1, v̄2, v̄3, p̄). We follow [11] for the symmetrization of the linearized equations,
with the constants

a =
√

γ − 1

γ
c̄, b = c̄√

γ
, c̄ =

√
γ p̄

�̄
, (7)

where c̄ is the sound speed of the constant mean state. The state variables become

u = [
�′ v1 v2 v3 p′]T , (8)

where �v is the velocity perturbation from the mean state, and we introduce

�′ = b
�̃

�̄
, p′ = 1

�̄a
p̃ − 1√

γ − 1
�′, (9)

which depend on the density and pressure perturbations �̃, p̃. The flux vectors are

fi = Aiu,
↔
f = �Au = (

A1x̂ + A2ŷ + A3ẑ
)

u, (10)

where [11]

A1 =

⎡

⎢⎢⎢⎢⎢⎣

v̄1 b 0 0 0
b v̄1 0 0 a

0 0 v̄1 0 0
0 0 0 v̄1 0
0 a 0 0 v̄1

⎤

⎥⎥⎥⎥⎥⎦
, A2 =

⎡

⎢⎢⎢⎢⎢⎣

v̄2 0 b 0 0
0 v̄2 0 0 0
b 0 v̄2 0 a

0 0 0 v̄2 0
0 0 a 0 v̄2

⎤

⎥⎥⎥⎥⎥⎦
, A3 =

⎡

⎢⎢⎢⎢⎢⎣

v̄3 0 0 b 0
0 v̄3 0 0 0
0 0 v̄3 0 0
b 0 0 v̄3 a

0 0 0 a v̄3

⎤

⎥⎥⎥⎥⎥⎦

(11)

are constant symmetric matrices.
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The linear equations have the property that the L2 norm of the solution over a
domain � is bounded by terms of the boundary data on ∂�, only. Let

〈v, w〉 =
∫

�

vT w dxdydz,
〈↔
f,

↔
g
〉
=
∫

�

3∑

i=1

fTi gi dxdydz. (12)

represent the L2 inner product of two state vectors v and w and two block vectors
↔
f

and
↔
g, respectively. Since the coefficient matrices are constant the product rule and

symmetry of �A implies

〈 �∇x ·↔
f, u

〉
=
〈
�∇x ·

(�Au
)

, u
〉

=
〈
∇xu,

↔
f
〉
. (13)

Then it follows from Gauss’ law (integration by parts) that

〈 �∇x ·↔
f, u

〉
= 1

2

∫

∂�

uT
↔
f · �ndS, (14)

where �n is the outward normal to the surface of �. The norm of the solution
therefore satisfies

d

dt
||u||2 = −

∫

∂�

uT
↔
f · �ndS. (15)

Replacing the boundary terms by boundary conditions leads to a bound on the
solution in terms of the boundary data. The argument of the boundary integral on
the right of (15) is

uT
↔
f · �n = uT

(�A · �n
)

u = 2
(
�b + ap

)
vn + (�̄v · �n)(�2 + |�v|2 + p2), (16)

where vn is the wall normal velocity, vn = �v · �n. Note that here, the mean flow must
be chosen such that the normal flow vanishes at the wall boundary �̄v · �n = 0, so that
the boundary condition makes physical sense.

Therefore, with the no penetration wall condition vn = 0 applied,

d

dt
||u||2 = 0, (17)

and the (energy) norm of the solution is bounded for all time by its initial value.
The nonlinear equations, on the other hand, satisfy a bound on the entropy that

depends only on the boundary data. For what follows, we assume that the solution
is smooth so that we don’t have to consider entropy generated at shock waves. We
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introduce the entropy density (scaled with (γ − 1) for convenience) as

s(u) = − �ς

(γ − 1)
, (18)

where ς = ln(p) − γ ln(�) is the physical entropy. (The minus sign is conventional
in the theory of hyperbolic conservation laws to ensure a decreasing entropy
function.) The entropy flux for the Euler equations is

�f ς(u) = �v s = − �ς �v
(γ − 1)

