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Abstract The stunning ability of bacteria to evolve and adapt has contributed to the
success of these single cells, which have inhabited the Earth for billions of years and
play vital roles in the environment and in human health. The goal of this chapter is to
present and discuss the population-level organizational scheme of bacterial
pangenomes, wherein genes are distributed among the strains of a species, such
that each individual strain encodes only a subset of the genes available at the
population level. Genes from the accessory/distributed genome (those present only
in a subset of strains within a species) impart diverse functions or variations on a
conserved function to strains. Moreover, horizontal gene transfer generates novel
gene combinations. The maintenance and spread of any given gene arrangement are
influenced by fitness. Further, the extent of genomic plasticity is regulated by
restriction modification systems, phage-defense systems, and Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR)—associated proteins (CRISPR-
Cas). The combination of a pangenome structure and genomic plasticity reveals a
successful strategy for bacterial adaptation to ever-changing environments. From a
clinical perspective, pangenome analyses inform the selection of therapeutic targets,
designed to focus either on an entire species or on virulence features within a species.
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Further, they provide a framework for modeling the efficacy of drugs and vaccines.
In summary, following the explosion in sequencing technology, pangenome studies
have revealed remarkable genomic organizations at the levels of species, with
important implications to our understanding of evolution, and our ability to design
therapeutics and predict their long-term outcomes.

Keywords Pangenome · Genomic diversity · Genomic plasticity · Horizontal gene
transfer

1 Introduction

Bacteria dominate our planet and can be traced back to billions of years in the
geological record. They play critical roles in shaping our habitat, from adding
oxygen to the atmosphere to fixing nitrogen in the soil. They also play a vital role
in human health, with commensal/mutualistic bacteria influencing nutrition and
immunity, and pathogenic bacteria causing diseases from epidemics like the Black
Death of medieval times to modern-day chronic biofilm infections resulting in the
spread of antibiotic resistance. A defining characteristic of bacteria in both the
environment and health is their ability to rapidly evolve and adapt. Here we discuss
the elegant population-level organizational scheme that bacterial species use wherein
their genomes are distributed among large numbers of strains, with no single strain
having more than a small minority of genes available at the population level. This
distributed pan(supra)-genome provides for adaptation to countless novel challenges
and environmental niches.

Individual bacterial genomes have a discrete number of genes. However, enor-
mous differences in gene content exist even among the genomes of strains of a single
species. Therefore, the gene content of a single strain is less than the full complement
of different genes from all strains. The comprehensive set of genes within a species,
i.e., all genes from all strains, is defined as the pangenome (or supragenome). The
pangenome is organized into the core genome, which corresponds to the set of genes
conserved across all strains in the species, and the accessory genome (or distributed
genome), which are all noncore genes. We compiled pangenome papers from
PubMed, identifying 295 species-specific pangenome projects performed on approx-
imately 70 genera (Fig. 1). In all of these projects, the pangenome was found to be
substantially larger than the core genome (Fig. 2).

The diversity within a species’ pangenome provides a reservoir of genetic
material available to bacterial cells to respond to selective pressures. Horizontal
gene transfer (HGT) is the process by which individual bacterial cells can uptake
genetic material from their environment or neighboring bacteria and generate novel,
strain-specific gene combinations. It seems logical that when HGT occurs among
strains of the same species these events are more likely to be adaptive or work in
concert within the biological network, when compared to random mutations or genes
acquired from distantly related species. This has been demonstrated to be the case in
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Fig. 1 Overview of the number of pangenomic studies per genus from a literature search between
2005 and 2018 (See “References for Fig. 1”)

Fig. 2 The number of core and total gene clusters for genera with at least three available
pangenomic projects. Numbers at the top correspond to the mean percent core. This is only an
estimate as these numbers vary considerably based on parameters and strain selection processes
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multiple species, where the majority of accessory genes appear to be evolving in
tandem with the core genome (Gladitz et al. 2005). In this manner, the pangenome
allows a species to incorporate more solutions to environmental stresses and niches
than can be encoded by a single strain (Ehrlich et al. 2005, 2010).

2 Steps in the Assembly of a Pangenome

Pangenome analyses are performed on a set of strains from the same species, or very
closely related species (often different species grouped together by genus, though we
will not be examining those projects here). The set of all coding sequences (CDS) are
clustered by sequence similarity with the objective of generating groups of
orthologous genes. This is a multistep process that begins with whole-genome
sequencing (WGS) of multiple independent bacterial (nonclonal, nonderivative)
strains selected to represent the broadest geographic and phenotypic ranges of the
species of interest. Following sequencing, the remaining steps are computational and
include (1) assembly of genomes into contigs, (2) annotation of protein-coding
sequences (CDS), and (3) clustering of CDSs based on the sequence similarity of
nucleic acids or amino acids of their cognate encoded proteins. Once clusters are
defined, they are classified based on strain prevalence into core or accessory (dis-
tributed) clusters. The accessory/distributed set of gene clusters is often further
organized into those that are widely distributed (near core/soft core) in a population
and those that are rare (shell) or unique (Fig. 3).

