
Chapter 5
QCD on the Lattice

Hartmut Wittig

5.1 Introduction and Outline

Since Wilson’s seminal papers of the mid-1970s, the lattice approach to Quantum
Chromodynamics has become increasingly important for the study of the strong
interaction at low energies, and has now turned into a mature and established
technique. In spite of the fact that the lattice formulation of Quantum Field Theory
has been applied to virtually all fundamental interactions, it is appropriate to discuss
this topic in a chapter devoted to QCD, since by far the largest part of activity is
focused on the strong interaction. Lattice QCD is, in fact, the only known method
which allows ab initio investigations of hadronic properties, starting from the QCD
Lagrangian formulated in terms of quarks and gluons.

5.1.1 Historical Perspective

In order to illustrate the wide range of applications of the lattice formulation, we
give a brief historical account below.

First applications of the lattice approach in the late 1970s employed analytic
techniques, predominantly the strong coupling expansion, in order to investigate
colour confinement and also the spectrum of glueballs. While these attempts gave
valuable insights, it soon became clear that in the case of non-Abelian gauge theories
such expansions were not sufficient to produce quantitative results.
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First numerical investigations via Monte Carlo simulations, focusing in particular
on the confinement mechanism in pure Yang–Mills theory, were carried out around
1980. The following years saw already several valiant attempts to study QCD
numerically, yet it was realized that the available computer power was grossly
inadequate to incorporate the effects of dynamical quarks. It was then that the so-
called “quenched approximation” of QCD was proposed as a first step to solving
full QCD numerically. This approximation rests on the ad hoc assumption that
the dominant non-perturbative effects are mediated by the gluon field. Hadronic
observables can then be computed on a pure gauge background with far less
numerical effort compared to the real situation where quarks have a feedback on the
gluon field. The main focus of activity during the 1980s was on bosonic theories:
numerical simulations were used to compute the glueball spectrum in pure Yang–
Mills theory. Another important result during this period concerned φ4-theory and
the implications of its supposed “triviality” for the Higgs-Yukawa sector of the
Standard Model. Using a combination of analytic and numerical techniques, the
triviality of φ4 theory could be rigorously established.

Except for a brief spell of activity around the turn of the decade to simulate
QCD with dynamical fermions, most projects in the 1990s were devoted to explore
quenched QCD. Having recognized that the available computers and the efficiency
of known algorithms were by far not sufficient to perform “realistic” simulations
of QCD with controlled errors, lattice physicists resorted to exploring the quenched
approximation and its limitations for a number of phenomenologically interesting
quantities. Although the systematic error that arises by neglecting dynamical quarks
could not be quantified reliably, many important quantities, such as quark and
hadron masses, the strong coupling constant and weak hadronic matrix elements,
were computed for the first time. One of the icons of that period was surely a
plot of the masses of the lightest hadrons in the continuum limit of quenched
QCD, produced by the CP-PACS Collaboration: their results indicated that the
quenched approximation works surprisingly well (at least for these quantities), since
the computed spectrum agreed with experimental determinations at the level of
10%. Simultaneously, a number of sophisticated techniques have been developed
during the 1990s, thereby helping to control systematic effects, mainly pertaining
to the influence of lattice artefacts, as well as the renormalization of local operators
in the lattice regularized theory and their relation to continuum schemes such as
MS. Perhaps the most significant development at the end of the 1990s was the
clarification of the issue of chiral symmetry and lattice regularization. Following
this work it is now understood under which conditions the lattice formulation is
compatible with chiral symmetry. The importance of this development extends far
beyond QCD and implies new prospects for the non-perturbative study of chiral
gauge theories.

Since 2000 the focus has decidedly shifted from the quenched approximation
to serious attempts to simulate QCD with dynamical quarks, thereby tackling the
biggest remaining systematic uncertainty. Progress in this area has not just been
determined by the vast increase in computer power since the very first Monte Carlo
simulations, but rather by the development of new algorithmic ideas, combined
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with the use of alternative discretizations that are numerically more efficient. At
the time of writing this contribution (2007), the whole field is actually in a state
of transition: although the quenched approximation is being abandoned, the latest
results from simulations with dynamical quarks have not yet reached the same level
of accuracy in regard to controlling systematic errors due to lattice artefacts and
effects from renormalization, as compared to earlier quenched calculations. It can
thus be expected that many of the results discussed later in this chapter will soon
be superseded by more accurate numbers. In turn, the quenched approximation will
be completely obsolete in a few years time, except perhaps to test new ideas or for
exploratory studies of more complex quantities.

5.1.2 Outline

We begin with an introduction of the basic concepts of the lattice formulation of
QCD. This shall include the field theoretical foundations, discretizations of the QCD
Lagrangian, as well as simulation algorithms and other technical aspects related to
the actual calculation of physical observables from suitable correlation functions.
The following sections deal with various applications. Lattice calculations of
the hadron spectrum are described in Sect. 5.3. Section 5.4 is devoted to lattice
investigations of the confinement phenomenon. Determinations of the fundamental
parameters of QCD, namely the strong coupling constant and quark masses are
a major focus of this article, and are presented in Sect. 5.5. Another important
property of QCD, namely the spontaneously broken chiral symmetry, is discussed in
some detail in Sect. 5.6, which also includes a brief introduction into analytical non-
perturbative approaches to the strong interaction, based on effective field theories.
Lattice calculations of weak hadronic matrix elements, which serve to pin down the
elements of the Cabibbo–Kobayashi–Maskawa matrix, are covered in Sect. 5.7. We
end this contribution with a few concluding remarks.

In addition to the topics listed above, lattice simulations of QCD have also
made important contributions to the determination of the phase structure of QCD,
including results for the critical temperature of the deconfinement phase transition.
Nevertheless, in this chapter we restrict the discussion to QCD at zero temperature
and refer the reader to other parts of this volume.

5.2 The Lattice Approach to QCD

The essential features of the lattice formulation can be summarized by the following
statement:

Lattice QCD is the non-perturbative approach to the gauge theory of the strong interaction
through regularized, Euclidean functional integrals. The regularization is based on a
discretization of the QCD action which preserves gauge invariance at all stages.
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This definition includes all basic ingredients: starting from the functional integral
itself avoids any particular reference to perturbation theory. This is what we mean
when we call lattice QCD an ab initio method. The Euclidean formulation, which is
obtained by rotating to imaginary time, reveals the close relation between Quantum
Field Theory and Statistical Mechanics. In particular, the Euclidean functional
integral is equivalent to the partition function of the corresponding statistical system.
This equivalence is particularly transparent if the field theory is formulated on a
discrete space-time lattice. Via this relation, the whole toolkit of condensed matter
physics, including high-temperature expansions, and, perhaps most importantly,
Monte Carlo simulations, are at the disposal of the field theorist.

Many of the basic concepts introduced in this section are discussed in several
common textbooks on the subject [1–4], which can be consulted for further details.

5.2.1 Euclidean Quantization

The generic steps in the Euclidean quantization procedure of a lattice field theory
are the following:

1. Define the classical, Euclidean field theory in the continuum;
2. Discretize the corresponding Lagrangian;
3. Quantize the theory by defining the functional integral;
4. Determine the particle spectrum from Euclidean correlation functions.

We shall now illustrate this procedure for a simple example, namely the theory for
a neutral scalar field.

Step 1 Consider a real, classical field φ(x), with x = (x0, x1, x2, x3), whose time
variable x0 is obtained by analytically continuing t to −ix0. The Euclidean action
SE[φ] is defined as

SE[φ] =
∫

d4x

{
1

2
∂μφ(x)∂μφ(x) + V (φ)

}
, ∂μ ≡ ∂

∂xμ
, (5.1)

where

V (φ) = 1

2
m2φ(x)2 + λ

4!φ(x)4. (5.2)

Step 2 In order to discretize the theory, a hyper-cubic lattice, �E, is introduced as
the set of discrete space-time points, i.e.

�E =
{
x ∈ R4

∣∣∣x0/a = 1, . . . , Nt; xj/a = 1, . . . , Ns , j = 1, 2, 3
}
,

T = Nta, L = Nsa. (5.3)
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Thus, any space-time point is an integer multiple of the lattice spacing a. The total
number of lattice sites is Nt ×N3

s , while the physical space-time volume is T ×L3.
The discretized action is then given by

SE[φ] = a4
∑
x∈�E

{
1

2
dμφ(x)dμφ(x) + 1

2
m2φ(x)2 + λ

4!φ(x)4
}
, (5.4)

where the lattice derivatives can be defined as

dμφ(x) := 1

a

(
φ(x + aμ̂) − φ(x)

)
“forward” derivative, (5.5)

d∗
μφ(x) := 1

a

(
φ(x) − φ(x − aμ̂)

)
“backward” derivative. (5.6)

Here and below μ̂ denotes a unit vector in direction of μ. Via a Fourier transform,
the Euclidean lattice �E is related to the dual lattice, �∗

E, defined by

�∗
E =

{
p ∈ R4

∣∣∣∣p0 = 2π

T
n0, pj = 2π

L
nj

}

n0 = −Nt

2
,−Nt

2
+ 1, . . . ,

Nt

2
− 1, nj = −Ns

2
,−Ns

2
+ 1, . . . ,

Ns

2
− 1. (5.7)

This not only implies that the momenta p0 and pj are quantized in units of 2π/T
and 2π/L, respectively, but also that a momentum cutoff has been introduced, since

− π

a
≤ pμ ≤ π

a
. (5.8)

As we shall see below, this way of introducing a momentum cutoff can be extended
to gauge theories in such a way that gauge invariance is respected. An important
point to realize is that the lattice action is not unique: it is only required that the
discretized expression for SE reproduces the continuum result as the lattice spacing
a is taken to zero.

Step 3 The theory is quantized via the Euclidean functional integral

ZE :=
∫

D[φ] e−SE[φ], D[φ] =
∏
x∈�E

dφ(x). (5.9)

Here one sees explicitly that the discretization procedure has given a mathematical
meaning to the integration measure, which reduces to that of an ordinary, multiple-
dimensional integration.
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One can now define Euclidean correlation functions of local fields through

〈φ(x1) · · ·φ(xn)〉 = 1

ZE

∫
D[φ]φ(x1) · · ·φ(xn)e−SE[φ]. (5.10)

In the continuum limit, these correlation functions approach the Schwinger func-
tions, which encode the physical information about the spectrum within the
Euclidean formulation. Osterwalder and Schrader [5] have laid down the general
criteria which must be satisfied such that the information in Minkowskian space-
time can be reconstructed from the Schwinger functions.

Step 4 The particle spectrum is extracted from the exponential fall-off of the
Euclidean two-point correlation function. To this end, one must define the Euclidean
time evolution operator. The transfer matrix T describes time propagation by a finite
Euclidean time interval a. The functional integral can be expressed in terms of the
transfer matrix as

ZE = Tr TNt, (5.11)

where the trace is taken over the basis |α〉 of the Hilbert space of physical states.
In order to obtain expressions which are more reminiscent of those in Minkowski
space-time, one can define a Hamiltonian HE by

T =: e−aHE . (5.12)

If |α〉 denotes an eigenstate of the transfer matrix with eigenvalue λα , i.e.

T|α〉 = λα |α〉 = e−aEα |α〉, (5.13)

then one can work out the spectral decomposition of the two-point correlation
function, viz.

〈φ(x)φ(y)〉 = 1

ZE

∫
D[φ]φ(x)φ(y)e−SE[φ] (5.14)

=
∑
α

e−(Eα−E0)(x0−y0)
〈
α
∣∣φ̂(0, �y)∣∣0〉〈0∣∣φ̂(0, �x)∣∣α〉. (5.15)

Here, the quantity (Eα − E0) is the so-called mass gap, i.e. the energy of the state
|α〉 above the vacuum. For large Euclidean time separations (x0 − y0) the lowest
state dominates the two-point function, i.e. all higher states die out exponentially.
The spectral decomposition of the two-point function forms the basis for numerical
simulations of lattice field theories, as the mass (or energy) of a given state is given
by the dominant exponential fall-off at large Euclidean times (see Sect. 5.2.3).
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5.2.2 Lattice Actions for QCD

Our goal now is to find a lattice transcription of the Euclidean QCD action in the
continuum, i.e.

SQCD =
∫

d4x

{
− 1

2g2
0

Tr (FμνFμν)+
∑

f=u,d,s...

ψ̄f

(
γμDμ + mf

)
ψf

}
, (5.16)

where g0 denotes the gauge coupling, and our conventions are chosen such that the
covariant derivative is defined through

Dμ = ∂μ + Aμ, (5.17)

while the field tensor reads

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν], A†
μ = −Aμ. (5.18)

Before attempting to write down a discretized version, we must first elucidate the
notion of a lattice gauge field in a non-Abelian theory. In fact, in this case it turns
out that the gauge potential Aμ must be abandoned when the theory is discretized.
The reason is that the familiar non-Abelian transformation law, i.e.

Aμ(x) → g(x)Aμ(x)g(x)
−1 + g(x)∂μ(x)g(x)

−1, g(x) ∈ SU(3), (5.19)

no longer holds exactly when ∂μ is replaced by its discrete counterpart dμ of
Eq. (5.5). Strict gauge invariance at the level of the regularized theory cannot be
maintained in this fashion.

The definition of a lattice gauge field relies on the concept of the parallel
transporter. If a quark moves in the presence of a background gauge field from y

to x, it picks up a non-Abelian phase factor, given by

U(x, y) = P.O. exp

{
−
∫ x

y

dzμ Aμ(z)

}
, (5.20)

where “P.O.” denotes path ordering, as a consequence of the non-Abelian nature of
the gauge field. By contrast to the gauge potential Aμ, which is an element of the Lie
algebra of SU(3), the parallel transporter U(x, y) is an element of the gauge group
itself. On the lattice, the parallel transporter between neighbouring lattice sites x

and x + aμ̂ is called link variable:

U(x, x + aμ̂) ≡ Uμ(x), U(x + aμ̂, x) = U(x, x + aμ̂)−1 = Uμ(x)
−1.

(5.21)
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A consistent and manifestly gauge invariant discretization of QCD is obtained by
identifying the gauge degrees of freedom with the link variables Uμ(x), which
transform under the gauge group as

Uμ(x) → g(x)Uμ(x) g(x + aμ̂)−1, g(x), g(x + aμ̂) ∈ SU(3). (5.22)

The connection with the gauge potential Aμ(x) is somewhat subtle: if Uμ(x)

denotes a given link variable in the discretized theory, it can be used to define a
vector field Aμ(x) as an element of the Lie algebra of SU(3) via

eaAμ(x) ≡ Uμ(x). (5.23)

In turn, if Ac
μ is a given gauge potential in the continuum theory, one can always

find a link variable which approximates Ac
μ up to cutoff effects.

Now we turn to the problem of defining a discretized version of the Yang–Mills
action. To this end we define the plaquette Pμν(x) as the product of link variables
around an elementary square of the lattice:

Pμν(x) ≡ Uμ(x)Uν(x + aμ̂)Uμ(x + aν̂)−1Uν(x)
−1. (5.24)

A graphical representation is shown in Fig. 5.1. Using the transformation property
in Eq. (5.22), it is easy to convince oneself that this object is manifestly gauge
invariant. Moreover, it serves to define the simplest discretization of the Yang–Mills
action, the Wilson plaquette action [6]

SG[U ] = β
∑
x∈�E

∑
μ<ν

(
1 − 1

3
Re Tr Pμν(x)

)
. (5.25)

It has become a standard textbook exercise to verify that for small lattice spacings

SG[U ] −→ − 1

2g2
0

∫
d4x Tr (FμνFμν) + O(a), (5.26)

provided that one relates the parameter β to the bare gauge coupling via β = 6/g2
0 in

Eq. (5.25). We have remarked already that the discretization of a field theory is not

Fig. 5.1 Graphical
representation of the
plaquette Pμν(x) in the
(μ, ν)-plane. The arrow
between sites x + aμ̂ and x

denotes the link variable
Uμ(x)

x+a x+a +a

x x+a
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unique, and hence one is free to add further gauge invariant terms to the plaquette
action which formally vanish as a → 0, but which produce a discretization with
an accelerated rate of convergence to the continuum limit. The most widely chosen
alternatives are the Symanzik [7] and Iwasaki [8] actions.