. (19)

Finally the entropy variables are

w = ∂s(u)

∂u
=
⎡

⎢⎣

γ−ς
γ−1 − β||�v||2,

2β �v
−2β

⎤

⎥⎦ , β = �

2p
. (20)

The entropy pair contracts the solution and fluxes, meaning that it satisfies the
relations

wT ut =
(

∂s

∂u

)T

ut = st (u), wT �∇x ·↔
f = �∇x · �f ς . (21)

When we multiply (6) with the entropy variables and integrate over the domain,

〈
w(u), ut

〉 +
〈
w(u), �∇x ·↔

f
〉
= 0 . (22)

Next we use the properties of the entropy pair to contract (22) and use integration
by parts to get

〈
st (u), 1

〉 = −
〈 �∇x · �f ς , 1

〉
= −

∫

∂�

( �f ς · �n
)

dS (23)

showing that, in the continuous case, the total entropy in the domain can only change
via the boundary conditions.

In the case of a zero-mass flux boundary condition, with vn = �v · �n = 0, the
entropy is not changed by the slip-wall boundary condition, since

− �f ς · �n = �ς

(γ − 1)
vn = 0. (24)
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3 Stability Bounds for the DGSEM

The DGSEM is described in detail in [5] and elsewhere [1, 6]. We will only
quickly summarize the approximation here. The domain, � is subdivided into
non-overlapping, conforming, hexahedral elements. Each element is mapped to
the reference element E = [−1, 1]3. Associated with the transformation from the
reference element is a set of contravariant coordinate vectors, �ai , and transformation
Jacobian, J. Equation (6) transform to another conservation law on the reference
element as

Jut + �∇ξ ·
↔
f̃ = 0, (25)

where
↔
f̃ is the contravariant flux vector with components f̃i = J�ai ·↔

f.
The approximation of (25) proceeds as follows: A weak form is created by taking

the inner product of the equation with a test function. The Gauss law is applied to
the divergence term to separate the boundary from the interior contributions. The
resulting weak form is then approximated: The solution vector is approximated by a
polynomial of degree N interpolated at the Legendre–Gauss–Lobatto points. In the
following, we will represent the true continuous solutions by lower case letter. Upper
case letters will denote their polynomial approximations, except for the density,
where the approximation is denoted by ρ. The volume fluxes are replaced by two-
point numerical fluxes. In the linear case, the two point fluxes are immediately
relatable to a split form of the equations. Integrals are replaced by Legendre–Gauss–
Lobatto quadratures. Finally, the boundary fluxes are replaced by a numerical flux.
See [5] and [8] for details.

The result is an approximation that is energy stable for the linearized equations if
at every quadrature point along a physical boundary the numerical flux F̃∗ satisfies
the bound [5]

UT

{
F̃∗ − 1

2

↔
F̃ · n̂

}
≥ 0, (26)

where
↔
F̃ is the polynomial interpolation of the contravariant flux from the interior, n̂

is the reference space outward normal direction, and U is the approximation of the
state vector. Since the contravariant fluxes are proportional to the normal fluxes [6],
we can change the condition (26) to

BL ≡ UT

{
F∗ − 1

2

↔
F · �n

}
≥ 0, (27)
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For entropy stability of the nonlinear equations, the boundary stability condition
shown in [5] is proportional to

BNL ≡ WT

(
F∗ −

(↔
F · �n

))
+
( �F ς · �n

)
≥ 0, (28)

where �F ς is the polynomial interpolation of the entropy flux, �f ς , and W is the
interpolation of the entropy variables.