Fig. 3 Histogram of the number of gene clusters present in a given number of genomes. Taken
from a project examining 12 genomes of Moraxella catarrhalis (Davie et al. 2011), with a total of
2383 gene clusters
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The tools and the parameters used to characterize gene clusters vary widely
among projects (Fig. 4). Generally, the first project(s) within a species tend to
focus on the basic characterization of the pangenome. Subsequent projects often
emphasize specific areas of interest, such as the distribution of virulence factors,
levels of horizontal gene transfer, or epigenetic factors. Our survey of
295 pangenome projects did not reveal a strong preference for any individual
assembly program. This is likely because assembly programs and versions perform
differently depending on the examined species and the employed DNA sequencing
technology. Further, many pangenome projects utilize pre-assembled genomes from
publicly available databases (GenBank, EMBL, DDJB, JGI, PubMLST, etc.). This
survey found that the CD-HIT program was the most frequently used gene clustering
software, though a diverse set of other programs were also utilized for this purpose.
Finally, commonly used software for other analyses include gene annotation (RAST,

Fig. 4 Frequency of reference to programs over the past 5 years in pangenome publications
(referenced at least 4 times)
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Prokka, PHAST, and Prodigal) (Aziz et al. 2008; Seemann 2014; Zhou et al. 2011;
Hyatt et al. 2010), genome/gene alignments (Muscle, Mauve, Mega, and ClustalW)
(Edgar 2004; Darling et al. 2004; Kumar et al. 1994; Higgins and Sharp 1988), and
phylogenetic tree building (Mega, RAxML, and PhyML) (Kumar et al. 1994;
Stamatakis 2006; Guindon et al. 2010). Overall, there is high variability in the
methods/software used for pangenome analyses, reflecting diversity in the scope
and goals of these projects.

3 Size of the Pangenome

The size of a species’ pangenome, relative to the size of the core genome, is highly
variable across the eubacteria. In Fig. 2, we display the variability we encountered in
295 species-specific pangenome projects (Figs. 1 and 2). Papers included in this
summary span from 2005 [when the first pangenomes were described in
S. agalactiae (Tettelin et al. 2005) and H. influenzae (Shen et al. 2005; Hogg et al.
2007)] through 2018. In all cases, the pangenome was significantly larger than the
set of genes in a given strain. The size of the core genomes ranged from <20 to
>60% of the pangenome (Fig. 2).

In some cases, calculations on the size of the pangenome may reflect inaccuracies
in the current taxonomy, instead of the underlying biology. An instance of high
genomic diversity is observed with Gardnerella vaginalis, where only 27%
(746/2792) of its gene clusters are core (Ahmed et al. 2012). It is likely that
G. vaginalis appears so genomically diverse because traditional biochemical tests
used to identify strains within this taxa were unable to distinguish among the
multiple genomically diverse species that are actually present. Thus, in this case,
the apparent large size of the pangenome (and the corresponding small size of the
core genome) arose from the unintentional merging of multiple species into a single
species. In contrast, instances of low genomic diversity are observed in the genus
Bacillus. Both Bacillus anthracis and Bacillus thuringiensis closely resemble
B. cereus (Vilas-Bôas et al. 2007). B. thuringiensis appears to correspond to multiple
phylogenetic clades (lineages) within B. cereus. B. anthracis (a species with one of
the smallest pangenomes) likely represents a single phylogenetic lineage within the
broader, more diverse definition of B. cereus that acquired a clinically important set
of toxin genes (Okinaka and Keim 2016; Hall et al. 2010).

It is tempting to speculate that there are general principles that directly associate
the size of the pangenome with the biology of the species. Factors that may play a
substantial role are the extent of gene transfer, the degree of interactions with
competing and cooperating species, the number of niches inhabited, or the lifestyle
of the bacterium. The hypothesis that highly specialized environments lead to
smaller genome sizes has been explored in the context of obligate intracellular
species and pathogens (Merhej et al. 2009; Georgiades et al. 2011). A study of
overall differences between the genomes of 12 highly pathogenic species compared
to their most closely related nonpathogenic cousins found that, for the sets of
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bacteria studied, the most virulent species generally had smaller genomes, which
suggests gene loss as well as loss-of-function mutations (Georgiades and Raoult
2011). The reduced genome size is hypothesized to be a consequence of extreme
specialization of the pathogens to their hosts, while the less-specialized
nonpathogens show greater levels of genomic variation due to selective pressure to
remain competitive in more diverse environments (Georgiades and Raoult 2011).
While this is an interesting idea, not all studies point to a relationship between
pathogenicity and genome size (Bonar et al. 2018).