Quark and antiquark fields, ψ(x) and ψ̄(x), are associated with the lattice sites
and transform under the gauge group as

ψ(x) → g(x)ψ(x), ψ̄(x) → ψ̄(x)g(x)−1. (5.27)

Using the transformation property of the link variables, it is straightforward to write
down a discretized version of the covariant derivative, i.e.

∇μψ(x) := 1

a

(
Uμ(x)ψ(x + aμ̂) − ψ(x)

)

∇∗
μψ(x) := 1

a

(
ψ(x) − Uμ(x − aμ̂)−1ψ(x − aμ̂)

)
, (5.28)

where ∇μ and ∇∗
μ denote the “forward” and “backward” derivatives, respectively.

Finally, we note that in Euclidean space-time, the Dirac matrices can be defined to
satisfy

{
γμ, γν

} = 2δμν .
Before we attempt to construct the fermionic part of the action of lattice QCD, it

is useful to identify the basic properties that the discretized, massless Dirac operator,
D, should satisfy:

(a) D is local;
(b) D̃(p) = iγμpμ + O(ap2);
(c) D̃(p) is invertible for p �= 0;
(d) γ5 D + D γ5 = 0.

Locality, i.e. the absence of long-ranged interactions, is a basic property of any
quantum field theory describing elementary particles. Property (b) implies that
the correct continuum behaviour of the quark-gluon interaction is reproduced.
Furthermore, condition (c) ensures that the correct fermion spectrum is obtained:
fermion masses are associated with poles of {D̃(p)}−1, which, in the continuum
theory, only occur at vanishing four-momentum. Finally, property (d) ensures that
the massless theory respects chiral symmetry.

Using the definition of the covariant derivative and the conventions for the Dirac
matrices in Euclidean space-time, we can now write down the simplest discretized
version of the massless lattice Dirac operator:

Ddisc = 1
2γμ(∇μ + ∇∗

μ). (5.29)

It turns out, however, that this “naïve” discretization violates condition (c) and
therefore produces spurious fermionic degrees of freedom. This is the so-called
fermion doubling problem, which is most easily explained by considering Ddisc in
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momentum space for the free theory. The Fourier transform yields

D̃disc(p) = iγμ
1

a
sin(apμ) = iγμpμ + O(a2). (5.30)

The discretization procedure has thus replaced pμ by a sine function. While
the Taylor expansion guarantees that condition (b) is satisfied, the occurrence of
sin(apμ) implies that D̃disc(p) vanishes not only at pμ = 0, but also at π/a for
μ = 0, . . . , 3 in the permitted range of momenta, thereby violating condition (c).
The massless propagator {D̃disc(p)}−1 therefore has 24 = 16 poles, and thus there
is a 16-fold degeneracy of the fermion spectrum.

As we shall see below, the fermion doubling problem is closely linked with the
issue of chiral symmetry on the lattice. For now we simply list the various methods
that have been devised to address fermion doubling. Historically the first was due to
Wilson (“Wilson fermions”) [6]. Here, the degeneracy is lifted completely, but the
price to pay is the explicit breaking of chiral symmetry at the level of the regularized
theory. Another method, due to Kogut and Susskind (“staggered fermions”) [9],
is based on the idea of spreading individual spinor components over the corners
of an elementary hypercube of the lattice. Although the degeneracy is only lifted
partially (from 16 to 4), this formulation has the advantage of leaving a subgroup
of chiral symmetry unbroken. More recent developments include the use of so-
called “domain wall” [10, 11] or “overlap” [12] fermions. These formulations leave
chiral symmetry unbroken in principle, and also succeed in lifting the degeneracy
completely. Finally, there are the so-called “perfect” actions [13], which are based
on a renormalization group approach and which are in principle completely free
of lattice artefacts. An exact realization of the perfect action which can be used in
simulations is, however, difficult to obtain. In practice, one typically uses a so-called
truncated fixed point action. Domain wall and overlap fermions, as well as perfect
actions are particular realizations of a class of discretizations dubbed “Ginsparg-
Wilson fermions”. They have the remarkable feature that chiral symmetry is
preserved, while the fermion doubling problem is completely avoided. We shall
come back to this issue in more detail below.

For now we turn specifically to Wilson’s treatment of the fermion doubling
problem. It exploits the fact that the discretization is not unique. Thus, one can add
a term to Ddisc, which formally vanishes as a → 0, but which pushes the masses of
the unwanted doubler states to the cutoff scale at any non-zero value of the lattice
spacing. Explicitly, the massless Wilson-Dirac operator Dw reads

Dw = 1
2γμ(∇μ + ∇∗

μ) + ar∇∗
μ∇μ, (5.31)

where r is the so-called Wilson parameter, which is usually set to one. The Fourier
transform of Dw for a trivial gauge field reads

D̃w(p) = iγμ
1

a
sin(apμ) + 2r

a
sin2

(apμ

2

)
, (5.32)
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which explicitly demonstrates (for the free theory, at least) that the poles at pμ =
π/a receive additional contributions proportional to r/a, which is of order of the
cutoff for r = O(1). Although this procedure leads to a complete lifting of the
degeneracy,1 it has a number of unwanted features: first, it should be noted that the
Wilson fermion action differs from the classical action in the continuum by terms
of order a, as a result of adding the counterterm proportional to r . By contrast, the
leading discretization effects of the Wilson plaquette action for Yang–Mills theory
are only O(a2). The Wilson fermion formulation will thus have a reduced rate of
convergence towards the continuum limit. Secondly, the addition of the Wilson term
results in an explicit breaking of chiral symmetry, since the massless theory is no
longer invariant under global axial rotations, such as

ψ(x) → eiαγ5ψ(x), ψ̄(x) → ψ̄(x)eiαγ5, (5.33)

which implies that property (d) is violated. While the rate of convergence to the
continuum limit can be accelerated by employing what is known as “O(a) improve-
ment” (see below), the explicit breaking of chiral symmetry cannot be cured within
the Wilson theory. Thus, quantities like the quark condensate, which arises from
the spontaneous breaking of chiral symmetry, cannot be studied in a conceptually
“clean” manner using Wilson fermions. A detailed discussion how this can be
achieved with the help of a more sophisticated fermionic discretization (“Ginsparg-
Wilson fermions”) is presented in Sect. 5.6. However, for most applications of lattice
QCD, explicit chiral symmetry breaking is merely an inconvenience, but no serious
obstacle.

We have already remarked when discussing the discretized Yang–Mills part of
the QCD action that the non-uniqueness of the discretization opens the possibility
to construct lattice actions with an accelerated rate of convergence towards the
continuum limit. A systematic way how to do this is the so-called Symanzik
improvement programme [14], in which lattice artefacts can be removed order by
order in the lattice spacing. In a nutshell, the improvement programme amounts to
extending the renormalization procedure of a field theory to the level of irrelevant
operators, i.e. operators that formally vanish as a → 0. In this sense one adds
suitable counterterms, which for any non-zero value of a produce a cancellation
of the cutoff effects at a given order, provided that their coefficients are tuned
appropriately. For QCD with Wilson fermions, Sheikholeslami and Wohlert [15]
have shown that the Symanzik improvement programme to lowest order is realized
by adding one O(a) counterterm to the Wilson-Dirac operator Dw. The resulting
expression in the massless case reads

Dsw = Dw + ia

4
cswσμνF̂μν, (5.34)

1That the degeneracy is indeed completely lifted in the presence of a non-trivial gauge field can be
verified in numerical simulations.
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Fig. 5.2 Four plaquettes that
must be summed over to yield
the quantity Qμν(x) in the
lattice definition of the field
strength tensor. The site x is
at the center of the “clover”
leaf

where σμν = i
2 [γμ, γν], and F̂μν is a lattice transcription of the gluon field strength

tensor Fμν . A suitable representation of F̂μν in terms of plaquette variables is given
by

F̂μν(x) = 1

8a2

(
Qμν(x) − Qνμ(x)

)
, (5.35)

where Qμν(x) is the sum of the four plaquettes emanating from the site x, as
depicted in Fig. 5.2. The object Qμν(x) is aptly called “clover” leaf. In order
to remove all lattice artefacts of order a in hadron masses, the improvement
coefficient csw must be fixed by imposing a suitable improvement condition.
Without going into details here, we note that it is possible to find such a condition,
which can also be evaluated at the non-perturbative level [16, 17]. The resulting,
non-perturbatively O(a) improved Wilson action can then be used to compute, say,
hadron masses whose values differ from the continuum result by terms of only
O(a2).

The Wilson-Dirac operator for a quark with bare mass m0 is simply (Dw + m0).
However, the form of the Wilson fermion action, SW

F [U, ψ̄,ψ], which is found in
the literature is usually expressed in terms of the “hopping parameter” κ rather than
m0. By rescaling the fermion fields according to

ψ(x) → √
2κ ψ(x), ψ̄(x) → ψ̄(x)

√
2κ, (5.36)

one obtains

SW
F [U, ψ̄,ψ] ≡ a4

∑
x∈�E

ψ̄(x)(Dw + m0)ψ(x)

= a4
∑
x∈�E

{
− κ

3∑
μ=0

1

a

[
ψ̄(x)(r − γμ)Uμ(x)ψ(x + aμ̂)

+ψ̄(x + aμ̂)(r + γμ)Uμ(x)
−1ψ(x)

]

+ ψ̄(x)ψ(x)

}
. (5.37)
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The hopping parameter κ is related to the bare mass m0 via

κ = 1

2am0 + 8r
, (5.38)

while the dimensionless parameter r is usually set to one. Taken together with
the plaquette action of Eq. (5.25), the Wilson action for QCD is thus conveniently
parameterized in terms of the bare parameters (β, κ), with β = 6/g2

0 and κ as above,
instead of the bare gauge coupling and quark mass (g0,m0).

Another consequence of adding the Wilson term to the naïve lattice action is the
resulting additive renormalization of the quark mass. In other words, the point where
the quark mass vanishes is a priori unknown. The value that must be subtracted is
called the critical quark mass, which corresponds to the critical value of the hopping
parameter, κc. The bare subtracted quark mass is then given by

m = 1

2a

(
1

κ
− 1

κc

)
. (5.39)

From Eq. (5.38) one easily infers that the critical value of κ in the free theory occurs
at

κc = 1

8
, r = 1, (5.40)

while for non-zero g0 the value of κc must be determined, for instance, by adjusting
κ to the point where the pion mass vanishes.

We now turn to discussing one alternative to using Wilson’s solution to the
fermion doubling problem, namely the so-called “staggered” (or Kogut-Susskind)
fermions. One might think that the doubling problem arises since there are too
many fermion degrees of freedom in the discretized theory, if one associates
a four-component Dirac spinor with each individual lattice site. Pictorially, the
main idea of Kogut and Susskind was to “thin out” the degrees of freedom by
distributing single spinor components over different lattice sites. In their particular
formulation, the 16 corners of a four-dimensional hypercube serve to accommodate
the individual components of four Dirac spinors. Therefore, if these hypercubes
are regarded as the main building blocks for the fermionic discretization, rather
than the lattice sites themselves, this procedure will result in a partial lifting of
the degeneracy from 16 fermion species down to four. It is clear, though, that a
simple distribution of spinor components is not sufficient to define the action, since
the Dirac matrices mix different spinor components. Thus, the staggered fermion
action is only obtained after performing a diagonalization in spinor space, which
then decouples the individual components.

Rather than describing the details of this procedure, which can be found in most
textbooks, we simply state the result. Starting from the usual four-component spinor
and performing a spin-diagonalization, the lattice action for staggered fermions with
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bare mass m0 coupled to the gauge field is derived as

S
stagg
F [U, χ̄ , χ] = a4

∑
x∈�E

4∑
α=1

{
m0χ̄α(x)χα(x)

+ 1

2a

3∑
μ=0

ημ(x)
[
χ̄α(x)Uμ(x)χα(x + aμ̂) − χ̄α(x + aμ̂)Uμ(x)

−1χα(x)
]}

, (5.41)

where χα denotes a one-component Grassmann variables. The spin-diagonalization
has thus replaced the Dirac matrices γμ by real, position-dependent phase factors
ημ(x), which are given by

η0(x) = 1, ηj (x) = (−1)n0+...+nj−1 , nj = xj/a. (5.42)

At the level of the classical action, the spinor components are completely decoupled,
and the action is decomposed into four identical pieces. In order to occupy all 16
corners of a four-dimensional hypercube with one-component Grassmann variables,
one needs four Dirac spinors, each of which contributes a term like Eq. (5.41) to the
overall action. This produces the fourfold degeneracy of staggered fermions, with
the remnant doubler states being referred to as “tastes”, in order to distinguish them
from physical flavours. The formulation using the one-component fields within a
hypercube can be re-expressed in terms of the spin-taste basis [18], from which one
can infer directly that the taste symmetry is broken. However, one axial generator of
the taste symmetry remains unbroken. The fermion mass in the staggered approach
is therefore protected against any additive renormalization through the associated
global axial U(1) symmetry, unlike the case of the Wilson action. While the various
tastes decouple in the continuum limit, non-vanishing interactions between the tastes
at O(a2) in the lattice spacing are induced, leading to large lattice artefacts. The
Symanzik improvement programme can be employed to reduce these taste-changing
interactions [19], and the resulting “improved staggered fermions” (the so-called
“Asqtad”-action being one particular example [20]) have been widely used in a
series of simulations.

For a long time lattice physicists have struggled to find a fermionic discretization
which would both solve the doubling problem and be compatible with chiral
symmetry. In fact, physicists grew increasingly doubtful that this could be achieved,
following the proof of a “No-Go theorem” by Nielsen and Ninomiya [21], which
stated that the conditions (a)–(d) mentioned above could not be satisfied simul-
taneously. Since one does not want to give up locality and property (b), this
would imply that either (c) or (d) must be violated. Indeed, the Wilson and
staggered discretizations seem to confirm this expectation: while the Wilson fermion
action removes all doublers, it breaks chiral symmetry, leading to an additive
renormalization of the quark mass, as well as several other consequences. By
contrast, the staggered formulation preserves a U(1) subgroup of chiral symmetry at
the price of only partially removing the spurious degrees of freedom.
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A way to circumvent the Nielsen–Ninomiya theorem was already pointed out by
Ginsparg and Wilson in 1982 [22], when they suggested to relax condition (d) in
favour of

γ5D + Dγ5 = aDγ5D. (5.43)

However, it was not before 1997 that this condition—now commonly referred to
as the Ginsparg-Wilson relation—was confronted with a non-trivial solution. It was
shown [23] that the so-called “perfect action” constructed from a renormalization
group approach satisfied equation (5.43). It was also realized that any lattice Dirac
operator, which is a solution to the Ginsparg-Wilson relation, also satisfies the
Atiyah–Singer index theorem, i.e.

{γ5,D} = aDγ5D ⇔ index(D) = a5
∑
x∈�E

1
2 Tr (γ5D) = n−−n+, (5.44)

such that the operator D exhibits |n− − n+| exact chiral zero modes. Finally, it
was shown [24] that the Ginsparg-Wilson relation implies an exact symmetry of the
associated action, with infinitesimal variations proportional to

δψ = γ5(1 − aD)ψ, δψ̄ = ψ̄γ5. (5.45)

Moreover, this symmetry reproduces the correct chiral anomaly in the flavour singlet
case, and therefore all the hallmarks of the correct chiral behaviour are present in
the lattice theory: chiral zero modes, an exact index theorem and the chiral anomaly
derived from the Ward identities associated with the exact symmetry.

Another line in the development of lattice fermion actions that preserve chiral
symmetry goes back to Kaplan’s domain wall fermion approach [10], which was
subsequently applied to QCD by Furman and Shamir [11]. Without going into detail,
we state that the basic idea is to introduce an extra, fifth dimension and to couple
the fermions to a mass defect (the so-called “domain wall height”) in that extra
dimension. To make this more explicit, let x, y denote the coordinates in the four-
dimensional bulk, and s, t the coordinates in the 5th dimension, which has finite
length N5. The gauge fields are trivial in the 5th direction, and the Dirac operator
then has the general structure

Ddwf(x, s; y, t) = D‖(x, y)δst + δ(x − y)D⊥
st (5.46)

where D‖(x, y) is the usual Wilson-Dirac operator with a negative mass term, −M ,
which represents the domain wall height. The operator D⊥

st couples fermions in the
5th dimension and contains the physical bare quark mass m0. It can then be shown
that for m0 = 0 and in the limit N5 → ∞ there are no fermion doublers and, more
importantly, chiral modes of opposite chirality are trapped in the four-dimensional
domain walls at s = 1, N5.
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However, in a real lattice simulation of domain wall fermions, one has to work
with a finite value of N5, so that the decoupling of chiral modes is not exact.
One expects, though, an exponential suppression of the remnant chiral symmetry
breaking effects, and this has been confirmed in several simulations. Furthermore,
the rate of suppression may be accelerated by optimizing the choice of lattice action
for the gauge fields. Hence, the domain wall formulation of QCD offers a method
to realize almost exact chiral symmetry at non-zero lattice spacing at the expense of
simulating a five-dimensional theory.