3.1 Linear Stability of Wall Boundary Condition
Approximations

To find linearly stable implementations of the wall condition vn = 0, one needs
only find a numerical flux that satisfies it and the condition (27). For the linear
equations, the approximation of the state vector is U = [ρ′ �V P ′]T and the normal
contravariant flux is proportional to

↔
F · �n = �A · �n U = [

bVn n1Q n2Q n3Q aVn

]T
, (29)

where Vn is the approximation of the normal velocity at the wall computed from the
interior, Q = bρ′ + aP ′, and (n1, n1, n3) are the three components of the physical
space normal vector, �n. The numerical flux can be expressed as

F∗ = �A · �n U∗ = [
bV ∗

n n1Q
∗ n2Q

∗ n3Q
∗ aV ∗

n

]T
. (30)

It then remains only to find Q∗ so that (27) is satisfied when the normal wall
condition V ∗

n = 0 is applied. When we substitute the fluxes (29) and (30) into
(27),

BL = 1

2

{
Q
(
2V ∗

n − Vn

) + Vn

(
2Q∗ − Q

)} = 1

2

{
2QV ∗

n + 2Vn

(
Q∗ − Q

)}

(31)

Substituting the wall boundary condition V ∗
n = 0 yields the condition on Q∗ for

stability

Vn

(
Q∗ − Q

) ≥ 0. (32)

Neutral stability is thus ensured if ρ∗ and P ∗ are computed from the interior, i.e.
ρ∗ = ρ′, P ∗ = P ′ so that Q∗ = Q.

In practice, the boundary condition is also implemented through the use of
a Riemann solver and external state designed to imply the physical boundary
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condition to construct the numerical boundary flux. The exact upwind (ε = 1)
normal Riemann flux and the central flux (ε = 0) for the linear system of equations
is

F∗ (U, Uext) = 1

2

{↔
F
(
U
) · �n + ↔

F
(
Uext) · �n

}
− ε

2

∣∣A n

∣∣ (Uext − U
)
, (33)

where A n ≡ �A · �n is the normal coefficient matrix. The external state is set by using
the interior values of the density and pressure and the negative of the value of the
normal velocity,

Uext =
[
ρ′ ( �V − 2Vn�n

)
P ′
]T

. (34)

For ε = 0, using the central (averaged) numerical flux, the interior flux
contribution cancels and condition (27) reduces to

BL,0 = 1

2
UT A nUext =

[
ρ′ �V P ′

]

⎡

⎢⎢⎢⎢⎢⎣

0 n1b n2b n3b 0
n1b 0 0 0 n1a

n2b 0 0 0 n2a

n3b 0 0 0 n3a

0 n1a n2a n3a 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

ρ′

�V − 2Vn�n

P ′

⎤

⎥⎥⎥⎥⎥⎦

= Q
(−V · �n) + (

V · �n)Q = 0, (35)

which is neutrally stable, having no additional stabilizing dissipation. We note again,
that the mean state for the linearization is chosen such that the normal mean velocity
components are zero, resulting in the zeros on the diagonal of A n.

Substituting the exact upwind flux where ε = 1 into (27) and rearranging,

BL,1 = −UT
∣∣∣A−

n

∣∣∣Uext + 1

2
UT

∣∣A n

∣∣U, (36)

where A−
n = 1

2

(
A n − ∣∣A n

∣∣
)

is negative semidefinite. The second term is non-

negative, depends only on the interior state, and adds stabilizing dissipation. From
the matrix absolute value, the dissipation term is

UT
∣∣A n

∣∣U = 1

c̄
Q2 + c̄3Ma2

n, (37)

where Man = Vn/c̄ is the normal Mach number. Stability depends, then, on the
value of the first term, which is where the boundary conditions are incorporated



Stability of Wall Boundary Condition Procedures 11

through the external state Uext written in (34). Then

UT
∣∣∣A−

n

∣∣∣Uext = 1

2c̄
Q2 − c̄3

2
Ma2. (38)

Therefore, using the upwind numerical flux, (36) becomes

BL,1 = c̄3Ma2
n ≥ 0, (39)

as required. The amount of dissipation depends on how far the interior computed
normal velocity deviates from zero.