In a related vein, longitudinal comparative genomic studies of pathogenic clonal
lineages of Pseudomonas aeruginosa, Burkholderia sp., and Haemophilus
influenzae have captured microevolution and host adaptation in the human lung
(Rau et al. 2012; Lee et al. 2017; Pettigrew et al. 2018; Moleres et al. 2018; Bianconi
et al. 2018; Burns et al. 2001; Li et al. 2005; Jorth et al. 2015; Silva et al. 2016). In
many cases, these changes reveal gene deletions when compared to their anteced-
ents. For instance, serial isolates of H. influenzae clonal lineages in COPD patients
display a significant association with loss-of-function mutations in the ompP1
( fadL) accessory gene. fadL is beneficial to this bacterium in early infection, as it
promotes adhesion and intracellular invasion via interactions with the epithelial cell
ligand hCEACAM1 (human carcinoembryonic antigen-related cell adhesion mole-
cule 1). In contrast, it may hinder long-term survival in the lung, as its expression
increases sensitivity to arachidonic acid, an exogenous mammalian long-chain fatty
acid with bactericidal effects (Moleres et al. 2018). This is indicative of selective
pressure in favor of ompP1 function in the nasopharynx and against its function in
the lungs. These observations support the general concept that gene loss may
accompany the ability to survive within highly circumscribed niches (Rau et al.
2012; Lee et al. 2017; Pettigrew et al. 2018; Moleres et al. 2018). Nonetheless, one
must keep in mind that evolution in niches that do not support transmission may not
be relevant to the evolution of the pangenome. Large-scale comparative pangenome
and evolutionary studies promise to reveal the rules that shape the overall
pangenome size, as well as identify disease and tissue-specific genes (and gene
losses).

4 The Accessory Genome and Functional Diversity

In general, core genomes are enriched for housekeeping functions. These include
energy production, amino acid metabolism, nucleotide metabolism, lipid transport,
and translational machinery. Accessory genomes often encode genes involved in
protein trafficking and defense, as well as many niche-specific functions. Further,
plasmids, phage, and transposons are also often associated with accessory genomes.
This section focuses on functional diversity as it pertains to the accessory genome.

Phenotypic traits can result from a blend of core genes with highly variable
accessory genes. This is exemplified by the production of the capsule (Swartley
et al. 1997; Bentley et al. 2006), synthesis of the extracellular polymeric substance
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(EPS) (Harris et al. 2017), and modification of the cell wall (Gerlach et al. 2018).
Here, conserved modules encoded in the core and softcore genomes are modified by
components encoded by the accessory genome, providing a procedure to generate
phenotypic variability. In Neisseria meningitidis, capsule biosynthesis genes are
encoded within a single syntenic cps chromosomal region, which encodes both
core and accessory genes. Variations in the accessory genes yield diversity in capsular
types (Harrison et al. 2013). In Lactobacillus salivarius, the EPS cluster 2 contributes
to the biofilm matrix. The genes at the extremities of this multigene cluster genes are
core, while there is extensive variation in the genes encoded in the center of the
cluster. These differences in glycotransferases and EPS biosynthesis-related proteins
contribute to variations in the EPS structure (Harris et al. 2017). Yet another example
is observed in methicillin-resistant Staphylococcus aureus (MRSA), where strains
evade host immunity by modification of wall teichoic acid (WTA) using an alterna-
tive WTA glycosyltransferase encoded on a prophage (Gerlach et al. 2018). These
studies exemplify how diversity within the accessory genome can provide bacteria
with a blueprint to generate variability. This genomic flexibility is likely to increase
the adaptive potential of bacterial species in the face of environmental stresses.

Genes encoded by the accessory genome can influence pathogenic potential. A
well-studied example is Escherichia coli; this species encodes a highly diverse
pangenome, where variability within the accessory genome leads to strains that
differ in their ability to colonize human cell types and to trigger pathogenicity
(Rasko et al. 2008). E. coli strains are grouped into pathovars based on the presence
of virulence markers, often encoded on mobile elements (Kaper et al. 2004). Whole-
genome comparative analyses of pathovars demonstrate that strains of the same
pathovar are not always phylogenetically clustered (Rasko et al. 2008; Salipante
et al. 2015; Hazen et al. 2013). This pattern of clustering is consistent with the
transfer of accessory genes among E. coli strains, as well as the independent
acquisition of virulence traits by strains in the same pathovar. One prominent
example of HGT among E. coli strains of different pathovars is observed in the
highly pathogenic strain that caused the 2011 German food poisoning outbreak
(Mahan et al. 2013). Multiple genomic studies ultimately concluded that the out-
break was caused by a Shiga toxin-producing E. coli (STEC) of serotype O104:H4,
which harbored multiple genes commonly associated with enteroaggregative E. coli
(EAEC) including: a plasmid-encoded type I aggregative adherence fimbriae that
mediate colonization and biofilm formation, assortment of serine proteases
(SPATEs), and chromosomally encoded Shigella enterotoxin 1 (Askar et al. 2011;
Mellmann et al. 2011; Rasko et al. 2011). Moreover, the prevalence of genetic
transfer among E. coli strains is highlighted by the lack of an exclusive genomic
signature among commensal E. coli strains. The strains that asymptomatically
colonize the human gastrointestinal tract are genetically diverse (Rasko et al.
2008). These commensal strains may serve as genetic repositories for virulence
determinants and, in addition, gene transfer events may modify their pathogenic
potential and drug sensitivity. In conclusion, the accessory genome of E. coli is a
critical determinant of tissue tropism, pathogenic potential, and clinical presentation.
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Non-orthologous accessory genes with related functions are often syntenic across
strains. We propose that this genomic configuration allows one variant to be
switched by another in the process of recombination, where the neighboring genes
provide an anchor for homologous recombination. One example is the genomic
region that encodes the DpnI, DpnII, or the DpnIII type II restriction enzymes in
S. pneumoniae. These loci differ in the sequence of the enzymes, the number of
genes in the locus, and their ability to restrict phages or transforming DNA (Johnston
et al. 2013a; Eutsey et al. 2015). Another example is the genomic region that encodes
bacteriocins downstream of the blp histidine kinase signal transduction system in
S. pneumoniae. While the genes in this region are predicted to be bacteriocins, the
number of genes, their sequence, and the cells they target differ across strains (Lux
et al. 2007; Dawid et al. 2007; Valente et al. 2016; Rezaei Javan et al. 2018). Other
examples of this proposed mechanism, wherein conserved flanking genes anchor
multiple variants of pathogenicity genes, include the parologous vHiSLR genes of
H. influenzae (Kress-Bennett et al. 2016) and the bro gene variants of Moraxella
catarrhalis (Earl et al. 2016). Syntenic regions that encode non-homologous genes
within a single functional class may provide a pangenomic “switch,” allowing cells
to flip between variants of a single function to optimize fitness in diverse niches.