Another operator which correctly reproduces the chiral properties of QCD at
non-zero lattice spacing was constructed by Neuberger [12]. Its definition is

DN = 1

a

(
1 − A√

A†A

)
, A = 1 + s − aDw, a = a

1 + s
, (5.47)

where Dw is the massless Wilson-Dirac operator, and |s| < 1 is a tunable parameter.
By defining Q = −γ5A, one can rewrite Eq. (5.47) as

DN = 1

a
(1 + γ5sign(Q)) . (5.48)

The Neuberger-Dirac operator DN removes all doublers from the spectrum, and can
easily be shown to satisfy the Ginsparg-Wilson relation [12]. The occurrence of an
inverse square root in DN raises two issues. First, it is a priori not clear whether or
not DN is local. Second, the application of DN in a computer program is potentially
very costly, since the sign-function of the matrix Q must be implemented using, for
instance, a polynomial approximation.

In order to qualify as a viable discretization of the quark action, “strict” locality,
meaning that only fields in a local neighbourhood of a given lattice site are coupled,
is not actually required. If D(x, y) denotes a generic lattice Dirac operator which
couples fields at sites x and y, then a sufficient condition for locality of D is the
exponential suppression of non-local interactions, i.e.

‖D(x, y)‖ ≤ e−γ |x−y|/a, (5.49)

where |x − y| is the distance between sites and ‖ · ‖ denotes a suitably defined
matrix norm. In Ref. [25] it was shown that the Neuberger-Dirac operator DN is
local in the sense of Eq. (5.49), provided that the lattice spacing in physical units2

is not larger than about 0.13 fm. As far as the issue of numerical efficiency is
concerned, we note that the most widely used approximations of sign(Q) with good
convergence properties include Chebysheff or Zolotarev polynomials, as well as
rational fractions.

2So far we have not discussed how to assign physical units to the lattice spacing a. This is described
in Sect. 5.2.4.
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The last fermionic discretization we wish to mention here was originally
constructed to address another problem of Wilson’s discretization, namely the fact
that they are not protected against the occurrence of zero modes for any non-zero
value of the bare quark mass. These unphysical zero modes manifest themselves
as “exceptional” configurations, which occur with a certain frequency in numerical
simulations with Wilson quarks and which can lead to strong statistical fluctuations.
The problem can be cured by introducing a so-called “chirally twisted” mass term,
after which the fermionic part of the QCD action in the continuum assumes the form

S
tm; cont
F =

∫
d4x ψ̄(x)(γμDμ + m + iμqγ5τ

3)ψ(x). (5.50)

Here, μq is the twisted mass parameter, and τ 3 is a Pauli matrix. The standard action
in the continuum can be recovered via a global chiral field rotation:

ψ ′(x) = eiαγ5τ
3/2ψ(x), ψ̄ ′(x) = ψ̄(x)eiαγ5τ

3/2. (5.51)

Fixing the twist angle α by requiring that tanα = μq/m one finds

S′
F =

∫
d4x ψ̄ ′(x)(γμDμ + M)ψ ′(x), M =

√
m2 + μ2

q, (5.52)

which demonstrates the complete equivalence of the twisted formulation with
“ordinary” QCD. The lattice action of twisted mass QCD for Nf = 2 flavours is
defined as [26]

Stm
F [U, ψ̄,ψ] = a4

∑
x∈�E

ψ̄(x)(Dw + m0 + iμqγ5τ
3)ψ(x). (5.53)

Although this formulation breaks physical parity and flavour symmetries, is has a
number of advantages over standard Wilson fermions. In particular, the presence of
the twisted mass parameter μq protects the discretized theory against unphysical
zero modes. Another attractive feature of twisted mass lattice QCD is the fact
that the leading lattice artefacts are of order a2 without the need to add the
Sheikholeslami-Wohlert term [27], even though the Wilson-Dirac operator is used
in Eq. (5.53). Although the problem of explicit chiral symmetry breaking remains,
the twisted formulation is particularly useful to circumvent some of the problems
that are encountered in connection with the renormalization of local operators on
the lattice. Recent review of twisted mass lattice QCD can be found in [28, 29].

We wish to end this part with a few general remarks. Although we have
discussed discretizations of the QCD action in some detail, including the most
recent developments, many more variants of the basic types of action—including
several different combinations of fermionic and pure gauge parts—can be found in
the literature. This reflects the fact that the discretization is not unique. The actual
choice of lattice action in a particular simulation will influence the convergence rate
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to the continuum limit, the algorithmic efficiency, the renormalization properties of
local operators, or—in the case of domain wall fermions—the extent to which chiral
symmetry is realized. Depending on the properties of a particular discretization, the
choice of lattice action can be optimized for the physics one wishes to study.

5.2.3 Functional Integral and Observables

The lattice formulation provides a regularization of non-Abelian gauge theories
whilst preserving the gauge invariance at all stages of the calculation. This comes
at a price, since all continuous space-time symmetries are broken explicitly and
must be recovered in the continuum limit. Nevertheless, the lattice regularized
theory inherits all consequences of gauge invariance, including renormalizability.
Moreover, the lattice regularizes the theory without any reference to perturbation
theory. By contrast, in continuum schemes like the MS scheme of dimensional
regularization the cutoff is only defined after fixing the order of the perturbative
expansion. As we shall see below, observables in lattice QCD are directly given
in terms of functional integrals, which can be evaluated stochastically using Monte
Carlo integration. In this way, any use of perturbation theory is completely avoided.

For concreteness, let us assume that we have made a particular choice for
the Yang–Mills part SG[U ] and the fermionic part SF[U, ψ̄,ψ], for instance, the
Wilson plaquette action and Wilson fermions. Let � denote an observable, which is
represented by a polynomial in the quark and antiquark fields and the link variables.
The expectation value, 〈�〉, is defined through the Euclidean functional integral3

〈�〉 = 1

Z

∫
D[U ]D[ψ̄ , ψ]� e−SG[U ]−SF[U,ψ̄,ψ], (5.54)

where Z is fixed by the condition〈1〉 = 1. The functional integral involves an
integration over the gauge group and over all fermionic degrees of freedom, the latter
being represented by anti-commuting (Grassmann) variables. Since the fermionic
action, SF[U, ψ̄,ψ] is bilinear in the quark and antiquark fields, the integration over
the Grassmann variables is Gaussian and can be performed analytically. This yields

〈�〉 = 1

Z

∫ ∏
x∈�E

3∏
μ=0

dUμ(x) �̃ {detDlat}Nf e−SG[U ]. (5.55)

3Here and in the following we drop the subscript “E” on the partition function Z.
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Equation (5.55) requires some further explanation:

• �̃ denotes the representation of � in the (effective) theory, where the quark fields
have been integrated out and only the link variables remain in the functional
integral measure;

• Dlat denotes a generic, massive lattice Dirac operator. For instance, for Wilson
quarks one has Dlat = Dw +m0. For simplicity we have displayed the expression
for QCD with Nf flavours of equal mass m0, which accounts for the power Nf.
In the case of non-degenerate quarks {detDlat}Nf must be replaced by a product
of determinants, in which each factor represents the contribution from a single
flavour:

• The lattice formulation has given a well-defined meaning to the measure D[U ].
The integration over the gauge degrees of freedom reduces to a finite-dimensional
integration over the gauge group, based on the invariant group (Haar) measure.

The numerical evaluation of 〈�〉 via Monte Carlo integration proceeds as follows.
One starts by generating a set of gauge configurations using a computer program.
One configuration in the set represents the collection of all link variables on a given
lattice, i.e.

{
Uμ(x) |x ∈ �E, μ = 0, . . . , 3

}
, (5.56)

for which we shall use the shorthand {Uμ(x)} below. A collection of an infinite
number of configurations is called an ensemble. The statistical weight, W , of an
individual configuration is given by

W = {detDlat}Nf e−SG[U ]. (5.57)

In other words, the composition of the ensemble is determined by a probability
distribution, which is given by the negative exponentiated classical action in the inte-
grand of the Euclidean functional integral. Owing to the weight factor, the integrand
of the functional integral will be strongly peaked around those configurations for
which W is large. This particular feature makes the expectation value amenable to a
Monte Carlo treatment. The key idea is to replace the ensemble by a finite sample of
Ncfg gauge configurations, which is dominated by those configurations for which W

is large. Provided that one can construct a suitable algorithm, the sample will then
consist predominantly of those configurations which give a large contribution to the
Euclidean functional integral and thus 〈�〉. Such a procedure is called importance
sampling.

Technically, the sample is produced by generating a sequence of configurations
via a Markov process:

{
Uμ(x)

}
1 −→ {

Uμ(x)
}

2 −→ . . . −→ {
Uμ(x)

}
Ncfg

. (5.58)
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One assigns a probability for the transition from
{
Uμ(x)

}
i

to
{
Uμ(x)

}
i+1, which is

usually a function of the statistical weights of the two configurations, Wi and Wi+1,
respectively. For each individual configuration in the sequence one then evaluates
the observable, which yields the estimates �i, i = 1, . . . , Ncfg. The expectation
value 〈�〉 is related to the mean value � via

〈�〉 = lim
Ncfg→∞�, � = 1

Ncfg

Ncfg∑
i=1

�i. (5.59)

In other words, in the limit of infinite statistics the mean value converges to
the ensemble average which is identical to the expectation value. An important
consequence of approximating the ensemble average by the sample average is a
non-zero value of the variance. Hence, in order to specify the results from a Monte
Carlo integration completely, one must also quote the statistical error which is given
by the square root of the variance.

In the standard algorithms that implement Markov processes (such as the
Metropolis algorithm [30]), the transition probabilities for going from one con-
figuration to another are determined by comparing the statistical weights for local
variations in the field variables. This guarantees computational efficiency, since the
variation of individual link variables does not involve global information from the
entire lattice. In Eq. (5.55) the dynamical effects of the quark fields are incorporated
via the determinant of the lattice Dirac operator. The determinant, however, is a
non-local object, which is expensive to compute. When the first efforts were made
to compute observables in QCD in the 1980s, the available computer power did
not allow for the inclusion of the quark determinant. Instead, lattice physicists
resorted to what is known as the “quenched approximation”, which is based on the
assumption that the bulk of non-perturbative contributions is carried by the gauge
field, so that the determinant is set to a constant:

Quenched approximation: detDlat = 1 ⇔ Nf = 0. (5.60)

The resulting gain in computer time amounts to several orders of magnitude. In the
quenched approximation the effects of virtual quark loops are entirely suppressed.
As a consequence, results for observables are afflicted with an unknown systematic
error. As we shall see later, there are several quantities (for instance, the masses
of the lightest hadrons) for which the quenching error amounts to just 10–15%.
Although this justifies the use of the quenched approximation to some extent, it is
clear that dynamical quark effects must be taken into account, in order to arrive at
reliable, non-perturbative predictions with a total accuracy at the percent level.

Modern algorithms for dynamical quarks, such as the Hybrid Monte Carlo algo-
rithm [31], do not evaluate the quark determinant directly. Rather, one exploits the
property that the determinant can be rewritten as a functional integral over bosonic
fields, which is then evaluated stochastically. Thereby one avoids computing a
global object, but the computational effort involved in the stochastic estimation
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of the quark determinant is still large compared with the quenched approximation.
More details can be found in Sect. 5.2.6 below.

Correlation functions, i.e. the expectation values of polynomials in the quark and
gluon fields, are the most important quantities, since they determine implicitly the
particle spectrum of the theory. As was discussed already in Sect. 5.2.1, the link
between correlation functions and the particle spectrum is provided by the transfer
matrix T. For lattice QCD with Wilson fermions, the existence of a positive transfer
matrix was rigorously established [32].

As a concrete example we shall discuss the two-point correlation function of a
charged kaon. A polynomial of quark fields with the quantum numbers of the kaon
is given by

φK(x) = (ūγ5s) (x), (5.61)

where the parentheses indicate summation over spinor and colour components of the
fields. Mostly one is interested in correlation functions in which all spatial points
have been summed over and which therefore only depend on the Euclidean time
separation. We define

CK(x0; �p) =
∑

�x
ei �p·�x 〈φK(x)φ

†
K(0)

〉
. (5.62)

The inclusion of the phase factor in conjunction with the summation over �x amounts
to a projection onto spatial momentum �p. On a finite lattice with periodic boundary
conditionsCK(x0; �p) must be symmetric under x0 ↔ T −x0. Therefore, the spectral
decomposition of CK(x0; �p) reads

CK(x0; �p) =
∑
α

∣∣〈0∣∣φK(0)
∣∣α〉∣∣2

2εα( �p)
{

e−εα( �p)x0 + e−εα( �p)(T−x0)
}
, (5.63)

where the sum runs over all states in the kaon channel with fixed momentum �p, and
εα( �p) is the mass gap (see Sect. 5.2.1).4 For large Euclidean times x0 the ground
state dominates. If we further set �p = 0, then the asymptotic form of the two-point
function reads

lim
x0→∞ CK(x0; �p) =

∣∣〈0∣∣φK(0)
∣∣K 〉∣∣2

mK
e−mKT/2 cosh (mK(T /2 − x0)) , (5.64)

where mK = ε0( �p)| �p=0 is the mass of the kaon, and the sum of the two exponentials
has been re-expressed using the cosh function. Owing to the ordering ε0( �p) <

ε1( �p) < . . ., the higher excited states are exponentially suppressed. The functional

4In the commonly normalization of hadron states one includes a factor 2εα( �p) in the denominator.
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Fig. 5.3 Two-point
correlation function for a
pseudoscalar meson. The
curve denotes a fit to
Eq. (5.64) in the interval
6 ≤ x0/a ≤ 26 p
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form of Eq. (5.64) is nicely illustrated by the plot in Fig. 5.3, where simulation data
for CK(x0; �p = 0) are compared to its asymptotic form. The data show indeed the
expected cosh-behaviour. Furthermore, one observes how the contributions from
higher excited states, which are clearly visible at small values of x0/a, quickly die
out as the time separation increases. From the two-point function we can extract
two important quantities: the fall-off of CK(x0; �p = 0) is characteristic of the
kaon mass, i.e. the energy of the ground state. Moreover, the pre-factor of the cosh-
function yields the transition amplitude between a kaon state and the vacuum, and
thus contains information on the kaon’s decay properties.

5.2.4 Continuum Limit, Scale Setting and Renormalization

In Sect. 5.2.2 we have discussed how to discretize the QCD action. The main
principle for their construction was the condition that the corresponding expressions
reproduce the continuum action in the formal limit a → 0, regardless of the values
of the bare parameters (such as β and the hopping parameter κ in the case of QCD
with Wilson fermions). If one goes beyond the classical theory this is not possible
anymore: it is a general property of quantum field theory that the parameters of
the regularized theory (masses and couplings) must be adjusted as the regulator is
removed. In the context of lattice QCD this implies that the continuum limit, a → 0,
is reached by a suitable tuning of the bare parameters.

To make this statement more precise, we shall invoke the close connection
between Euclidean lattice field theory and a system in statistical mechanics. Models
in statistical physics (think of the Ising model as an example) usually have a phase
structure. Depending on the choice of parameters, the different phases may exhibit
entirely different physical properties. The analogy with lattice field theory then
implies that a particular discretization of QCD also possesses a phase structure in
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the space of bare parameters (β and κ , for example).5 We shall now explain that
the continuum limit of QCD is associated with a critical point in the phase diagram,
which corresponds to a second-order phase transition. In the previous section we
have considered hadronic two-point correlation functions, and how the mass in a
given channel can be extracted from the asymptotic behaviour at large Euclidean
times. Actually, this procedure yields the dimensionless combination (aM), i.e. the
hadron mass in lattice units. In order to take the continuum limit, one must take
a → 0, while the physical mass M must remain constant. This implies

1

(aM)
≡ ξ → 0. (5.65)

In other words, the correlation length ξ diverges in the continuum limit. In the
language of statistical physics, a divergent correlation length signals a second-
order phase transition. The existence of the continuum limit in lattice QCD is
therefore equivalent to the existence of a second-order transition in the space of
bare parameters.