The combination of the reflective state and local Lax-Friedrichs flux is also
linearly stable. In that case the exact matrix absolute value is replaced by a diagonal
matrix,

∣∣An

∣∣ ≈ |λ|max I. The jump term is added to the central (averaged) flux so

BL,LF = −|λ|max

2
UT

(
Uext − U

) = c̄2|λ|maxMa2
n ≥ 0 (40)

Finally, a dissipative version of the direct numerical flux (30) can be formed by
looking at the reflective state approach. For instance, the equivalent to using the
Lax-Friedrichs flux is to choose ρ∗ = ρ′ and

P ∗ = P ′ + c̄3

a
|λ|maxMan. (41)

Then Q∗ = Q + c̄3|λ|maxMan and

Vn

(
Q∗ − Q

) = c̄2|λ|maxMa2
n ≥ 0. (42)

A similar, though more complicated, modified P ∗ can be made to be equivalent to
the exact upwind flux.

3.2 Entropy Stability of Wall Boundary Condition
Approximations

As in the linear approximation, the wall boundary condition can be imposed for the
nonlinear equations either by directly specifying the numerical flux or by computing
it through a Riemann solver using a reflection external state that enforces the normal
wall condition implicitly. Note that in this section, the discrete variables (ρ, �V, P )

describe the full nonlinear state.
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For the nonlinear equations, we construct the numerical flux for a slip-wall as

(↔
F · �n

)∗ =
⎡

⎢⎣
0

P ∗ �n
0

⎤

⎥⎦ (43)

where we imposed Vn = 0 leading to a flux with no mass or energy transfer, and we
introduce a wall pressure P ∗, whose value will be chosen to ensure consistency and
stability.

After some manipulations, the discrete entropy stability condition (28) becomes

−ρVn

(
γ − ς

(γ − 1)
− β|| �V ||2

)

+2βVn

(
P ∗ − P − ρ|| �V ||2

)
+ 2βVn

(
ρE + P

) − ρςVn

(γ − 1)
=

−ρVn

(
γ

(γ − 1)
− β|| �V ||2

)
+ 2βVn

(
P ∗ + ρE − ρ|| �V ||2

)
=

ρVn

P

(
− γ

(γ − 1)
P + 1

2
ρ|| �V ||2 + P ∗ + P

(γ − 1)
− 1

2
ρ|| �V ||2

)
=

ρVn

(
P ∗
P

− 1

)
≥ 0

(44)

Therefore if we choose P ∗ = P , to be the internal pressure, the boundary flux
does not contribute to the total entropy, independent of the inner normal velocity
Vn. A value of P ∗ that leads to a dissipative boundary condition can be found either
through exact solution of the Riemann problem at the boundary, or through the use
of an external state and an approximate Riemann solver.

3.2.1 Exact Solution of the Riemann Problem

In [14] a symmetric 1D Riemann problem is exactly solved following Toro [13], to
get the wall pressure P ∗, accounting for the fact that Vn never vanishes discretely
and therefore the wall pressure should be different from the interior pressure. The
exact solution of the 1D Riemann problem reads as

(
P ∗
P

)

RP

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + γ Man

(
(γ+1)

4 Man +
√(

(γ+1)
4 Man

)2 + 1

)
> 1 for Vn > 0

(
1 + 1

2 (γ − 1)Man

) 2γ
(γ−1) ≤ 1 for Vn ≤ 0

(45)

with the normal Mach number, Man = Vn

c
, and the sound speed c =

√
γ P

ρ
.
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As shown by Toro [13], the solution for the rarefaction has a limiting vacuum
solution for Man ≤ −2(γ − 1)−1. We will restrict our analysis to normal Mach
numbers yielding strictly positive pressure solutions only (Man > −5 for γ = 7

5 ).
It is easy to see that using P ∗ from (45), the entropy inequality (44) is still

satisfied for |Vn| �= 0, and the added entropy scales with the discrete value of Vn

at the boundary. Hence, for h → 0, the discrete boundary condition converges to
its physical counterpart, since Vn → 0. The choice of P ∗ from (45) appears to
stabilize under-resolved simulations, which can be now explained by the fact that
the boundary flux always adds entropy for |Vn| �= 0.