In summary, many of the genes in the accessory genome provide new functions or
variations on a conserved function in a manner that expands the ability of strains to
survive or adapt in their environments. In this manner, the strain diversity resulting
from variations in the accessory genome may serve as a population-level tool to
ensure the survival of a bacterial species.

5 Pangenome Plasticity

Speaking teleologically, via intra- and inter-species gene transfer, individual bacte-
rial strains can draw from an expanded set of genes for their own adaptation and
evolutionary success. This phenomenon was observed as early as 1928 in the
Griffith’s experiment, where a nonencapsulated strain of S. pneumoniae integrated
DNA from an encapsulated isolate, leading to its conversion from avirulent to
virulent (Griffith 1928). Almost a century later, the bacterial research community
has described multitudinous instances of gene transfer among bacterial strains.

5.1 Gene Transfer Events Within and Across Species

Gene transfer events can occur anywhere, and our literature review identified
19 manuscripts that describe bacterial in vivo gene transfer within human patients
(Table 1). A common theme is the acquisition of antibiotic resistance; particularly in
regard to carbapenems, β-lactamases, and quinolones. Resistance was commonly the
result of genes acquired via bacteriophages, plasmids, or pathogenicity islands
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Table 1 Summary of studies on in vivo recombination

Bacterial species Citation Mechanism of transfer
Consequences and
disease state

Acinetobacter
baumannii

Agodi et al. (2006) Class 1 integrons ICU-acquired pneumonia
multiresistant antibiotype

Enterobacteriaceae Hammerum et al.
(2016)

Plasmid Meropenem resistance

Enterobacteriaceae Datta et al. (2017) Plasmid transfer of
blaNDM-1

Septicemia

Enterobacter clo-
acae/Escherichia
coli

Sidjabat et al.
(2014)

Transfer of blaIMP-4 Meropenem resistance

Enterobacter
aerogenes

Neuwirth et al.
(2001)

Plasmid transfer-
encoding ESBL TEM-24

Multidrug resistance

Escherichia coli Soto et al. (2011) Pathogenicity island
acquisition

Male UTI recurrence

Escherichia coli Schjørring et al.
(2008),
Bielaszewska et al.
(2007)

Bacteriophage Diarrhea and hemolytic
uremic syndrome,
gastroenteritis

Escherichia coli Gumpert et al.
(2017)

Conjugative antibiotic
resistance plasmid

Antibiotic resistance

Haemophilus
influenzae

Moleres et al.
(2018)

Selective loss-of-func-
tion pressure

Loss of function-
resistance to bactericidal
fatty acids Acute COPD
exacerbations

Klebsiella
pneumoniae

Mena et al. (2006) Insertion sequence
(IS26)

Extended-spectrum beta-
lactamase-producing
species carbapenem
resistance

Klebsiella
pneumoniae/
Escherichia coli

Göttig et al. (2015) Transconjugation of
plasmid/transposon

Carbapenem resistance

Klebsiella
pneumoniae/
Escherichia coli

Gona et al. (2014) Mobile genetic elements
carrying blaKPC,
conjugative plasmids

Carbapenem-resistant
patients developed
bloodstream infections

Legionella
pneumophila

McAdam et al.
(2014)

Genomic island carrying
T4SS

Legionnaires’ disease/
community-acquired
pneumonia-T4SS associ-
ated with more severe
symptoms

Neisseria
meningitidis

Brynildsrud et al.
(2018)

Genomic islands, bacte-
riophage (MDAphi)

NmC meningitis

Serratia
marcescens/
Escheric hia coli

Mata et al. (2010) Plasmid mediated AmpC beta-lactamase,
quinolone resistance

Staphylococcus
aureus/
epidermidis

Hurdle et al.
(2005)

Conjugative replicon Mupirocin resistance-
persistent carrier of
MRSA

(continued)
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(Conlan et al. 2014; Bielaszewska et al. 2007; Datta et al. 2017; Feld et al. 2008;
Langhanki et al. 2018; Mena et al. 2006; Neuwirth et al. 2001; Soto et al. 2011). In
our set, five cases show HGT between different bacterial species: Serratia
marcescens and Escherichia coli (Mata et al. 2010), two instances of Klebsiella
pneumoniae and E. coli (Gona et al. 2014; Göttig et al. 2015), Staphylococcus
aureus and Staphylococcus epidermidis (Hurdle et al. 2005), and Enterobacter
cloacae and E. coli (Sidjabat et al. 2014). These studies highlight how bacteria
occupying the same niche can evolve during the infectious disease process, posing
new challenges for treatment.