For simplicity we shall now consider Yang–Mills theory on the lattice, which we
choose to describe by Wilson’s plaquette action and the bare coupling parameter
β ≡ 6/g2

0. The existence of a second-order phase transition corresponds to a critical
value of the bare gauge coupling, g0,c. Furthermore, it implies that the bare coupling
g0 and the lattice spacing a (or, equivalently, the correlation length ξ ) cannot be
varied independently when the continuum limit is approached.6 In this way we may
regard the bare coupling as a function of the lattice spacing, g0(a), such that

lim
a→0

g0(a) = g0,c. (5.66)

Let P be an observable, computed for a particular value of g0, i.e. P = P(g0, a).
Since P is a physical quantity it must stay constant as the continuum limit is taken,
i.e.

a
d

da
P(g0, a) = 0. (5.67)

This leads to the Callan–Symanzik equation

{
a

∂

∂a
+ a

∂g0

∂a

∂

∂g0

}
P(g0, a) = 0. (5.68)

5This phase diagram must not be confused with the physical phase diagram of QCD in the plane
defined by the temperature and the chemical potential, which is explored at heavy-ion colliders.
6Otherwise, an arbitrarily chosen value of g0 would always correspond the a critical point.



160 H. Wittig

We can define the renormalization group β-function βlat as

βlat(g0) := −a
∂g0

∂a
, (5.69)

which describes the change in g0 when a is varied. Note that βlat depends on the
choice of discretization. In perturbation theory, however, one recovers the familiar
universal coefficients at one- and two-loop order. For gauge group SU(N) one has

βlat(g0) = −b0g
3
0 − b1g

5
0 + O(g7

0), (5.70)

where

b0 = 1

(4π)2

{
11

3
N − 2

3
Nf

}
, b1 = 1

(4π)4

{
34

3
N2 − Nf

(
13

3
N − 1

N

)}
,

(5.71)

and Nf = 0 in pure Yang–Mills theory. Starting from the perturbative expansion of
βlat one can integrate the Callan–Symanzik equation, which gives

a�lat = (b0g0)
−b1/(2b2

0)e−1/(2b0g0)
{

1 + O(g2
0)
}
, (5.72)

where the integration constant �lat represents a characteristic scale of the theory.
The above expression establishes the connection between the lattice spacing and the
bare coupling in perturbation theory. One reads off that

a → 0 ⇔ g0 → 0, (5.73)

and hence the critical point occurs at g0,c = 0. These findings are a consequence
of asymptotic freedom. Taking Eq. (5.72) at face value one would conclude that
the relation between P(a, g0) and P(a′, g′

0), computed for two different values
of the bare coupling g0 and g′

0 near the critical point, was simply given by the
ratio of Eq. (5.72) evaluated for g0 and g′

0. However, actual simulations do not
confirm this expectation. The reason for the failure to observe “asymptotic scaling”,
i.e. a variation of P(a, g0) with g0 which is consistent with Eq. (5.72), is that the
accessible values of g0 in simulations are by far not near enough the critical point,
in order for perturbation theory to be a good approximation.

Let P and P ′ be two different observables that both satisfy Eq. (5.68). Then,
regardless of whether or not asymptotic scaling holds, one would expect the ratio
aP(a, g0)/aP

′(a, g0) to be equal to the physical ratio P/P ′ for all values of g0.
However, even this weaker scaling criterion is usually not observed, the reason being
that the right-hand side of Eq. (5.68) is not strictly zero. Rather one has

{
a

∂

∂a
− βlat(g0)

∂

∂g0

}
P(g0, a) = O(ap), (5.74)
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Table 5.1 Most widely used discretizations of the Dirac operator and some of their properties

Leading

Action Doublers artefacts Chiral symmetry

Wilson None O(a) Broken

Clover None O(a2) Broken

Staggered 4 O(a2) U(1) ⊗ U(1) subgroup unbroken

Neuberger None O(a2) Preserved

Domain Wall None O(a2) Remnant breaking exponentially suppressed

Twisted Mass Wilson None O(a2) Broken

where p is a positive integer. These so-called scaling violations on the right-
hand side depend both on the lattice action and the observable in question. As a
consequence, the ratio considered above behaves like

aP(a, g0)

aP ′(a, g0)
= O(ap). (5.75)

In other words, as g0 is tuned towards zero, dimensionless ratios of observables
converge to the continuum limit with a rate proportional to ap, where the power p is
characteristic of the particular discretization employed in the lattice calculation. In
Table 5.1 we have already listed the leading scaling violations (lattice artefacts) for
several widely used fermionic lattice actions. Discretizations of the Yang–Mills part,
such as the plaquette action, have leading lattice artefacts of O(a2). The Symanzik
improvement programme allows to construct lattice actions with an accelerated rate
of convergence to the continuum limit.

In actual lattice calculations, the continuum limit must be taken by performing
simulations at several different values of the lattice spacing and extrapolating the
results to a = 0. The functional form of the extrapolation is chosen such that it is
consistent with the leading discretization errors for a given lattice action. Such a
procedure is only viable if the relation between the lattice spacing in physical units
and the dimensionless coupling parameter g0 (which is an input parameter in the
simulation) is known with good accuracy. Since the perturbative formula Eq. (5.72)
is not of any practical use, the relation between the scale and the coupling must be
mapped out non-perturbatively. To this end one picks a value for g0 and computes
in a Monte Carlo simulation a dimensionful quantity Q, whose value is known from
experiment. Common choices for Q in the pure gauge theory are the string tension
or the hadronic radius r0 [33, 34], while in full QCD one may choose the mass of
the nucleon. The Monte Carlo procedure yields Q in lattice units, (aQ), and the
calibration of the lattice spacing is achieved via

a−1 [MeV] = Q|exp [MeV]
(aQ)|g0

. (5.76)
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Fig. 5.4 Continuum extrapolation of the dimensionless ratio of quark masses and the kaon decay
constant [35]

Knowledge of (aQ) over a range of bare couplings is a prerequisite for performing
the continuum extrapolation. In Fig. 5.4 we show a particular example, namely the
continuum extrapolation of the combination Ms + 1

2 (Mu + Md) of quark masses,
normalized by the kaon decay constant, computed using O(a) improved Wilson
fermions in the quenched approximation [35]. The expected linear convergence in
a2 is clearly exhibited by the lattice data.

So far we have restricted the discussion to the pure gauge theory which contains
only one bare parameter, the gauge coupling g0 (sometimes expressed in terms
of β = 6/g2

0). When quarks are incorporated, the set of parameters must be
enlarged by the values of the bare masses, one for each flavour. Lattice QCD is
thus parameterized by the set of bare parameters

{g0;mu,md,ms,mc,mb,mt }.

In order to be predictive, the theory must be renormalized, by expressing the bare
parameters in terms of renormalized ones.

A convenient and practical method for lattice QCD is based on so-called hadronic
renormalization schemes. Here the bare coupling and quark masses are eliminated
in favour of renormalized quantities such as hadron masses or decay constants. An
example how this works in the pure gauge theory was already given in the preceding
discussion on scale setting, where the bare coupling was eliminated by assigning a
value in physical units to the lattice spacing. In the process one has to choose a
quantity that sets the scale and which cannot be predicted anymore.

Replacing the values of the bare quark masses mu,md, . . . in favour of hadronic
quantities works as follows. Like the bare coupling, the bare quark mass is an input
parameter for the simulation and thus freely adjustable. Therefore, simulations yield
hadron masses (in lattice units) as a function of the input quark masses. For instance,
amPS(m1,m2) denotes the mass in lattice units of a generic pseudoscalar meson
composed of a quark and antiquark with bare masses m1 and m2, respectively. Let
us assume that the lattice spacing a has been calibrated using some input quantity
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Q. If we further assume exact isospin symmetry we can then determine the value of
the bare isospin-symmetrized light quark mass m̂ = 1

2 (mu + md), by requiring that

mPS(m1,m2)

Q
= mπ

Q

∣∣∣∣
exp

, m1 = m2, (5.77)

i.e. the value of m̂ is fixed by adjusting the input mass m1 until mPS(m1,m2)/Q

coincides with the experimental result. We can extend this procedure to include
more massive flavours. The bare strange quark mass is found by tuning m2 such that

mPS(m̂,m2)

Q
= mK

Q

∣∣∣∣
exp

. (5.78)

Alternatively one can fix ms via the condition mV(m̂,m2)/Q = m∗
K/Q|exp, where

mV denotes the mass in the vector channel. An example of a particular hadronic
renormalization scheme is shown below:

Parameter Quantity

g0 fπ

1
2 (mu + md) mπ

ms mK

mc mDs

mb mBs

All quantities in a lattice calculation are genuine predictions, except for those that
are listed in the right-hand column of the table, which are used to eliminate the bare
parameters.

Given the multitude of hadronic states, it is obvious that there is considerable
freedom in choosing hadronic renormalization schemes. Usually, masses or mass
splittings of hadrons that are stable in QCD are suitable to define a scheme.
Resonances, such as the ρ, should be avoided, since they do not have a sharply
defined energy, owing to their large width.

5.2.5 Limitations and Systematic Effects

The lattice formulation is the basis for an exact non-perturbative treatment of QCD.
The accuracy of lattice results is chiefly limited by the algorithmic performance and
the available computer power. In particular, the set of bare parameters that can be
simulated efficiently for a given number of lattice sites is restricted. This has the
important consequence that the quark masses at the very extremes of the physical
mass scale (i.e. the up/down quarks and the b-quark) cannot be simulated directly
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with currently available methods and machines. These technical limitations are
usually translated into a systematic error, which is quoted alongside the statistical
one. The most important systematic effects are due to

• lattice artefacts (cutoff effects),
• finite volume effects, and
• extrapolations in the quark mass.

In order to have sufficient control over these effects, the simulation parameters must
be chosen such that the following inequalities are satisfied:

1

amhad
� L

a
, mhad � a−1, (5.79)

where mhad is the mass of a generic hadron in physical units computed in the
simulation. The inequality on the left of (5.79) states that the hadron’s correlation
length must be much smaller than the linear extent of the spatial box (in lattice
units), as otherwise its value will be strongly distorted by finite volume effects. The
inequality on the right states that the hadron mass must be significantly smaller
than the inverse lattice spacing. If this is not the case, lattice artefacts will be
uncontrollably large, meaning that the presence of higher-order cutoff effects cannot
be excluded, so that a reliable extrapolation to the continuum limit as a linear
function of the leading power of lattice artefacts cannot be performed. With current
algorithms and machines, lattice sizes of up to L/a = 48 and lattice spacings down
to 0.05 fm are affordable, even if dynamical quarks are included. Since a = 0.05 fm
corresponds to a−1 ≈ 4 GeV, it is obvious that the b-quark mass is too large to be
simulated directly. Several techniques have been devised to address this problem,
and a brief account can be found in Sect. 5.7.2.

In the light quark sector, the primary limitation that forbids making direct
contact with the physical values of the up and down quarks is mostly due to
algorithmic performance, rather than finite size effects. A detailed discussion of
the algorithmic difficulties associated with the simulation of light dynamical quarks
is presented separately in the following section. Moreover, it is difficult even in
the quenched approximation to reach quark masses significantly smaller than half
the physical strange quark mass, in particular with Wilson fermions. This is related
to the occurrence of arbitrarily small eigenvalues in the spectrum of the Wilson-
Dirac operator, even for small but non-vanishing values of the bare mass. As a
result, observables computed on individual, so-called “exceptional” configurations
may differ from the Monte Carlo average by orders of magnitude, and thus a
reliable determination of the result and its error is virtually impossible. As already
mentioned in Sect. 5.2.2, the problem of exceptional configuration can be cured
by employing alternative discretizations such as twisted mass QCD or the overlap
operator. A related problem arising from the particular spectral properties of the
Wilson-Dirac operator is the bad performance of standard algorithms for dynamical
quarks, discussed in the next section.



5 QCD on the Lattice 165

Due to these reasons, many simulations (quenched and unquenched) were
restricted to quark masses not much smaller than ms/2. This value translates
into a minimum mass of about 490 MeV in the pseudoscalar meson channel,
so that in these simulations the pion is as heavy as the physical kaon. In this
region of parameter space it is known empirically that a spatial lattice length
of 2–3 fm is sufficient to satisfy the first inequality in (5.79) and to rule out
significant finite volume effects. Moreover, an important analytic result derived by
Lüscher [36], implies that the asymptotic convergence to the result in infinite volume
is exponential.

In order to make contact with the chiral regime, lattice results must be extrapo-
lated to the physical values of the up and down quark masses. The functional form
for the dependence of observables on the quark mass is usually provided by Chiral
Perturbation Theory (ChPT). For instance, at lowest order the relation between the
mass of a pseudoscalar meson composed of quarks with masses m1 and m2 is

m2
PS = B0(m1 + m2) + . . . , (5.80)

where the ellipses represent higher orders in the chiral expansion. Similar expres-
sions are derived for vector meson and baryon masses, e.g.

mV = m0
V + C M2 + . . . , mN = m0

N + kM2 + . . . , (5.81)

and also for other quantities such as pseudoscalar decay constants. In the above
formulae, M2 ≡ B0(m1 + m2), and m0

V and m0
N denote the (non-vanishing) masses

in the chiral limit. A more formal introduction to the basic concepts of ChPT is
presented in Sect. 5.6.1.

It remains largely unknown whether or not the expressions of ChPT considered
at a given order in the expansion can be applied in the quark mass range that
is accessible in current simulations. Therefore, chiral extrapolations can lead to
substantial systematic uncertainties. For instance, lattice predictions for the ratio
of decay constants of the B and Bs mesons, fBs/fB, may differ by 10%, depending
on whether the LO or NLO expressions are used as an ansatz for the extrapolation
from quark masses around ms/2. Currently it is estimated that pseudoscalar meson
masses of 300 MeV and below must be reached in simulations, in order that ChPT
at one- or even two-loop order provides an accurate prediction for the quark mass
dependence of hadron masses and matrix elements.

In the quenched approximation, chiral extrapolations are particularly problem-
atic, since the chiral limit is intrinsically pathological, due to the appearance
of singularities in the quark mass dependence. This is illustrated by the NLO
expression for the ratio m2

PS/(m1 + m2), i.e.

m2
PS

m1 + m2
= B0

{
1 −

(
δ − 2

3α�y
)
(ln y + 1)+

[
(2α8 − α5) − 1

3α�

]
y
}
, (5.82)
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where B0, α5, α8, δ and α� are low-energy constants. For notational convenience
we have introduced

y = M2

(4πF0)2 , M2 = B0(m1 + m2), (5.83)

where F0 denotes the pion decay constant in the chiral limit. The low-energy
constants δ and α�, which multiply the so-called “quenched chiral logarithms”,
have no counterpart in the unquenched case. Since δ has a non-zero value [37],
the quenched chiral logarithm in Eq. (5.82) gives rise to a singularity in the chiral
limit. For many applications, the singularity can be ignored, since its effect is
numerically small even at the physical pion mass. However, it signals that the
quenched approximation suffers from fundamental conceptual problems.

5.2.6 Simulations with Dynamical Quarks

Although one may argue that the quenched approximation describes hadronic
properties fairly well, it is clearly unsatisfactory, both from a conceptual point of
view, and also because it introduces an unknown systematic error. Below we shall
discuss some general issues relating to simulations with dynamical quarks. It must
be stressed that several different techniques how to treat the quark determinant of
Eq. (5.57) efficiently are currently being explored. A preferred or clearly superior
method has not emerged so far, and it is likely that some of the approaches presented
below may become obsolete in the years to come.