3.2.2 Using Approximate Riemann Solvers for the Boundary Flux

A well known strategy in finite volume methods is to mirror only the velocity of the
internal state and solve an approximate Riemann problem to get the boundary flux,
mostly just because of a simpler implementation, since an approximate Riemann
solver is already available and used for the fluxes between the elements. For DG
methods, see also, for example, [2] and [12] where reflection conditions are proved
to be entropy stable.

The mirror state is set so that the mass and energy flux are zero. Let the inner
state be labeled L and the outer R. then the inner and outer states that satisfy the
mirror condition are

UL =
[
ρ ρ �Vn E

]T

, UR =
[
ρ ρ( �V − 2Vn�n) E

]T

(46)

We show below under what conditions on the normal velocity Vn that the reflection
condition is entropy stable for the Lax-Friedrichs, HLL and HLLC, Roe and EC-ES
fluxes.

Lax-Friedrichs Flux

We start with the simplest approximate Riemann solver, the Lax-Friedrichs or
Rusanov flux, which reads as

(↔
F · �n

)∗
LF

= 1

2
�n ·

(↔
F(UL) + ↔

F(UR)
)

− |λ|max

2
(UR − UL). (47)

Inserting the states from (46), we get

(↔
F · �n

)∗
LF

=

⎡

⎢⎢⎣

0

(ρV 2
n + P) �n

0

⎤

⎥⎥⎦ − λmax

2

⎡

⎢⎢⎣

0

−2ρVn�n
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0

(ρV 2
n + ρVnλmax + P) �n

0

⎤

⎥⎥⎦ .

(48)
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The maximum wave speed is normally approximated from the largest leftgoing and
rightgoing wave speed,

λmax = max(|V L
n | + cL, |V R

n | + cR) = |Vn| + c , since cL = cR = c ,

Vn = V L
n = −V R

n (49)

and thus gives a definition of P ∗

(
P ∗

P

)

LF
= 1 + γ Man

(
Man + |Man| + 1

)

=
{

1 + γ Man(2Man + 1) > 1 for Vn > 0
1 + γ Man ≤ 1 for Vn ≤ 0

, (50)

which shows that the Lax-Friedrichs flux satisfies the entropy inequality (44).

HLL and HLLC Flux

The HLL flux [13] is written as

(↔
F · �n

)∗
HLL

= 1

SR − SL

(
�n ·

(
SR

↔
F(UL) − SL

↔
F(UR)

)
+ SLSR

(
UR − UL

))
.

(51)

The leftgoing and rightgoing wave speeds are SL = V L
n − cL = −V R

n − cR = −SR

and the HLL flux reduces to

(↔
F · �n

)∗
HLL

= 1

2
�n ·

(↔
F(UL) + ↔

F(UR)
)

− SR

2

(
UR − UL

)
. (52)

If we would choose SR to be the maximum wave speed, the HLL flux would reduce
to the Lax-Friedrichs flux. However, with SR = V R

n + cR = −Vn + c, an even
simpler relation for P ∗ is found, which also satisfies the entropy inequality

(
P ∗

P

)

HLL
= 1 + γ Man

{
> 1 for Vn > 0
≤ 1 for Vn ≤ 0

(53)

For the HLLC flux [13], one can show that since the Riemann problem is symmetric,
the approximate wave speed of the contact discontinuity is λ∗ = 0 and, choosing
SR = −Vn + c, HLLC reduces to the HLL flux.

(
P ∗

P

)

HLLC
= 1 + γ Man =

(
P ∗

P

)

HLL
(54)
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Roe Flux

For the original Roe method without entropy fix [13], the mean values are

Ṽn =
√

ρLV L
n + √

ρRV R
n√

ρL + √
ρR

= 0 , Ṽt1 = Vt1 , Ṽt2 = Vt2 ,

c̃ = c

√
1 + (γ − 1)

2
Ma2

n. (55)

After some manipulations,

(↔
F · �n

)∗
Roe

=
(↔

F · �n
)

+ λ̃1α̃1K̃1 =
(↔

F · �n
)