Cross-species transfer events introduce new genes into the species, thus
expanding the pangenome. A prominent example is acquisition of the type 3 secre-
tion system (T3SS) by multiple Gram-negative bacteria. The T3SS allows for the
transport of effector proteins from the bacterial cytosol directly into the host cells
(Hacker et al. 1997; Hueck 1998). In most cases, the genes encoding this injection
system, and their effectors, have been acquired by HGT (Brown and Finlay 2011).
These T3SS systems are critical components of virulence. For instance, in Salmo-
nella, acquisition of the SPI1 T3SS enables the bacterium to invade host cells, while
acquisition of the SPI2 T3SS enables it to escape host defenses and survive within
host cells inside a protective vacuole (Jennings et al. 2017; Ochman et al. 1996).
Another example of cross-species transfer has been observed in S. pneumoniae,
where a multigene locus was acquired from Streptococcus suis (Antic et al. 2017).
This locus was acquired exclusively by a phylogenetically distinct subset of strains
within the S. pneumoniae species—a subset much more likely to infect the conjunc-
tiva. The genes acquired from S. suis appear to contribute to the tissue tropism by
promoting adherence to the ocular epithelium. Thus, expansion of the pangenome by
gene acquisition from outside the species can contribute to bacterial virulence and
tropism.

Gene transfer among strains of the same species provides a mechanism to
redistribute accessory/distributed genes within single strains. Studies on vaccine-
escape strains of S. pneumoniae identified multiple genes acquired from a single
donor (Golubchik et al. 2012). These recombination events ranged from 0.04 to

Table 1 (continued)

Bacterial species Citation Mechanism of transfer
Consequences and
disease state

Staphylococcus
aureus

Moore and
Lindsay (2001)

Multiple mobile ele-
ments, specifically
phages

Hospital MSSA

Staphylococcus
aureus

Stanczak-Mrozek
et al. (2015)

Bacteriophages and
plasmids (general
transduction)

Antibiotic-resistant
MRSA

Staphylococcus
aureus

Langhanki et al.
(2018)

Mobile elements (geno-
mic island, pathogenicity
islands, bacteriophages),
transduction

Long-term persistence
cystic fibrosis patients
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44 kb in size, and were located in various regions of the genome, including the
capsular locus. Separate analyses of whole genomes of S. pneumoniae have captured
multiple instances of serotype switches including from 23F to 3 and from 19F to 19A
(Chewapreecha et al. 2014; Croucher et al. 2014a; Hiller et al. 2011). A current
vaccine targets the 19F capsule, but not the 19A. Serotype 19F strains were widely
prevalent pre-vaccine, while serotype 19A strains have spread in the USA during the
post-vaccine era (Geno et al. 2015). This serotype switch has been observed in
vaccinated and non-vaccinated populations. These observations are consistent with a
model where HGT generates diverse genotypes, selective pressure from vaccines
drives the spread of a subset of strains, and competition across strains shape the
population and distribution of accessory genes.

Studies that describe recombination among strains driven by natural competence
and transformation suggest that multiple transfers may occur both simultaneously
and sequentially between individual donors and recipient strains. A study on
S. pneumoniae captured the progressive accumulation of recombinations in a set
of six clinical strains isolated from a pediatric patient over a 7-month period. One
strain incurred multiple recombination events from the same donor, over two
instances of recombination. These events introduced recombinations at 23 sites,
and led to the exchange of over 7% of the genome (Hiller et al. 2010). Similarly, a
laboratory study in H. influenzae also captured multiple gene transfer events after a
bout of recombination (Mell et al. 2011). For this study, DNA from a clinical strain
was used to transform a laboratory strain. Transformants were observed to have
multiple recombination events over the length of the chromosome, collectively
corresponding to ~1–3% of the genome. These analyses not only demonstrate
HGT events across strains, but also suggest that strains may display multiple trans-
fers during a single competence event.

HGT occurring through natural competence and transformation is unique among
HGTmechanisms, in that it is driven by the recipient as opposed to by the donor (as is
the case with mating and transduction). This means that it is an expressed phenotype
that is triggered by the recipient cell. Thus, as amechanism ofmutation and evolution,
it is expressed when a cell is stressed and provides a genetic means to adapt to a
stressful environment resulting in mutation-on-demand (Ehrlich et al. 2005).

5.2 Constraints on Gene Transfer

While there is clear evidence of HGT among strains of the same species, distributed
genes are not randomly distributed within a species. Instead, they tend to be
associated with specific lineages, suggesting that pangenome evolution operates
with forces that promote as well as limit gene transfer (Croucher et al. 2014b), as
discussed in the next paragraphs.