In order to illustrate the main difficulties, we start by introducing the Hybrid
Monte Carlo (HMC) algorithm [31], which has been the standard algorithm for
simulations with dynamical quarks for many years. In order to produce one step
in the Markov chain, the algorithm evolves the link variables according to the
equations of motion of a classical Hamiltonian system. To this end one introduces
a conjugate momentum variable �μ(x) for every link Uμ(x). The Hamiltonian is
defined as

H [U,�] = 1
2

∑
x∈�E

3∑
μ=0

�μ(x)�μ(x) + SG[U ] + Seff
F [U,φ∗, φ], (5.84)

where SG[U ] is the lattice gauge action, and Seff
F [U,φ∗, φ] denotes an effective

lattice fermion action, which is obtained by rewriting the quark determinant as a
functional integral over complex bosonic fields φ(x) and φ∗(x). Explicitly, for Nf =
2 one has

(detDlat)
2 =

∫
D[φ∗, φ] exp

⎧⎨
⎩−

∑
x∈�E

φ∗(x)
[
(D

†
latDlat)

−1φ
]
(x)

⎫⎬
⎭ . (5.85)
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For each step in the Markov chain, the conjugate momenta are drawn randomly from
a Gaussian distribution (“momentum refreshment”). The Hamiltonian H [U,�]
governs the dynamics of the variables Uμ(x) and �μ(x) with respect to “simulation
time” τ , which parameterizes the evolution of Uμ(x) and �μ(x) as the simulation
algorithm progresses. The evolution is described by Hamilton’s equations, which
read

d

dτ
Uμ(x) = �μ(x)Uμ(x),

d

dτ
�μ(x) = −FG,μ(x) − FF,μ(x), (5.86)

where

FG,μ(x) = ∂SG[U ]
∂Uμ(x)

, FF,μ(x) = ∂

∂Uμ(x)

∑
x∈�E

φ∗(x)
[
(D

†
latDlat)

−1φ
]
(x)

(5.87)

are the forces associated with the gluon and quark fields, respectively. The algorithm
then proceeds by integrating the equations of motion numerically. As in any
numerical integration scheme, the total time interval is divided into a number of
sub-intervals of finite length �τ , which is called the step size. Starting from an
initial gauge configuration {Uμ(x)} and a set of conjugate momenta {�μ(x)}, one
obtains new sets {U ′

μ(x)}, {�′
μ(x)} after the integration. In the language of classical

mechanics, the variables Uμ(x) and �μ(x) evolve along a trajectory in phase
space which connects the initial and final configurations. However, since numerical
integration is not exact, owing to the finite step size, the energy is not conserved.
In the HMC algorithm this is rectified by introducing a global accept/reject step: if
�H denotes the energy difference between the initial and final configurations, i.e.

�H ≡ H [U ′,�′] − H [U,�], (5.88)

then the new configuration {U ′
μ(x)} is accepted with probability7

P {U → U ′} = min(1, e−�H). (5.89)

In other words, a configuration {U ′
μ(x)} associated with a large value for the energy

violation �H is less likely to be accepted. This final step completes the Monte
Carlo update. The name “Hybrid Monte Carlo” reflects the fact that one combines
a deterministic classical dynamics procedure with a pseudo-random accept/reject
step.

One major problem which has plagued simulations with dynamical quarks over
many years is the fact that the efficiency of the conventional HMC algorithm

7In practice this is achieved by drawing a random number r , with 0 < r ≤ 1. If r < e−�H the new
configuration is rejected.
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deteriorates sharply when the lattice spacing is decreased and the masses of the
light (up and down) quarks are tuned to their physical values. The poor scaling
behaviour is driven by the condition number of the lattice Dirac operator Dlat,
i.e. the ratio of the largest to the smallest eigenvalue. This quantity is known to
grow inversely proportional to the lattice spacing and the quark mass. In particular,
the HMC algorithm scales with the second, perhaps the third power of the light
quark mass. Thus, simulations based on the Wilson-Dirac operator were found to be
unpractical for lattice spacings below 0.1 fm and quark masses significantly smaller
than half of the strange quark mass.8 This is related to the afore-mentioned fact that
even the massive Wilson-Dirac operator is not protected against arbitrarily small
eigenvalues. Its condition number may thus fluctuate strongly in the course of the
simulation, leading not only to numerical instabilities, but also to large fluctuations
in the quark force term FF,μ(x), and, in turn,�H . In order to keep a reasonably large
acceptance rate of well over 75%, one must reduce the step size �τ accordingly,
and thus the numerical effort to integrate the equations of motion for an interval τ
of fixed length, increases.

Two basic strategies to address this problems have been followed: the first is
based on using fermionic discretizations that avoid the problem of arbitrarily small
eigenvalues, while the aim of the second approach is to improve the simulation
algorithms.

Staggered fermions have been advocated as a numerically more efficient alter-
native to the Wilson-Dirac formulation: since the staggered Dirac operator couples
one-component Grassmann fields rather than four-component spinors, fewer float-
ing point operations are required for one application of the operator. Moreover, the
residual U(1) ⊗ U(1) symmetry protects the quark mass against additive renor-
malization and thus prevents the occurrence of very small eigenvalues. However,
the fact that the staggered formulation describes four “tastes” per quark flavour
makes a physical interpretation difficult. Technically, the degeneracy implies that
the statistical weight of the quark determinant is too large compared with that of
one physical flavour. An ad hoc method to compensate for this is to take fractional
powers of the staggered quark determinant. For instance, to simulate QCD with
a doublet of degenerate up and down quarks with mass m̂, and a single heavier
(strange) quark with mass ms , the probability measure is taken as

P = 1

Z

{
det
(
Dstagg + m̂

)}1/2 {det
(
Dstagg + ms

)}1/4 e−SG[U ], (5.90)

where Dstagg is the massless staggered Dirac operator. This procedure is known as
the “fourth root trick”. The main question, which has been hotly debated, is whether
or not the rooted staggered operator corresponds to a local field theory, or whether it
induces spurious interactions among the fermionic degrees of freedom, which might
lead to a violation of the universality of the continuum limit. A thorough analysis

8This should be compared to the physical mass ratio of m̂ ≈ ms/24 [38].
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of this problem was given in [39], but so far no firm conclusion has been reached.
Nevertheless, the probability measure Eq. (5.90) and the “rooting trick” it is based
on, have been employed in large-scale simulations (see, e.g. Ref. [40]).

Discretizations based on twisted mass QCD have also been proposed as a
numerically more efficient quark action. Here, the twisted mass parameter μq
protects the operator against arbitrarily small eigenvalues. The smallest mass in the
pion channel that has been reached with this formulation was as low as 300 MeV
[41]. This corresponds to a physical quark mass of about ms/5, which may be
sufficient to enter the regime where the quark mass behaviour of observables can
be described analytically using Chiral Perturbation Theory.

Owing to several major algorithmic improvements, simulations based on the
Wilson-Dirac operator can now be performed much more efficiently. Without going
into much detail, we simply state that most of the gain is due to the use of suitably
chosen factorizations of the Wilson-Dirac operator into its low- and high-frequency
parts. The various factors are then “better conditioned”. In particular, fluctuations in
the condition number can be controlled via a separate and optimized treatment of
the low-energy part. In this way the step size �τ can be increased whilst keeping
a reasonably high acceptance rate for fixed total trajectory length τ . Algorithmic
implementations of factorization range from Hasenbusch’s “mass precondition-
ing” [42, 43], Lüscher’s domain decomposition technique based on the Schwarz
Alternating Procedure (DD-HMC algorithm) [44], to factorizations based on mass
preconditioning combined with rational approximations of the contributions from
multiple pseudo-fermion fields [45]. Thanks to these developments, it appears that
the spectral properties of the Wilson-Dirac operator are no longer an obstacle to
the efficient simulation of lattice QCD with light dynamical quarks. At the same
time, large-scale simulations employing the recent algorithmic improvements are
only just starting.

5.3 Hadron Spectroscopy

The determination of the spectrum of hadrons, i.e. mesons, baryons, glueballs,
and possibly “exotic” hadronic states, starting from the underlying gauge theory
of quarks and gluons has traditionally been one of the main applications of
lattice QCD. The rôle of lattice calculations in this context is twofold: first, the
determination of the experimentally known values of hadron masses from first
principles represents a stringent test of QCD. Second, lattice calculations can make
predictions for the masses of undiscovered or poorly established states. For instance,
lattice results have been instrumental in the search for glueball candidates, and have
also contributed significantly to the debate on the existence of pentaquarks.

The principles of hadronic mass calculations have already been outlined at the
end of Sect. 5.2.3: After defining a suitable interpolating operator with the quantum
numbers of the desired hadronic channel, one computes its Euclidean two-point
function. The mass (energy) of the ground state in that channel is then extracted
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from the exponential fall-off of the correlation function at large Euclidean times.
The detailed functional form of the asymptotic behaviour depends on the choice of
boundary conditions. Thus, it is not always described by a cosh function, as in the
example of a pseudoscalar meson on a lattice with periodic boundary conditions
in time, c.f. Eq. (5.64). In the limit of infinite temporal lattice size T , the effect
of the boundary conditions is sufficiently weak, so that one may approximate the
functional form of the correlation function for a generic interpolating operator
φhad(x) by

Chad(x0; �p) =
∑

�x
ei �p·�x 〈φhad(x)φ

†
had(0)

〉
T→∞=

∑
α

wα( �p)e−εα( �p)x0 . (5.91)

Here, the quantity wα( �p) is referred to as the spectral weight of the state |α〉. A
large value for the spectral weight of the ground state, w1( �p), will lead to an early
domination of the correlation function by the ground state energy. The choice of
φhad in a given channel can be optimized such that

w1( �p) � wi( �p), i = 2, 3, . . . . (5.92)

An optimal choice of interpolating operator is not only important to ensure a reliable
determination of the ground state energy: In order to determine the energies in
the excitation spectrum, the associated spectral weights must be maximized by
specifying appropriate operators.

Below we provide examples for interpolating operators in several mesonic and
baryonic channels:

K-meson : φK = (sγ5ū), (sγ0γ5ū)

K∗-meson : φK∗ = (sγj ū), j = 1, 2, 3

nucleon : φN = εabc{uaT Cγ5 db}uc

� : φ� = εabc{uaT Cγμ db}uc

(5.93)

Here, parentheses indicate summation over spinor and colour indices, while curly
brackets denote that only spinor indices are summed over.

5.3.1 Light Hadron Spectrum

The determination of the spectrum of light hadrons was historically one of the first
attempts to compute hadronic properties on the lattice. Since the masses of the low-
lying hadrons are known from experiment, such calculations serve as benchmarks
to test the intrinsic accuracy of the lattice approach.
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The quenched approximation has been widely used to compute a number of
quantities that are of great phenomenological interest. However, these results
are of limited value, since the inherent quenching error is left undetermined. A
precise calculation of the masses of the lowest lying hadrons in quenched QCD
will expose the typical magnitude of the systematic error incurred by neglecting
dynamical quark effects. To this end, several calculations of the quenched light
hadron spectrum, using different lattice actions, have been performed [46–51].

In Ref. [47], the CP-PACS Collaboration presented a comprehensive study of
the masses of the lowest pseudoscalar and vector mesons, as well as octet and
decuplet baryons. The Wilson fermion action without O(a) improvement was
used at four different values of the lattice spacing, and a continuum extrapolation
linear in a has been performed for all quantities. CP-PACS adopted a hadronic
renormalization scheme in which the lattice scale was fixed using the mass of
the ρ-meson. The average up and down quark mass was set using mπ . In order
to fix ms , either the kaon mass (“K”-input) or the mass of the φ-meson (“φ”-
input) was used. Chiral extrapolations were either based on the form expected from
quenched Chiral Perturbation Theory at NLO (see Eq. (5.82)), or on the leading-
order formula supplemented by a quadratic term in the quark mass. The resulting
(small) differences in the extrapolated values were added as systematic errors in the
final results, which are summarily displayed in Fig. 5.5. Although the lattice results
are in remarkable overall agreement with the experimentally observed spectrum, one
finds significant deviations. For instance, the ratio of the nucleon and the ρ-meson
masses is determined as

mN

mρ

= 1.143 ± 0.033 ± 0.018, (5.94)

where the first error is statistical, and the second is an estimate of systematic
uncertainties other than quenching. The above value is 6.7% (2.5 standard devia-
tions) below the experimental value of 1.218. Similarly, vector-pseudoscalar mass

Fig. 5.5 Quenched light
hadron spectrum computed in
[47], compared with
experiment. The statistical
error and the sum of the
statistical and systematic
errors are indicated
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splittings, such as mK∗ −mK, are underestimated by 10–15% (4–6σ ), depending on
whether mK or mφ was used to fix the strange quark mass.

The findings reported by CP-PACS, which were based on unimproved Wilson
fermions, have been broadly confirmed by other collaborations employing differ-
ent lattice actions [48–51]. Thereby, the universality of the continuum limit of
quenched QCD has been established: although different discretizations may yield
statistically inconsistent results at non-zero lattice spacing, they converge to a
common continuum limit, provided that the same hadronic renormalization scheme
has been employed. The latter requirement is important, as there is considerable
freedom in choosing a particular scheme. This leads to ambiguities in the quenched
approximation, since different quantities are affected in different way by quark
loops. In Ref. [51] it was found that, by using only stable or narrow states to define
the hadronic renormalization scheme, the discrepancies between the quenched and
experimental spectra could be shifted to the broad resonances, ρ, �, N∗, while the
agreement for states like K,φ,N,� could be improved. Yet this observation does
not alter the conclusion that the quenched approximation is unable to reproduce the
spectrum of light hadrons with an accuracy better than 10%.

The obvious question is whether sea quark effects can account for the observed
deviation between the quenched and experimental spectra. Owing to the larger
numerical effort required to simulate QCD with dynamical quarks, unquenched
studies have not yet reached the same level of control over systematic effects—
notably lattice artefacts and chiral extrapolations—compared with the quenched
benchmark [47]. Thus, a “definitive” unquenched calculation of the light hadron
spectrum is still lacking, and thus we refrain from presenting an overview of recent
results.

Nevertheless, the observed tendency in all simulations performed to date is
that dynamical quarks “do the right thing”, i.e. the deviation from experiment is
decreased. An example is shown in Fig. 5.6, where continuum extrapolations of
meson masses in the quenched and unquenched theories are compared. The plot

Fig. 5.6 Continuum
extrapolations of the masses
of the K∗ and φ mesons in
full (Nf = 2, full symbols)
and quenched QCD (open
symbols), compared with
experiment (diamonds) [52]
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shows that the data obtained for Nf = 2 are closer to the experimental results in
the continuum limit in comparison with their quenched counterparts. However, the
figure also shows that the extrapolation of unquenched data is not well constrained,
since only three data points are available. Clearly, additional simulations at smaller
lattice spacings and quark masses are required for a solid determination of the total
error in unquenched calculations of the light hadron spectrum.

It should also be noted that the various discretizations of the quark action
have complementary advantages and shortcomings. While simulations with Wilson
quarks have in the past been restricted to quark masses not much smaller than half
the strange quark mass for algorithmic reasons, the use of staggered fermions in
conjunction with the rooting procedure may be afflicted with conceptual problems
(see the discussion in Sect. 5.2.6). Domain wall and overlap fermions are per se
more expensive to simulate. In simulations based on tmQCD the incorporation of a
third, heavier quark flavour is quite complicated. Thus, progress in this area is likely
to be made through the combined information from different discretizations.

5.3.2 Glueballs

In addition to bound states composed of a quark-antiquark pair or, alternatively,
three quarks, QCD is also widely believed to support the existence of glueballs, i.e.
bound states consisting mainly of gluonic degrees of freedom. Although several
candidates for such states have been proposed (e.g. the f0(1370), f0(1500) and
f0(1710)), the experimental difficulty consists in their unambiguous identification
as glueballs. To this end, they need to be distinguished from “conventional” flavour-
singlet meson resonances in the scalar channel. Predictions for the masses and
widths of glueballs from lattice QCD provide crucial input for this task.

The basic principles of mass calculations for glueballs in lattice QCD are the
same as for bound states composed of quark degrees of freedom: first one must
define an interpolating operator with the appropriate quantum numbers of the
glueball state in question. That is, the operator must transform correctly under
spin, parity and charge conjugation. At this point a complication arises: the lattice
breaks all continuous space-time symmetries, such that Lorentz-invariance or—in
the language of Euclidean field theory—rotational invariance is only recovered in
the continuum limit. At non-zero lattice spacing the spin assignment is therefore
ambiguous. Since the gluon field is represented by link variables, any glueball
operator must be constructed from particular combinations of Wilson loops, i.e.
products of link variables along closed paths on a hypercubic lattice (see Fig. 5.7).