+ (−c̃)
ρVn

c̃

⎡

⎢⎢⎢⎢⎢⎢⎣

1
−c̃

Vt1

Vt2
1
ρ
(ρE + P)

⎤

⎥⎥⎥⎥⎥⎥⎦

=
⎡

⎢⎣
0

(ρV 2
n + ρVnc̃ + P) �n

0

⎤

⎥⎦ . (56)

with λ̃1 = Ṽn − c̃ = −c̃, α1 = ρVn/c̃ and K̃1 from [13]. This leads again to a
definition of P ∗

(
P ∗

P

)

Roe
= 1 + γ Man

(
Man +

√
1 + (γ − 1)

2
Ma2

n

)
, (57)

which fulfills the entropy inequality as long as

Man ≥ −
√

2

3 − γ
, for γ = 7

5
Man > −1.12 . (58)

Thus, the Roe flux is entropy stable for shocks, but not for supersonic rarefactions.

EC-ES Fluxes

We can also apply an entropy conservative (EC) flux that is used for interior element
interfaces and add an entropy stable dissipation term (ES) to compute the boundary
flux via the mirrored states (46). This is exactly the strategy proposed in Parsani
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et al. [12] to get the boundary flux. Such an EC-ES flux is presented in Winters et al.
[15]

(↔
F · �n

)∗
ES

= ↔
FEC

(
UL, UR

) · �n − 1

2
D H

(
WR − WL

)
(59)

where D is a dissipation matrix and the matrix H �w� � �u� is carefully derived
from the left and right states. Details are given in [15], where two approaches for
the dissipation are distinguished. One is a Lax-Friedrichs-type dissipation, scaling
with the maximum eigenvalue λmax = |Vn|+c (referred to as ‘EC-LF’). The other is
a Roe-type dissipation computed via the eigenstructure of the matrix (D H) (referred
to as ‘EC-Roe’).

If we carefully insert the two mirrored boundary states into (59), we again get an
equation for the modified pressure

(
P ∗

P

)

EC-LF
= 1 + γ Man

(|Man| + 1
)

(60)

for the Lax-Friedrichs-type dissipation and

(
P ∗

P

)

EC-Roe
= 1 + γ Man (61)

for the Roe-type dissipation. Both approaches lead to an entropy stable boundary
flux when using a mirrored state. Note that the modified pressure of the EC-Roe
flux (61) exactly matches the one of the HLL flux (53).

4 Discussion

In the previous section we have shown conditions under which a specified wall
flux is stable. In the linear analysis, the central numerical flux adds no dissipation
and is neutrally stable. In the nonlinear analysis, entropy is not generated if the
numerical wall pressure is equal to the internal pressure, P ∗ = P ′. For upwinded
approximations, the amount of energy or entropy dissipation depends on the normal
Mach number. Since the boundary condition is only imposed weakly through the
numerical flux, the normal Mach number will not be exactly zero except in the
convergence limit. In fact, flow computations (especially steady state ones) are
usually initiated with an impulsive start, where the initial state is a uniform flow,
and the normal Mach number is not zero. This has proved over time to be very
robust in practice. The analysis above gives an explanation why.

In the linear analysis the dissipation due to imposing the boundary condition
is proportional to the square of the normal Mach number. With an impulsive
start initialization, this dissipation will be large. As the flow develops and the
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Fig. 1 Entropy contribution s (62) produced by the wall boundary flux. RP refers to the exact
Riemann problem (45), LF to (50), EC-LF to (60), HLL to (53) and Roe to (57). Plotted over the
normal Mach number ranges |Man| ≤ 5 on the top and restricted to |Man| ≤ 1 on the bottom

boundary condition is better enforced, the dissipation reduces, going away only as
the approximate solution converges.