There is increasing evidence that co-selection of genes limits gene transfer. A
genome-wide study in S. pneumoniae demonstrated that a set of 876 loci, annotated
to function in metabolism or transport, displayed a nonrandom distribution (Watkins
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et al. 2015). The authors show that groups of coevolved genes (alleles) are adapted to
particular metabolic niches. They predict that disruption of these groups of alleles, a
process mediated by HGT, would lead to a drop in strain fitness. A computational
approach applied to S. pneumoniae and N. meningitidis also uncovered co-selection
of genes associated with drug resistance and virulence (Pensar et al. 2019). Genome
architecture may also limit gene transfer. Many bacterial genomes encode short
sequences that are enriched in close proximity to the replication terminus. The
location of these sequences is under selection, such that HGT events that disrupt
these elements impose a fitness cost (Hendrickson et al. 2018). Thus, allele
co-selection and genomic architecture illustrate genome-wide features that, when
disturbed, can result in loss of fitness and consequently restrict gene flow.

In addition to factors that limit gene transfer via their influence on fitness, bacteria
encode genes that serve as barriers to incoming DNA, such as restriction modifica-
tion systems (RM), phage-defense systems, and Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR)—associated proteins (CRISPR-Cas). Most
RM and CRISPR-Cas systems exert their influence on double-stranded DNA.
While DNA entering the cell by transformation is single stranded, these systems
still appear to serve as barriers to transformation; a compelling model proposed that
they do so via their activity on the transformed chromosome (Johnston et al. 2013b).
Studies in N. meningitidis and S. pneumoniae illustrate the role of restriction
modification (RM) systems in limiting HGT. Strains of N. meningitidis organize
into distinct phylogenetic groups that are associated with the distribution of>20 RM
systems (Budroni et al. 2011). This distribution is consistent with the hypothesis that
the RM systems limit HGT among clades. Similarly, the PMEN1 pandemic lineage
of S. pneumoniae displays asymmetric gene transfer. The heterologous gene transfer
from PMEN1 to other strains is abundant, yet into PMEN1 is modest (Wyres et al.
2012). The DpnIII RM system contributes to this structure, as it appears to limits
HGT into PMEN1 strains, and is almost exclusively found in the PMEN1 lineage
(Eutsey et al. 2015). Type I RM systems can also limit gene transfer, however, their
architecture may allow rapid evolution of HGT barriers. The type I RM systems have
a multifunctional component, where modification in one sequence can lead to both
changes in methylation and endonuclease activity. This is in contrast to type II RM
systems, where the protein that directs methylation is distinct from the protein that
directs endonuclease activity, such that changes in specificity require mutations in
more than one protein (Wilson and Murray 2003). In this manner, type I RM systems
can rapidly evolve new specificities and generate diversity. A recent study in
S. pneumoniae demonstrated that phase variation in the SpnIV phase-variable
Type I RM limits acquisition of genomic islands by transformation (Kwun et al.
2018). The work captures an instance of phase variation on a type I RM system that
generated an HGT barrier between nearly identical strains. Together, these studies
suggest that RM systems may foster genomic stability within subsets of strains.

Many bacteria encode an abortive infection (Abi) system, which appears to be
altruistic mechanism to protect the population at-large. When bacteria possessing an
Abi system are infected by phage, the system is activated and triggers the death of
the bacterial host. In this manner, death of the infected isolate avoids spread of the
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phage across the bacterial community (Chopin et al. 2005). In an exciting twist,
phage defense systems may also be encoded by prophage, illustrating cooperation
between bacteria and phage to restrict unrelated phages (Dedrick et al. 2017; Bondy-
Denomy et al. 2016).

CRISPR-Cas confers adaptive immunity in prokaryotes and has the ability to
inhibit conjugation, transduction and transformation. The CRISPR-Cas are com-
posed of arrays of palindromic nucleotide repeats that are interspersed by short
unique DNA segments called spacers, and cas genes. The spacers are acquired
from foreign DNA, usually bacteriophages. Following acquisition, spacers are
transcribed and processed into small CRISPR RNA (crRNA) molecules. A complex
formed by Cas proteins and crRNA leads to the degradation of invading foreign
nucleic acid, protecting cells from future invasion (Jiang and Doudna 2017; Adli
2018). Many bacterial species and lineages are devoid of CRISPR-Cas systems. In
vitro studies in multiple bacteria reveal an inverse correlation between HGT and the
presence of a functional CRISPR-Cas system (Jiang et al. 2013; Watson et al. 2018).
In Enterococcus faecalis, multidrug-resistant plasmids were observed in strains that
lacked CRISPR-Cas systems, while the drug-sensitive strains encoded this system
(Palmer and Gilmore 2010). Further, under selective pressure for the acquisition of
antibiotic-resistant plasmids, Staphylococcus epidermidis strains acquired
inactivating mutations in the CRISPR-Cas system (Jiang et al. 2013). These studies
suggest that bacteria encounter a tradeoff: the fitness advantages associated with
phage resistance afforded by CRISPR-Cas must be balanced against a decrease in
genomic plasticity and the benefits conferred by acquisition of novel genes. None-
theless, the role of phage protection systems in restricting gene flow is far from fully
resolved. Some studies find contrasting results, and do not support the conclusion
that CRISPR-Cas limits HGT. A large-scale computational study revealed that the
activity of the CRISPR-Cas system was not associated with HGT events over long
evolutionary timescales (Gophna et al. 2015). Further, a study in Pectobacterium
atrosepticum suggests that CRISPR-Cas systems may actually contribute to HGT
via their role in protecting bacteria against phage attack (Watson et al. 2018). Thus,
more research is required to determine the ultimate influence of CRISPR-Cas
systems on the genomic plasticity of bacterial populations.