Operators constructed in this way transform under irreducible representations
(IRs) of the octahedral group Oh, which are conventionally labelled A1, A2, E, T1
and T2. By computing the relations between the IRs of Oh and SU(2) one finds
that each IR in the set {A1, A2, E, T1, T2} corresponds to infinitely many spins in
the continuum. For instance, A1 transforms not only like a scalar (spin 0) state, but
also contributes to spin 4 and yet higher spin states. Similarly, the lowest states to
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Fig. 5.7 Wilson loops used in the construction of glueball operators (from Ref. [53])

which T1 makes a contribution are spin 1 and spin 3, while E corresponds to spins
2, 4, 5,. . . . In order to fully classify lattice glueball operators, the representations
of Oh are supplemented by the transformation properties under parity and charge
conjugation, in full analogy with the usual JPC -assignment in the continuum. For
example, an operator labelled A++

1 corresponds to the scalar channel 0++ in the
continuum.

The above discussion implies that the two-point correlation function of an
operator transforming under A++

1 , which is used to describe the scalar glueball,
will be contaminated by contributions from a spin 4 state. However, in accordance
with Regge theory one may expect that the latter dies out quickly, since higher spin
states are more massive.

Another technical complication arises from the empirical observation that the
spectral weight, w1( �p), of the ground state in Eq. (5.91) is usually quite small.
This implies that the asymptotic behaviour of the two-point correlation function is
only isolated at large Euclidean times. However, the statistical accuracy deteriorates
quickly as x0 is increased, and in the asymptotic regime the correlation function is
numerically comparable to the statistical noise. This precludes a precise determina-
tion of the mass of the ground state. A heuristic explanation for the small spectral
weight can be given by noting that the operators constructed from the usual link
variables are point-like and thus have little projection onto an extended object such
as a glueball. The situation can be much improved if the links in the Wilson loops of
Fig. 5.7 are replaced by so-called “smeared” or “fuzzed” links [54, 55]. For instance,
the approach of [54] replaces the spatial link Uj (x) by the combination

Uj (x) ≡ U 0
j (x) −→ P

⎧⎨
⎩U 0

j (x) + α

3∑
±k=1,k �=j

Uk(x)Uj(x + ak̂)Uk(x + a ĵ)−1

⎫⎬
⎭ , j = 1, 2, 3,

(5.95)

where α is a real, tunable parameter, and the symbol P denotes the projection back
into the group manifold of SU(3). The procedure can be iterated, so that links at
smearing level s, i.e. Us

j (x), are constructed from those at level s − 1 via Eq. (5.95).
One may say that smearing reduces the UV fluctuations of the gauge field, so that
the smeared, extended link variables are better suited to project onto the IR regime,
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i.e. the long-distance properties. It should be stressed that the links in the temporal
direction do not undergo the fuzzing procedure: Fuzzed temporal links will alter the
transfer matrix and the spectral information it contains.

In order to obtain detailed information on the glueball spectrum one also seeks to
determine the masses of the excited states in a given channel. This requires another
level of refinement, since one normally hopes that excited state contributions die out
quickly, while they now become the very focus of interest. A widely used method to
gain information on the higher excitations is to construct a whole set of interpolating
operators {O1, . . . ,Or } in a given channel, say, A++

1 . This is achieved either by
considering different shapes of Wilson loops that share the same transformation
properties, or by applying several different smearing levels to one particular Wilson
loop. Thus, each individual member of the set {O1, . . . ,Or } is a perfectly valid
operator in a given channel, but the projection properties, i.e. the associated spectral
weights w

(i)
α for a particular state α in the spectral sum will in general be different

for each member i = 1, . . . , r . One then computes the matrix

Cij (x0) :=
∑

�x

〈
Oi(x)O

†
j (0)

〉
, i, j = 1, . . . , r, (5.96)

whose elements consist of the correlations of all combinations of operators in the
set. The diagonalization of the matrix correlator then yields the appropriate linear
combination of operators which correspond to the states α = 1, 2, . . . in the spectral
decomposition. Diagonalization is achieved by solving the generalized eigenvalue
problem

Cij (x0)φj = λi(x0, x
′
0)Cik(x

′
0)φk, x ′

0 < x0, (5.97)

where φ denotes a vector, x ′
0 is fixed, and C(x0), C(x ′

0) denote the matrix correlators
taken at Euclidean times x0 and x ′

0, respectively. As shown in [56], the set of
eigenvalues λ(x0, x

′
0) converges rapidly towards

λα(x0, x
′
0) = e−(x0−x ′

0)εα , α = 1, . . . , r, (5.98)

where εα is the mass (energy) of the state α in the spectral sum.
After all these technicalities, we now report on the status of glueball calculations.

Recent results obtained in the quenched approximation were published in [53, 57–
60]. In Fig. 5.8 we show the results from Ref. [57]. The three lowest-lying states are
the scalar (0++), tensor (2++) and the 0−+ glueballs, whose masses are determined
as

m0++ = 1710(50)(80)MeV, m2++ = 2390(30)(120)MeV,

m0−+ = 2560(35)(120)MeV. (5.99)
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Fig. 5.8 Glueball spectrum
in quenched QCD (from
Ref. [57])
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Here, the first error is statistical, while the second is an estimate of systematic
uncertainties, which is dominated by the ambiguity in the scale setting in the
quenched approximation.

While it is tempting to identify the experimentally established resonance
f0(1710) as a scalar glueball in the light of the above results, the situation is
more complicated. Since lattice predictions for the mass of the lightest glueballs
fall into the mass range of conventional scalar mesons, mixing of glueballs with
conventional qq̄ states in conjunction with the observed decay patterns must be
considered before drawing any definite conclusions. More details on the current
phenomenological and experimental situation can be found in [61, 62]. So far, there
have been only exploratory attempts to study glueball-meson mixing directly on
the lattice. Any meaningful investigation must inevitably include dynamical quark
effects, whose influence on the glueball spectrum have so far only been poorly
understood.

5.4 Confinement and String Breaking

The empirical fact that quarks and gluons are not observed as free particles is
commonly referred to as confinement. Since all experimentally observed states
are singlets under SU(3)colour, confinement is tantamount to saying that isolated
colour charges are not allowed. A theoretical understanding of this phenomenon
must inevitably go beyond the perturbative level, since QCD is a strongly coupled
theory.

In Ref. [6], Wilson formulated a criterion for the confinement of colour charges
known as the “area law”. Let U(C) denote the product of link variables around a
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Fig. 5.9 Oriented product of link variables around a rectangle of area r · t

closed loop C on a hyper-cubic lattice. The trace over colour indices is called the
“Wilson loop”, i.e.

W(C) = tr {U(C)}. (5.100)

The area law then states that colour charges are confined if the expectation value of
W(C) decays exponentially with a rate proportional to the area A(C) enclosed by
the curve C, i.e.

〈W(C)〉 ≡ 〈tr {U(C)}〉 ∝ e−σA(C), (5.101)

where σ is a constant. An example for a rectangular Wilson loop is shown in Fig. 5.9.
The interpretation of the area law rests on the observation that a Wilson loop

of area r·t is equal to the Euclidean correlator which describes the propagation of
a static, i.e. infinitely heavy, quark-antiquark pair separated by a distance r over a
Euclidean time interval t . If t is taken to infinity at fixed r , the correlator yields the
energy of the quark-antiquark pair:

〈W(C)〉 t�0∼ e−V (r)t . (5.102)

The area law then implies σA(C) = V (r)t , and for a rectangular loop one obtains

V (r) ∼ σr. (5.103)

Hence the energy of a static quark-antiquark pair increases linearly with the
distance r . To achieve a full separation of static colour sources would therefore
require an infinite amount of energy.

It has long been believed that SU(3) gauge theory is related to some kind of
string theory. Heuristically, confinement may be viewed as due to the formation of
a narrow tube of chromo-electric and -magnetic flux between static colour charges,
the dynamics of which can be described by a string theory. The bosonic string model
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yields an asymptotic expansion for the static quark potential

V (r) = σr + V0 + c

r
+ O(1/r2), (5.104)

where V0 = const, and the universal coefficient c has been computed as [63]

c = − π

12
(5.105)

in the four-dimensional theory. The proportionality factor σ is called the “string
tension”. Instead of the potential one often considers the force, F(r) ≡ dV (r)/dr .
The ansatz Eq. (5.104) yields

F(r) = σ − c

r2 + O(1/r3), (5.106)

so that the string tension is obtained as the limiting value of the force, as r → ∞,

σ = lim
r→∞F(r). (5.107)

String models of hadrons have been known since the late 1960s, and a phenomeno-
logical value for σ has been determined from Regge theory,

√
σ = 440 MeV.

In QCD with light sea quarks the linear rise of the potential cannot persist for
arbitrarily large distances. Instead, the creation of a light quark-antiquark pair from
the vacuum will cause the hadronization of the static colour charges, leading to
the formation of two static-light mesonic states. Thus, the string or flux-tube is
expected to “break” when the two-meson state is energetically favoured over the
linearly rising potential. The breaking of the string should set in at a characteristic
value for the separation distance, rb, causing the potential to flatten off for r >∼ rb,
since the energy of a state of two mesons is independent of their separation.

Lattice simulations have been instrumental for establishing that the area law, the
string picture of confinement, as well as string breaking (i.e. hadronization) are
indeed properties of SU(3) gauge theory and/or QCD. However, computations of
large Wilson loops in lattice simulations suffer from the same problem encountered
in glueball mass calculations: due to the strong exponential fall-off, the correlator
in the asymptotic region, r, t → ∞, is of the same order of magnitude than the
statistical noise. Consequently, the same techniques have been applied, namely
the smearing of link variables and the variational approach, which is based on
the diagonalization of a matrix correlator. By combining these techniques with
procedures designed to reduce statistical fluctuations [64] in the computation of
large Wilson loops, one could verify the linear rise of the potential up to distances
of r � 1.5 fm [65, 66] (See Fig. 5.10).

Since a phenomenological value for
√
σ could be inferred from Regge theory, the

string tension used to be a popular quantity to set the lattice scale. However, as lattice
calculations became increasingly precise, it was realized that the extrapolation
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Fig. 5.10 Left panel: static quark potential in SU(3) gauge theory (from Ref. [66]). Right panel:
force (from Ref. [65]) compared to the bosonic string model (dashed curve) and perturbation theory
(solid curve). To compare results at different lattice spacings, all dimensionful quantities have been
expressed in units of the hadronic radius r0 = 0.5 fm (see text)

r → ∞ is not easy to perform on the basis of lattice data restricted to r � 1.5 fm.
An alternative, conceptually much more reliable scale is obtained from the force
between static colour charges [33]. The hadronic radius r0 is defined by requiring
that the force F(r) evaluated at r = r0 assumes a given reference value. The latter
is fixed by matching F(r) to phenomenological, non-relativistic potential models
for heavy quarkonia. The scale r0 is defined as the solution of

F(r)r2
∣∣∣
r=r0

= 1.65, (5.108)

where the constant on the right-hand side is chosen such that r0 has a value of
r = 0.5 fm in QCD. Choosing r0 to set the scale avoids the systematic uncertainty
associated with the extrapolation of the force to infinite distance. Furthermore, r0
remains well-defined in QCD with dynamical quarks, where string breaking must
occur and the concept of a string tension as the limiting value of the force is
intrinsically flawed. The quantity r0/a has been determined numerically with good
statistical accuracy over a wide range of bare couplings, corresponding to lattice
spacings between 0.026 − 0.17 fm [34, 65].

To test whether the bosonic string model for confinement is consistent with lattice
data, one must confront the value of the Coulombic coefficient c in Eq. (5.104) with
the predicted value of c = −π/12. As in the case for the string tension, such a
comparison is difficult to perform reliably, since −π/12 represents the asymptotic
value at infinite distance, which must be determined from data computed over a
narrow range of accessible distances. Using highly accurate data for the potential
V (r), generated by an algorithm which allows for an exponential suppression of
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statistical fluctuations at large r and t , it could be shown [67] that the quantity

ceff(r) = 1

2
r3 d2V (r)

dr2 (5.109)

indeed converges towards the predicted value of −π/12. This result confirms the
string picture of confinement and suggests that string-like behaviour already sets in
at rather small distances of r >∼ 0.5 fm.

The incorporation of dynamical quarks should drastically change the string
picture beyond a characteristic scale rb, where due to qq̄ pair creation string break-
ing occurs, since a two-meson state is energetically favoured over the flux-tube.
However, the static quark potential determined from Wilson loops on dynamical
configurations typically does not show any clear signs of flattening off, even at
distances as large as 1 fm, where one expects hadronization to set in. This is
attributed to the Wilson loop having little overlap onto the state of a broken
string, such that the spectral weight associated with the broken string is extremely
small. Therefore, extracting its energy reliably would require large Euclidean time
separations, for which the statistical signal is usually lost.

It was thus proposed to address this problem by constructing a matrix correlator
of Wilson loops supplemented by operators that directly project onto a two-meson
state, and to consider their cross-correlations with the unbroken flux-tube. This
strategy was first applied to Higgs models, i.e. non-Abelian gauge theory coupled
to bosonic matter fields (“scalar QCD”), which are computationally much more
efficient, whilst preserving the mechanism for string breaking to occur [68, 69]. The
method was later extended to QCD with two flavours of dynamical quarks [70].
The plots in Fig. 5.11 clearly show that the ground state energy at short distances is
linearly rising, while the first excited state (i.e. the two-meson state) is constant in r .
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Fig. 5.11 Ground state and first excited state of the static quark potential computed using matrix
correlators in the SU(2) Higgs model [68] (left panel) and QCD with Nf = 2 flavours of dynamical
quarks [70] (right panel)
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At a certain separation rb one observes a crossing of energy levels and a continuing
flat behaviour of the ground state energy. Near the crossing point one actually
observes a repulsion of the energy levels, which is characteristic for the breaking
phenomenon. The diagonalization of the matrix correlator also yields information
on the composition of the states in the spectral decomposition. Indeed, for distances
r < rb the combination of operators describing the ground state is dominated by
Wilson loops, whereas for r > rb, two-meson operators are the most relevant.

5.5 Fundamental Parameters of QCD

We have noted already that QCD is parameterized in terms of the gauge coupling
and the masses of the quarks. In order to make predictions for cross sections, decay
rates and other observables, their values must be fixed from experiment. As was
discussed in detail in Sect. 4.3 , the renormalization of QCD leads to the concept of
a “running” coupling constant, which depends on some momentum (energy) scale
μ, and the same applies to the quark masses9:

αs(μ) ≡ ḡ2(μ)

4π
, m̄u(μ), m̄d(μ), m̄s(μ), m̄c(μ), m̄b(μ), m̄t (μ). (5.110)

The property of asymptotic freedom implies that the coupling becomes weaker as
the energy scale μ is increased. This explains why the perturbative expansion of
cross sections in the high-energy domain allows for an accurate determination of αs

from experimental data.
The scale dependence of the coupling and the quark masses is encoded in the

renormalization group (RG) equations, which are formulated in terms of the β-
function and the anomalous dimension τ ,

μ
∂ḡ(μ)

∂μ
= β(ḡ), μ

∂m̄(μ)

∂μ
= m̄τ (ḡ). (5.111)

At high enough energy the RG functions β and τ admit perturbative expansions
according to

β(ḡ) = −b0ḡ
3 − b1ḡ

5 + . . . , τ (ḡ) = −d0ḡ
2 − d1ḡ

4 + . . . . (5.112)

Here, b0, b1 and d0 = 8/(4π)2 are universal, while the higher coefficients depend
on the adopted renormalization scheme.

9As usual we denote the running parameters by a bar across the symbol.
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From the asymptotic scaling behaviour at high energies one can extract the
fundamental scale parameter of QCD via

� = lim
μ→∞

{
μ(b0ḡ

2)−b1/2b2
0 e−1/2b0ḡ

2
}
, ḡ ≡ ḡ(μ). (5.113)

Like the running coupling itself, the �-parameter depends on the chosen renormal-
ization scheme.10 A related, but less commonly used variable is the renormalization
group invariant (RGI) quark mass

Mf = lim
μ→∞

{
m̄f(2b0ḡ

2)−d0/2b0
}
, f = u, d, s, . . . , m̄ ≡ m̄(μ). (5.114)

Unlike �, the RGI quark masses are scheme-independent quantities. Instead of
using the running coupling and quark masses of Eq. (5.110), one can parameterize
QCD in an entirely equivalent way through the set

�, Mu, Md, Ms, Mc, Mb, Mt . (5.115)

At the non-perturbative level these quantities represent the most appropriate param-
eterization of QCD, since their values are defined without any truncation of
perturbation theory.