A similar effect is observed for the use of the different approximate Riemann
solvers in the nonlinear analysis. In Fig. 1, we compare the entropy contribution

s = (ρc)Man

(
P ∗

P
− 1

)
(62)

for the different wall boundary fluxes, over a range of normal Mach numbers for
(ρc) = 1 and γ = 7/5. When the boundary condition is exactly fulfilled (Man = 0),
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the entropy contribution is zero. For low normal Mach numbers, all fluxes have the
same behavior. Compared to the exact Riemann problem (RP), the Lax-Friedrichs
flux and the EC-LF flux always produce more entropy whereas the HLL flux
produces less entropy for impinging velocities Man > 0. The results of HLLC
and EC-Roe fluxes are not plotted, as they coincide with the HLL flux. As shown
in the analysis, the Roe flux produces a negative entropy change for supersonic
rarefactions, implying that it is not suitable for all flow configurations.

Acknowledgements This work was supported by a grant from the Simons Foundation (#426393,
David Kopriva). Gregor J. Gassner has been supported by the European Research Council (ERC)
under the European Union’s Eights Framework Program Horizon 2020 with the research project
Extreme, ERC grant agreement no. 714487. Florian Hindenlang thanks Eric Sonnendrücker and
the Max-Planck Institute for Plasma Physics in Garching for their constant support.

References

1. Black, K.: A conservative spectral element method for the approximation of compressible fluid
flow. Kybernetika 35(1), 133–146 (1999)

2. Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable
quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)

3. Fisher, T., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conser-
vative finite-difference formulations for nonlinear conservation laws in split form: theory and
boundary conditions. J. Comput. Phys. 234, 353–375 (2013)

4. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes
with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327,
39–66 (2016)

5. Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.: The BR1 scheme is stable for
the compressible Navier–Stokes equations. J. Sci. Comput. (2018)

6. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Scientific
Computation. Springer, Berlin (2009)

7. Kopriva, D.A., Gassner, G.: On the quadrature and weak form choices in collocation type
discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010)

8. Kopriva, D.A., Gassner, G.J.: An energy stable discontinuous Galerkin spectral element
discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 36(4),
A2076–A2099 (2014)

9. Nordström, J.: Conservative finite difference formulations, variable coefficients, energy esti-
mates and artificial dissipation. J. Sci. Comput. 29(3), 375–404 (2006)

10. Nordström, J.: A roadmap to well posed and stable problems in computational physics. J. Sci.
Comput. (2016). https://doi.org/10.1007/s10915-016-0303-9

11. Nordström, J., Svard, M.: Well-posed boundary conditions for the Navier–Stokes equations.
SIAM J. Numer. Anal. 43(3), 1231–1255 (2005)

12. Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable wall boundary conditions for
the three-dimensional compressible Navier–Stokes equations. J. Comput. Phys. 292, 88–113
(2015)

13. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin
(2009)

https://doi.org/10.1007/s10915-016-0303-9


Stability of Wall Boundary Condition Procedures 19

14. van der Vegt, J.J.W., van der Ven, H.: Slip flow boundary conditions in discontinuous Galerkin
discretizations of the Euler equations of gas dynamics. In Mang, H.A., Rammenstorfer, F.G.
(eds.) Proceedings of the 5th World Congress on Computational Mechanics (WCCM V),
number NLR-TP in Technical Publications, pp. 1–16. National Aerospace Laboratory, NLR
(2002)

15. Winters, A.R., Derigs, D., Gassner, G.J., Walch, S.: A uniquely defined entropy stable matrix
dissipation operator for high Mach number ideal MHD and compressible Euler simulations. J.
Comput. Phys. 332, 274–289 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Stability of Wall Boundary Condition Procedures for Discontinuous Galerkin Spectral Element Approximations of the Compressible Euler Equations
	1 Introduction
	2 The Compressible Euler Equations and the Wall Boundary Condition
	3 Stability Bounds for the DGSEM
	3.1 Linear Stability of Wall Boundary Condition Approximations
	3.2 Entropy Stability of Wall Boundary Condition Approximations
	3.2.1 Exact Solution of the Riemann Problem
	3.2.2 Using Approximate Riemann Solvers for the Boundary Flux


	4 Discussion
	References