In conclusion, the set of genes in a species’ pangenome can expand via the
introduction of genes from other species, rearrange across strains via an intra-
species exchange, or vary with mutations. The shuffling of accessory genes and
alleles generates new combinations that are subsequently subjected to the forces of
selection on gene products and genome-wide features. Moreover, RMs, CRISPR-
Cas, and phage-defense systems may also influence gene flow across strains and
species. All factors combined, genomic plasticity emerges as a successful strategy
for bacterial survival.
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6 A Balance in the Accessory Genome

A remarkable observation comes from recent mathematical models and population
studies. Negative frequency-dependent selection may stabilize the proportion of
individual accessory genes in a population of S. pneumoniae (Azarian et al. 2018;
Corander et al. 2017). As expected, the authors observed that vaccination led to a
dramatic drop in the representation of vaccine-sensitive strains. In doing so, the
distribution of accessory genes within the population differed from that of the
pre-vaccine population. Interestingly, over time, the frequency of the accessory
genes trended toward that seen in the pre-vaccine population. These results suggest
that the distribution of genes in the pneumococcal pangenome may have an equi-
librium point. It remains to be determined whether similar patterns are observed in
other species. The suggestion that the composition of pangenomes tends toward an
equilibrium has important implications regarding our ability to predict the nature of
replacement strains after the introduction of therapies that target subsets of strains
within a bacterial population using a microbiome-sparing approach.

7 Clinical Applications

Pangenomic analyses can be utilized to identify potential therapeutic targets. Target
specificity can be customized depending on the desired effect. The core genome can
be used to target an entire species, as it contains genes possessed by every member of
the species. Alternatively, targeting select members of the accessory genome, or the
“microbiome-sparing” approach, will ensure that only strains containing the gene of
interest are affected. Both strategies can be utilized to combat a wide variety of
pathogens.

Current efforts to combat pathogenic bacteria include targeting the bacterial
capsule, a large polysaccharide layer that is a major virulence determinant with a
key role in immune evasion. Strains vary in the composition of their capsules: those
with identical capsules are placed in the same serotype, and those with highly similar
capsules within a serogroup. For example, there are over 97 different serotypes
known for S. pneumoniae that fall into 46 serogroups (Bentley et al. 2006; Geno
et al. 2015; Tzeng et al. 2016), and over 12 serotypes for N. meningitidis (Harrison
et al. 2013; Geno et al. 2015; Tzeng et al. 2016; Claus et al. 1997). New serotypes
can arise by HGT, like in the movement of SiaD genes between N. meningitidis
strains, or through mispairing during gene replication, which is responsible for
serotypes 15 B/C in S. pneumoniae (Claus et al. 1997; van Selm et al. 2003).
Capsular polysaccharide vaccines are available for S. pneumoniae, S. typhi, and
N. meningitidis (Geno et al. 2015; Tzeng et al. 2016; Hessel et al. 1999). These
specifically target the bacterial capsule, but young children (under the age of two)
fail to create antibodies against these vaccines. To combat this, polysaccharide–
protein conjugate vaccines were designed, which combine the polysaccharide
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antigen with protein carriers and render them more immunogenic in young children
(Finn 2004; Nair 2012; Szu et al. 1989; Lin et al. 2001). Development of conjugate
vaccines faces major challenges, such as cost, host immune response, and bacterial
structures (Nair 2012). Therefore, it would be ideal to create capsular polysaccharide
vaccines with better immunogenicity. However, the structures of some capsule
sugars are too similar to those found in mammalian tissues to be useful as polysac-
charide vaccines. In these cases, vaccines could be designed to target virulence via
accessory genes or to target these species as a whole via the core genome (Pichichero
2017; Daniels et al. 2016; Chan et al. 2018).

Using the accessory genome to create strain-specific drugs and vaccines has wide
implications. For example, it is easy to imagine the creation of therapies against
bacterial pathogens that are able to spare the larger microbiome. Commensal bacteria
in the microbiome and pathogenic bacteria of the same species may share the same
core genome, but can have vast differences in the content of their accessory
genomes. If a therapy targets protein products from genes found only in the
accessory genomes of pathogenic bacteria, it will not disturb the patient’s microflora
as the commensal bacteria would lack the proteins the therapy is created against.
This strategy has the potential to greatly improve patient health and recovery
following a bacterial infection.