The perturbative renormalization of QCD is accomplished by replacing the bare
parameters with renormalized ones, whose values are fixed by considering the high-
energy behaviour of Green’s functions, usually computed in the MS-scheme of
dimensional regularization. However, at low energies it is convenient to adopt a
hadronic renormalization scheme, in which the bare parameters are eliminated in
favour of quantities such as hadron masses and decay constants (see Sect. 5.2.4).
Since QCD is expected to describe both the low- and high-energy regimes of the
strong interaction, one should be able to express the quantities of Eq. (5.115), which
are determined from the high-energy behaviour, in terms of hadronic quantities.
In other words, by matching a hadronic renormalization scheme to a perturbative
scheme like MS one achieves the non-perturbative renormalization of QCD at all
scales. In particular, one can express the fundamental parameters of QCD (running
coupling and masses, or, equivalently, the �-parameter and RGI quark masses) in
terms of low-energy, hadronic quantities. This amounts to predicting the values of
these fundamental parameters from first principles.

10The expressions for b0 and b1, as well as the �-parameter have already been shown in Sect. 5.2.4.
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5.5.1 Non-perturbative Renormalization

To illustrate the problem of matching hadronic and perturbative schemes like MS,
it is instructive to discuss the determination of the light quark masses. A convenient
starting point is the PCAC relation, which for a charged kaon can be written as

fKm2
K = (m̄u + m̄s)

〈
0|(ūγ5s)|K+〉 . (5.116)

In order to determine the sum of quark masses (m̄u + m̄s), using the experimentally
determined values of fK and mK, it suffices to compute the matrix element〈
0|ūγ5s|K+〉 in a lattice simulation, as outlined in Sect. 5.2.3 (see Eq. (5.64)). The

dependence on the renormalization scale and scheme cancels in Eq. (5.116), since
the quantities on the left hand side are physical observables. Thus, in order to
determine the combination (m̄u + m̄s) in the MS-scheme, one must compute the
relation between the bare matrix element of the pseudoscalar density evaluated on
the lattice and its counterpart in the MS-scheme:

(ūγ5s)MS = ZP(g0, aμ)(ūγ5s)lat. (5.117)

Here, μ is the subtraction point (renormalization scale) in the MS-scheme. Provided
that ZP and the matrix element of (ūγ5s)lat are known, one can use Eq. (5.116)
to compute (m̄u + m̄s)/fK, which is just the ratio of a renormalized fundamental
parameter expressed in terms of a hadronic quantity, up to lattice artefacts. In
Fig. 5.4 we have already shown the continuum extrapolation of this ratio.11

The factor ZP is obtained by imposing a suitable renormalization condition
involving Green’s functions of the pseudoscalar densities in the MS as well as the
hadronic scheme. Since the MS-scheme is intrinsically perturbative, in the sense that
masses and couplings are only defined at a given order in the perturbative expansion,
it is actually impossible to formulate such a condition at the non-perturbative level.
In perturbation theory at one loop one finds

ZP(g0, aμ) = 1 + g2
0

4π

{
2

π
ln(aμ) + C

}
+ O(g4

0), (5.118)

where C is a constant that depends on the chosen discretization of the QCD
action. Expressions like these are actually not very useful, since perturbation
theory formulated in terms of the bare coupling g0 converges rather slowly, so
that reliable estimates of renormalization factors at one- or even two-loop order
in the expansion cannot be obtained. Thus it seems that the problem of non-
perturbative renormalization is severely hampered by the intrinsically perturbative

11The figure actually shows the ratio for the RGI quark masses, instead of those renormalized in
the MS-scheme.
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Fig. 5.12 Sketch of the matching of quark masses computed in lattice regularization and the MS-
scheme, via an intermediate renormalization scheme X

nature of the MS scheme in conjunction with the bad convergence properties of
lattice perturbation theory.

This problem can, in fact, be resolved by introducing an intermediate renormal-
ization scheme. Schematically, the matching procedure for the pseudoscalar density
(or, equivalently, the quark mass) via such a scheme is sketched in Fig. 5.12. At
low energies, corresponding to typical hadronic scales, it involves computing a non-
perturbative matching relation between the hadronic and the intermediate scheme X

at some scale μ0. This matching step can be performed reliably if μ0 is much smaller
than the regularization scale a−1. In the following step one computes the scale
dependence within the intermediate scheme non-perturbatively from μ0 up to a scale
μ̄ � μ0, which is large enough so that perturbation theory can be safely applied.
At that point one may then determine the matching relation to the MS-scheme
perturbatively. Alternatively, one can continue to compute the scale dependence
within the intermediate scheme to infinite energy via a numerical integration of
the perturbative RG functions. According to Eq. (5.114) this yields the relation to
the RGI quark mass. Since the latter is scale- and scheme-independent, one can
use directly the perturbative RG functions, which in the MS-scheme are known to
four-loop order [71], to compute the relation to m̄MS at some chosen reference scale.
By applying this procedure, the direct perturbative matching between between the
hadronic and MS-schemes (upper two boxes in Fig. 5.12), using the expression in
Eq. (5.118) is thus completely avoided.

Decay constants of pseudoscalar mesons provide another example for which the
renormalization of local operators is a relevant issue. For instance, the kaon decay
constant is defined by the matrix element of the axial current, i.e.

fKmK = 〈0 |(ūγ0γ5s)(0)|K+〉 . (5.119)

If the matrix element on the right hand side is evaluated in a lattice simulation, then
the axial current in the discretized theory must be related to its counterpart in the
continuum via a renormalization factor ZA:

(ūγ0γ5s) = ZA(g0)(ūγ0γ5s)lat. (5.120)
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Normally one would expect that the chiral Ward identities ensure that the axial
current does not get renormalized. However, this no longer applies if the discretiza-
tion conflicts with the symmetries of the classical action. This is clearly the case
for Wilson fermions, which break chiral symmetry, such that the resulting short-
distance corrections must be absorbed into a renormalization factor ZA. Similar
considerations apply to the vector current: if the discretization does not preserve
chiral symmetry, current conservation is only guaranteed if the vector current is
suitably renormalized by a factor ZV, which must be considered even in the massless
theory. Unlike the case of the renormalization factor of the pseudoscalar density, ZA
and ZV are scale-independent, i.e. they only depend on the bare coupling g0. From
the above discussion it is obvious that perturbative estimates of ZA and ZV are
inadequate in order to compute hadronic matrix elements of the axial and vectors
currents with controlled errors. A non-perturbative determination of ZA and ZV can
be achieved by imposing the chiral Ward identities as a renormalization condition.

Two widely used intermediate schemes, namely the Schrödinger functional (SF)
and the Regularization independent momentum subtraction (RI/MOM) schemes are
briefly reviewed in the following. We strongly recommend that the reader consult
the original articles (Refs. [72–75] for the SF, and [76] for RI/MOM) for further
details.

5.5.2 Finite Volume Scheme: The Schrödinger Functional

The Schrödinger functional is based on the formulation of QCD in a finite volume
of size L3 ·T —regardless of whether space-time is discretized or not—with suitable
boundary conditions. Assuming that lattice regularization is employed, one imposes
periodic boundary conditions on the fields in all spatial directions, while Dirichlet
boundary conditions are imposed at Euclidean times x0 = 0 and x0 = T . In order
to make this more precise, let C and C′ denote classical configurations of the gauge
potential. For the link variables at the temporal boundaries one then imposes

Uk(x)|x0=0 = eaC, Uk(x)|x0=T = eaC
′
. (5.121)

In other words, the links assume prescribed values at the temporal boundaries, but
remain unconstrained in the bulk (see Fig. 5.13).

Quark fields are easily incorporated into the formalism. Since the Dirac equation
is first order, only two components of a full Dirac spinor can be fixed at the
boundaries. By defining the projection operator P± = 1

2 (1 ± γ0), one requires that
the quark fields at the boundaries satisfy

P+ψ(x)|x0=0 = ρ(�x), P−ψ(x)|x0=T = ρ′(�x),
ψ̄(x)P−

∣∣
x0=0 = ρ̄(�x), ψ̄(x)P+

∣∣
x0=T

= ρ̄′(�x), (5.122)



186 H. Wittig

TimeTime

SpaceSpace

L

0

C

C

( x x box with periodic b.c. )L L L

Fig. 5.13 Left panel: sketch of the SF geometry, indicating the classical gauge potentials at the
temporal boundaries. Middle panel: correlation function of boundary quark fields ζ, ζ̄ with a
fermionic bilinear operator in the bulk. Right panel: boundary-to-boundary correlation function

where ρ, . . . , ρ̄′ denote prescribed values of the fields. The functional integral over
all dynamical fields in a finite volume with the above boundary conditions is called
the Schrödinger functional of QCD:

Z[C′, ρ′, ρ̄′;C, ρ, ρ̄] =
∫

D[U ]D[ψ̄ , ψ] e−S. (5.123)

The classical field configurations at the boundaries are not integrated over. Using
the transfer matrix formalism, one can show that this expression is the quantum
mechanical amplitude for going from the classical field configuration {C, ρ, ρ̄} at
x0 = 0 to {C′, ρ′, ρ̄′} at x0 = T .

Functional derivatives with respect to ρ, . . . , ρ̄′ behave like quark fields located
at the temporal boundaries, and hence one may identify

ζ(�x) = δ

δρ̄(�x) , ζ̄ (�x) = − δ

δρ(�x), ζ ′(�x) = δ

δρ̄′(�x) , ζ̄ ′(�x) = − δ

δρ′(�x) .
(5.124)

The boundary fields ζ, ζ̄ , . . . can be combined with local composite operators
(such as the axial current or the pseudoscalar density) of fields in the bulk to
define correlation functions. Particular examples are the correlation function of the
pseudoscalar density, fP and the boundary-to-boundary correlation f1

fP(x0) = −a6

3

∑
�y,�z

〈
ψ̄(x)γ5

1
2τ

aψ(x)ζ̄ (�y)γ5
1
2τ

aζ(�z)
〉
,

f1 = − a12

3L6

∑
�u,�v,�y,�z

〈
ζ̄ ′(�u)γ5

1
2τ

aζ ′(�v)ζ̄ (�y)γ5
1
2τ

aζ(�z)
〉
, (5.125)
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which are shown schematically in the middle and right panels of Fig. 5.13. In the
above expressions, the Pauli matrices act on the first two flavour components of the
fields.

The specific boundary conditions of the Schrödinger functional ensure that the
Dirac operator has a minimum eigenvalue proportional to 1/T in the massless case
[73]. As a consequence, renormalization conditions can be imposed at vanishing
quark mass. If the aspect ratio T/L is set to some fixed value, the spatial length L is
the only scale in the theory, and thus the masses and couplings in the SF scheme run
with the box size. The recursive finite-size scaling study described below can then
be used to map out the scale dependence of running quantities non-perturbatively
from low to high energies. It is important to realize that in this way the relevant
scale for the RG running (the box size L) is decoupled from the regularization scale
(the lattice cutoff a). It is this features which ensures that the running of masses and
couplings can be obtained in the continuum limit.

Let us now return to our earlier example of the renormalization of quark masses.
The transition from lattice regularization and the associated hadronic scheme to the
SF scheme is achieved by computing the scale-dependent renormalization factor
which links the pseudoscalar density in the intermediate scheme to the bare one, i.e.

(s̄γ5u)SF(μ0) = ZP(g0, aμ0) (s̄γ5u)lat(a). (5.126)

A renormalization condition that defines ZP can be formulated in terms of SF
correlation functions:

ZP(g0, aμ0) = c

√
f1

fP(x0)

∣∣∣∣
x0=T/2

, μ0 = 1/Lmax, (5.127)

where the constant c must be chosen such that ZP = 1 in the free theory. In order
to determine the RG running of the quark mass non-perturbatively one can perform
a sequence of finite-size scaling steps, as illustrated in Fig. 5.14. To this end one
simulates pairs of lattices with box lengths L and 2L, at fixed lattice spacing a. The
ratio of ZP evaluated for each box size yields the ratio m̄SF(L)/m̄SF(2L) (upper
horizontal step in Fig. 5.14), which amounts to the change in the quark mass when
the volume is scaled by a factor 2. In a subsequent step, the physical volume can be
doubled once more, which gives m̄SF(2L)/m̄SF(4L). The important point to realize
is that the lattice spacing can be adjusted for a given physical box size. In this way
the number of lattice sites can be kept at a manageable level, while the physical
volume is gradually scaled over several orders of magnitude, as indicated by the
zig-zag pattern in Fig. 5.14. Furthermore, each horizontal step can be performed for
several lattice resolutions, so that the continuum limit can be taken. By contrast,
if one attempted to scale the physical volume for fixed lattice spacing, one would,
after only a few iterations, end up with systems so large that they would not fit into
any computer’s memory.
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Fig. 5.14 Illustration of the recursive finite-size scaling procedure to determine the running of
m̄(L) for L → 2L → 4L → 8L. In any horizontal step L is scaled by a factor 2 for fixed lattice
spacing a. In every diagonal shift one keeps the physical box size L fixed and increases a by an
appropriate tuning of the bare coupling g0

In an entirely analogous fashion one can set up the finite-size scaling procedure
for the running coupling constant in the SF scheme, ḡSF(L).12 Setting a value for
the coupling actually corresponds to fixing the box size L, since the renormalization
scale and the coupling in a particular scheme are in one-to-one correspondence. The
sequence of scaling steps begins at the matching scale μ0 = 1/Lmax between the
hadronic and SF schemes, and in order to express the scale evolution in physical
units, the maximum box size Lmax must be determined in terms of some hadronic
quantity, such as fπ or r0. In typical applications of the method, Lmax corresponds
to an energy scale of about 250 MeV. After n steps, the box size has decreased by a
factor 2n (typically n = 7−9), and at this point one is surely in the regime where the
perturbative approximations to the RG functions are reliable enough to extract the
�-parameter (in the SF scheme) and the RGI quark masses according to Eqs. (5.113)
and (5.114). The transition to the MS-scheme is easily performed, since the ratios
�SF/�MS, as well as m̄MS/M are computable in perturbation theory. At that point
one has completed the steps in Fig. 5.12, and all reference to the intermediate SF
scheme has dropped out in the final result.

As examples we show the running coupling and quark mass in the SF scheme
from actual simulations of lattice QCD for Nf = 2 flavours of dynamical quarks in
Fig. 5.15. The numerical data points in these plots originate from simulations with
two flavours of O(a)-improved Wilson fermions and have been extrapolated to the
continuum limit.

12The precise definition of ḡSF is specified in Sect. 5.5.5 below.
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Fig. 5.15 Running of αs (left panel) [77] and quark mass in units of the RGI mass M (right panel)
[78] in the SF scheme. The results from simulations (full circles) are compared to the integration
of the perturbative RG equations

5.5.3 Regularization-Independent Momentum Subtraction
Scheme

An alternative choice of intermediate renormalization scheme is based on imposing
renormalization conditions in terms of Green’s functions of external quark states in
momentum space, evaluated in a fixed gauge (e.g. Landau gauge) [76]. The external
quark fields are off-shell, and their virtualities are identified with the momentum
scale. Here we summarize the basic steps in this procedure by considering a quark
bilinear non-singlet operator O� = ψ̄1�ψ2, where � denotes a generic Dirac
structure, e.g. � = γ5 in the case of the pseudoscalar density. The corresponding
renormalization factor Z� is fixed by requiring that a suitably chosen renormalized
vertex function ��,R(p) be equal to its tree-level counterpart:

��,R(p)
∣∣
p2=μ2 = Z�Z

−1
ψ ��(p)

∣∣∣
p2=μ2

= ��,0(p). (5.128)

This condition defines Z� up to quark field renormalization. Such a prescription
can be formulated in any chosen regularization, which is why the method is said
to define a regularization-independent momentum subtraction (RI/MOM) scheme.
However, Z� does depend on the external states and the gauge.