Pangenomic studies can aid in the development of diagnostic tools. As with
vaccines and drug development, accessory genes can be used to identify a particular
strain/phenotype and core genes to identify a specific species. A study of 17 clinical
isolates of G. vaginalis was used to propose the reclassification of G. vaginalis as a
genus, based on the extent of pangenomic variation (Ahmed et al. 2012). Previously,
metronidazole was used as a blanket antibiotic for the treatment of bacterial vagi-
nosis. However, the understanding that metronidazole-resistant clades of
G. vaginalis are actually different species creates room for the development of
diagnostic tools to inform antibiotic treatment for patients with bacterial vaginosis
(Balashov et al. 2014). Similarly, pangenomic studies among phenotypically diver-
gent M. catarrhalis strains led to the characterization of a deep phylogenetic
clade structure that separated the pathogenic sero-resistant strains from commensal
sero-sensitive strains (Earl et al. 2016). In yet another example, Staphylococcus
epidermidis was divided into two phylogenetic groups. One group included both
commensals and pathogens, the other composed exclusively of commensal strains.
Strains in the second group-encoded formate dehydrogenase, revealing a potential
diagnostic marker (Conlan et al. 2012). A study in Helicobacter pylori identified
lineage-specific genes; some have already been associated with acid resistance and
virulence, and thus are potential targets to guide treatments (van Vliet 2017).
Moreover, when studies associating pangenome and phenotype identify unannotated
genes as diagnostic markers, they provide genetic fodder for linking new functions,
distribution, and disease outcome (Ehrlich et al. 2010). One caution to consider in
the development of diagnostics is that chronic infections can be caused by multiple
strains of the same species, and analysis of a single strain could misdirect treatment.

A crucial benefit of pangenomic analyses is their ability to determine the presence
or absence of antibiotic-resistant markers. Prescription of an ineffective antibiotic is
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both detrimental to patient’s health and adds to the problem of global antibiotic
resistance. Some examples of pangenomic analyses to study the distribution and
transmission of resistance genes have been performed on E. coli strains collected
from wastewater treatment plants (Mahfouz et al. 2018), community-associated
Clostridium difficile strains isolated from farm animals and humans (Knetsch et al.
2018), and strains of Stenotrophomonas maltophilia collected from cystic fibrosis
(CF) patients (Esposito et al. 2017). Given that related strains often differ in their
drug resistance profile, probing the accessory genome for genes that encode drug
resistance will be a critical component of personalized medicine.

Genome-scale models (GEMs) of metabolism can provide great insight into the
link between metabolism and pathogenesis. These network reconstructions provide
context for the relationship between gene, gene product, and phenotype.
Pangenomic analyses in three species observed that the majority of core genes are
associated with metabolism (Cornejo et al. 2013; Bosi et al. 2016; Vieira et al. 2011).
Pangenomic analysis of inflammatory bowel disease (IBD)-associated E. coli strains
reported metabolic differences between IBD-associated strains and nonassociated
strains, where the former set appeared to utilize energy more efficiently (Fang et al.
2018). The differences in metabolic capabilities in disease and healthy states provide
a promising place to explore diagnostic applications of the pangenome. Furthermore,
the link between metabolism and virulence can be explored, and be used diagnos-
tically to differentiate strains that cause mild or severe symptom presentation (Bosi
et al. 2016).

Beyond the use of pangenomic analyses to select targets for vaccines, therapeu-
tics, and diagnosis, it has also served as an epidemiological tool. The origin of the
2010 cholera outbreak in Haiti was traced using pangenomic analysis of Vibrio
cholerae. Initially, it was unclear whether the epidemic originated with a local strain
or Asian strain. A pangenomic analysis revealed that the epidemic was caused by
strains originated in Southeast Asia (Reimer et al. 2011; Hendriksen et al. 2011;
Chin et al. 2011; Mutreja et al. 2011; Orata et al. 2014; Hasan et al. 2012). Such
epidemiological studies allow better strategic planning to avoid future epidemics.

8 Conclusions

The Distributed Genome Hypothesis provides both a historical and theoretical
framework for understanding bacterial genomic plasticity, and puts it in the context
of other classes of chronic pathogens (viruses and eukaryotic parasites) that have
developed different mechanistic strategies for the generation of genetic diversity in
situ. Viruses such as HIV-1 utilize an error-prone DNA polymerase (reverse tran-
scriptase) to generate enormous diversity resulting in the development of a
quasispecies within days of infection (Korber et al. 2001). Trypanosomes utilize a
cassetting mechanism for antigen switching wherein they have an entire chromo-
some of outer surface protein cassettes that they can exchange within the larger
functional protein whenever the host adaptive immune response recognizes the
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previous cassette (Horn 2014). Thus, within this context, we can view HGT of
distributed genes among bacterial strains of a species as yet another means of
“programmed” variation (Ehrlich et al. 2010).

9 Perspectives

The plasticity provided by the eubacterial pangenome may be driving the evolution
of other domains of life. The rapid recombination of bacterial strains provided the
evolutionary pressure for the development of the vertebrate adaptive immune sys-
tem—which is mechanistically similar to what the bacteria are doing—it is essen-
tially a random gene rearrangement phenomenon, very similar to HGT (Hu et al.
2007). Lastly, as the variability in species becomes apparent, it triggers the question
of how best to define a species. While pangenomic analyses do not offer the ultimate
solution, they may provide a useful definition. Once the core genome of a species is
defined, strains can be assigned, or not assigned, to a species based on the extent to
which they share the same core genome (Nistico et al. 2014).
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