In order to connect to our previous example of the renormalization of quark
fields, we consider the pseudoscalar density for concreteness: � = γ5 = “P ”. In
this case, �P,0 = γ5 ⊗ 1colour, and Eq. (5.128) can be cast into the form

ZMOM
P (g0, aμ)Z−1

ψ (g0, ap)
1

12
Tr {�P(p)γ5}

∣∣∣∣
p2=μ2

= 1, (5.129)

where the trace is taken over Dirac and colour indices.
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In practice, the unrenormalized vertex function �P(p) is obtained by computing
the quark propagator in a fixed gauge in momentum space and using it to amputate
the external legs of the Green’s function of the operator in question, evaluated
between quark states, i.e.

�P(p) = S(p)−1 GP(p) S(p)
−1, S(p) =

∫
d4x e−ipx 〈S(x, 0)〉 ,

GP(p) =
∫

d4x d4ye−ip(x−y)
〈
ψ1(x)

(
ψ̄1(0)γ5ψ2(0)

)
ψ̄2(y)

〉
. (5.130)

The quark field renormalization constant Z
1/2
ψ can be fixed, e.g. via the vertex

function of the vector current13:

Zψ = 1

48
Tr
{
�VC

μ
(p)γμ

}∣∣∣∣
p2=μ2

. (5.131)

The numerical evaluation of the Green’s function and quark propagators in momen-
tum space is performed on a finite lattice with periodic boundary conditions. Unlike
the situation encountered in the Schrödinger functional, there is thus no additional
infrared scale, so that the renormalization conditions cannot be evaluated directly
at vanishing bare quark mass. A chiral extrapolation is then required to determine
mass-independent renormalization factors.

Equation (5.128) is also imposed to define the subsequent matching of the
RI/MOM and MS schemes. In this case, the unrenormalized vertex function on the
left-hand side is evaluated to a given oder in perturbation theory, using the MS-
scheme of dimensional regularization. For a generic quark bilinear this yields the
factor ZMS

� (ḡMS(μ)). In our specific example of the pseudoscalar density operator
in the PCAC relation, Eq. (5.116), the transition between the RI/MOM and MS
schemes is provided by

(ūγ5s)MS(μ̄) = RP(μ̄/μ)ZMOM
P (g0, aμ)(ūγ5s)lat(a). (5.132)

The ratio RP admits a perturbative expansion in terms of the coupling in the MS-
scheme, i.e.

RP(μ̄/μ) ≡ ZMS
P (ḡMS(μ̄))

ZMOM
P (g0, aμ)

= 1 + R
(1)
P ḡ2

MS
+ O(ḡ4

MS
), (5.133)

13In this expression V C
μ denotes the conserved lattice vector current, which involves quark fields at

neighbouring lattice sites, and which is known not to undergo any finite renormalization, such that
ZV ≡ 1.
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which is not afflicted with the bad convergence properties encountered in the direct
matching of hadronic and MS-schemes. Finally, for the whole method to work, one
must be able to fix the virtualities μ of the external fields such that

�QCD � μ � 1/a. (5.134)

In other words, the method relies on the existence of a “window” of scales in which
lattice artefacts in the numerical evaluation are controlled, μ � 1/a, and where
μ is also large enough such that the perturbative matching to the MS scheme can
be performed reliably. In the ideal situation one expects that the dependence of
ZMOM

� (g0, aμ) on the virtuality μ inside the “window” is well described by the
perturbative RG function.

The RI/MOM prescription is a flexible method to introduce an intermediate
renormalization scheme and can easily be adapted to a range of operators and
lattice actions. In particular, the extension to discretizations of the quark action
based on the Ginsparg-Wilson relation is straightforward. This contrasts with the
situation encountered in the Schrödinger functional, where extra care must be taken
to ensure that imposing Schrödinger functional boundary conditions is compatible
with the Ginsparg-Wilson relation [79–81]. On the other hand, the non-perturbative
scale evolution, for which the Schrödinger functional is tailored, is not so easy to
incorporate into the RI/MOM framework. Hence, the matching between RI/MOM
and MS schemes is usually performed at fairly low scales, i.e. μ̄ = μ0 in the
notation of Fig. 5.12. Furthermore, the accessible momentum scales in the matching
of hadronic and RI/MOM schemes are typically quite narrow, i.e. aμ0 ≈ 1. Special
care must also be taken when one considers operators that couple to the pion, such as
the pseudoscalar density. In this case the vertex function receives a contribution from
the Goldstone pole, which for p ≡ μ = 0 diverges in the limit of vanishing quark
mass. The fact that the chiral limit is ill-defined may spoil a reliable determination
of the renormalization factor, in particular when the accessible “window” is narrow
such that μ cannot be set to large values.

5.5.4 Mean-Field Improved Perturbation Theory

Another widely used strategy is to avoid the introduction of an intermediate
renormalization scheme altogether and attempt the direct, perturbative matching
between hadronic and MS schemes via an effective resummation of higher orders in
the expansion. In this sense one regards the bare coupling and masses as parameters
that run with the cutoff scale a−1.

The bad convergence properties of perturbative expansions such as Eq. (5.118)
has been attributed to the presence of large gluonic tadpole contributions in the
relation between the link variable Uμ(x) and the continuum gauge potential Aμ(x).
It was already suggested by Parisi [82] that the convergence of lattice perturbation
theory could be accelerated by replacing the bare coupling g2

0 by an “improved”
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coupling g̃2 ≡ g2
0/u

4
0, where u4

0 denotes the average plaquette:

u4
0 = 1

3 Re 〈tr P 〉, P ≡ 1

6

∑
μ,ν,ν<μ

Pμν. (5.135)

A more systematic extension of the idea of setting up such a “tadpole” or “mean-
field” improved version of lattice perturbation theory was presented in Ref. [83].
The main strategy is to factor out tadpole contributions through a redefinition of the
link variable:

Uμ(x) → Ũμ(x) ≡ Uμ(x)/u0, (5.136)

where u0 is the average link, defined e.g. via the average plaquette. A factor of u0
is then absorbed into the normalization of the quark fields. According to [83], the
mismatch between non-perturbative estimates for u0 and its expression in lattice
perturbation theory can be used to improve the convergence properties of lattice
perturbation theory via a relative rescaling of quark fields in the continuum and
lattice formulations. To make this more explicit, we consider Wilson fermions (see
Sect. 5.2.2). Factoring out the average link u0 modifies the quark field normalization
of Eq. (5.36) according to

ψcont(x) = √2κu0 ψ(x), ψ̄cont(x) = ψ̄(x)
√

2κu0. (5.137)

The general expression for the perturbative expansion of ZP in powers of the bare
coupling reads

ZP(g0, aμ) = 1 + g2
0Z

(1)
P (aμ) + O(g4

0), (5.138)

where Z
(1)
P (aμ) denotes the one-loop expansion coefficient. The convergence of

Eq. (5.138) can be accelerated by dividing out u0 in the rescaling factors of the quark
and antiquark fields using its perturbative expansion and replacing it by its non-
perturbative estimate computed in simulations. In other words, the rescaling of the
quark fields is exploited to divide out the relative mismatch between the perturbative
and non-perturbative estimates for the average link in expressions like Eq. (5.138):

1 = u0(u0)
−1 � u0

{
1 − u

(1)
0 g2

0 + O(g4
0)
}
, (5.139)

where the one-loop coefficient u(1)
0 = −1/12 for the average plaquette. In this way,

i.e. by combining non-perturbatively determined values for u0 with its perturbative
expansion, and after replacing the bare coupling by g̃2, one arrives at the mean-field
improved version of Eq. (5.138), viz.

Zmf
P = u0

{
1 +

[
Z

(1)
P (aμ) − u

(1)
0

]
g̃2
}
. (5.140)
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Instead of Parisi’s “boosted” coupling g̃ other expansion parameters have been
suggested, which are expected to accelerate the convergence of the perturbative
series [83]. While mean-field improvement is a general procedure, which is easily
adapted to a wide range of actions and operators, it is difficult to estimate the
effectiveness of the resummation and, in turn, the size of higher-order corrections.
Also, a principal problem is the identification of the running scale with the cutoff,
since it is difficult to separate renormalization effects from lattice artefacts.

5.5.5 The Running Coupling from the Lattice

Having discussed the non-perturbative renormalization of QCD in detail, we shall
now present results for the running coupling constant, αs , from two different
approaches. This complements the discussion in Sect. 4.6, where determination of
αs from experimental data has been described in detail. Any lattice calculation of
αs proceeds along the following steps:

1. A non-perturbative definition of the coupling must be provided in terms of
some quantity which can be evaluated in lattice simulations with high precision.
This amounts to specifying the running coupling in a particular renormalization
scheme, αX(aμ0), which can be related to the MS scheme of dimensional
regularization.

2. Scale setting: the matching to a hadronic scheme is performed via the calibration
of the lattice spacing, which yields the scale μ0 at which αX is evaluated in units
of some physical quantity Q:

μ0 [MeV] = (aμ0) · a−1 [MeV] = (aμ0) · Q [MeV]
(aQ)

. (5.141)

3. Running and matching: provided that the energy scale at which αX has been
determined is large enough, one can use perturbation theory to relate αX to the
coupling in the MS scheme, e.g.

αMS(μ̄) = αX(μ) + c
(1)
X (μ̄/μ)αX(μ)2 + . . . . (5.142)

4. The �-parameter can be determined from the asymptotic behaviour of αX via
Eq. (5.113).

The attentive reader has surely noticed that the above steps follow closely the
general strategy for non-perturbative renormalization via an intermediate renormal-
ization scheme outlined in Sect. 5.5.1 and Fig. 5.12.
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First we discuss the determination of αs from the Schrödinger functional. The
definition of the running coupling is somewhat technical in this case. The starting
point is the effective action of Eq. (5.123); the classical field configurations at the
boundaries at x0 = 0, T can be parameterized in terms of a real variable η:

C = C(η), C′ = C′(η). (5.143)

For explicit expressions we refer the reader to the original article [84]. The
associated effective action is defined by

�(η) = − lnZ[C′(η), 0, 0; C(η), 0, 0] (5.144)

and admits a perturbative expansion in terms of the bare coupling g0, viz.

�(η) = 1

g2
0

�0 + �1 + g2
0�2 + . . . . (5.145)

A renormalized coupling can then be defined in terms of the effective action via

1

ḡ2
SF(L)

=
{

∂

∂η
�(η)

/
∂

∂η
�0(η)

}
η=0, m=0

. (5.146)

This definition is imposed at vanishing quark mass, m = 0, and provided that the
aspect ratio T/L has been fixed, the spatial dimension is the only scale in the theory,
such that ḡSF(L) runs with the box size L. From the perturbative expansion of �(η)

one easily infers that ḡ2
SF(L) = g2

0 at tree level. The quantity on the right-hand side
is given in terms of plaquettes attached to the SF boundaries and can be computed
with good statistical precision.

If Lmax denotes the largest box size for which ḡSF is computed, then the scale
is set by expressing Lmax in terms of some known dimensionful quantity, for
instance, by computing the combination Lmax/r0 in the continuum limit and using
r0 = 0.5 fm.

The finite-size scaling procedure described earlier in Sect. 5.5.1 allows to
compute the scale evolution of ḡSF over several orders of magnitude. In particular,
each of the horizontal steps in Fig. 5.14 can be repeated for several values of the
lattice spacing, so that the continuum limit is reached by taking a/L → 0 for
fixed physical box size L. The resulting scale evolution of αSF ≡ ḡ2

SF/4π is
shown in Fig. 5.15 and compared to the perturbative evolution. Although the non-
perturbatively determined points are described very well by perturbation theory,
using the three-loop expression for the RG function, one should realize that this
behaviour may be specific to the SF scheme and should not be generalized to other
schemes.
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Starting from μ0 = 1/Lmax one obtains the coupling at μ = 29/Lmax after nine
steps in the scaling procedure. At that point one can extract the �-parameter by
evaluating the exact expression

�SF = μ
(
b0ḡ

2(μ)
)−b1/(2b2

0) e −1/(2b0ḡ
2(μ)) exp

{
−
∫ ḡ(μ)

0
dx

[
1

β(x)
+ 1

b0x
3

− b1

b2
0x

]}
,

(5.147)

where μ = 29/Lmax. The integral can be computed using the three-loop approxima-
tion to the RG β-function in the SF scheme. Equation (5.147) yields the combination
�SFLmax, and knowledge of Lmax in physical units allows to express the �-
parameter in MeV. Conversion to the MS scheme is easily achieved, since the ratio
of �-parameters in two different schemes is computable via a one-loop calculation
in which ḡ2

MS
is expanded in powers of ḡ2

SF. This gives

�MS = �SF · c�. (5.148)

The entire procedure of determining the �-parameter via the Schrödinger functional
has so far been carried out for the pure SU(3) gauge theory (Nf = 0) and for
QCD with two flavours of dynamical quarks. The values of the coefficient c� are
2.04872(4) for Nf = 0 [84] and c� = 2.382035(3) for Nf = 2 [85], and the
resulting values for �MS are [75, 77]

�
(0)
MS

r0 = 0.602 ± 0.048 ⇔ �
(0)
MS

= 238 ± 19 MeV

�
(2)
MS

r0 = 0.62 ± 0.04 ± 0.04 ⇔ �
(2)
MS

= 245 ± 16 ± 16 MeV,

(5.149)

where r0 = 0.5 fm is used to convert into physical units. There is room for
improvement in several respects: for Nf = 2 the extrapolation to the continuum
limit can be made more reliable by including simulations at smaller lattice spacings,
which should reduce the first of the two quoted errors. Also, the conversion into
physical units should be performed in terms of a quantity such as fπ , which is
directly accessible in experiment. Finally, the calculation must be repeated with
more dynamical quark flavours, in order to allow for a direct comparison with
phenomenology, since all experimental determinations yield the �-parameter for
Nf = 4 or 5 quark flavours.

The determination of αs and �MS via the Schrödinger functional is quite
involved. However, it is the only method so far, which allows to map out the running
of αs in a completely non-perturbative manner, including the systematic elimination
of lattice artefacts. In particular, perturbation theory is used only for energy scales
well above 50 GeV.

The second method that we will discussed here in some detail is the determi-
nation of αs via heavy quarkonia. Below we present an account of the calculation
published in [86]. Here, the dynamical quark effects of the light (u, d, s) quarks have
been accounted for in simulations with improved staggered quarks employing the
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fourth-root trick (see Sect. 5.2.6). In this approach, the coupling constant is defined
in the so-called “V -scheme” via the heavy quark potential in momentum space:

V (q) = −CF
4π

q2 αV(q). (5.150)

Small Wilson loops such as the plaquette can be expanded in powers of αV

− ln 1
3 〈Re trP 〉 = c

(1)
P αV(sP/a) + c

(2)
P [αV(sP/a)]2 + . . . , (5.151)

where sP is a real dimensionless variable which can be chosen to optimize the
convergence properties of the expansion [83]. Equation (5.151) thus provides
the link between the coupling and a quantity that is easily computed in lattice
simulations. The above expression can be generalized to (small) rectangular Wilson
loops Wrt with area r · t:

− ln 1
3 〈Wrt 〉 =

∞∑
k=0

c
(k)
rt [αV(srt/a)]

k . (5.152)

Knowledge of the expansion coefficients in conjunction with lattice data for the
quantity on the left hand side allows for the determination of αV.

The second step, namely the calibration of the momentum scale which appears in
the argument of αV, is done by determining the lattice spacing from mass splittings
in the bottomonium system. Here one typically considers the mass differences
between the ϒ and ϒ ′, or alternatively, between the χb and ϒ states. Of course, any
other low-energy quantity like fπ or r0 could be used. It can be argued, however, that
mass splittings in heavy quarkonia are a natural choice for setting the scale in this
particular approach, chiefly because of their relative insensitivity to the exact value
of the heavy quark mass. Since the b-quark mass of mb ≈ 4 GeV is greater than
typical values of the inverse lattice spacing, a−1 one must employ special techniques
to deal with heavy quarks on the lattice. In [86] this is done via an approach based
on non-relativistic QCD. A detailed discussion of the specific treatment of heavy
quarks in lattice simulations is deferred to Sect. 5.7.2.

After setting the scale, the Wilson loops 〈Wrt 〉 computed on ensembles with
Nf = 3 flavours of rooted staggered quarks are used to determine αV via a global fit
involving data at three different values of the lattice spacing. This yields

α
(3)
V (7.5 GeV) = 0.2082 ± 0.0040, (5.153)

where the superscript on the coupling reminds us that the result is valid in the
three-flavour theory. The relation to the coupling in the MS-scheme at the Z-pole is
determined in perturbation theory, by employing the third-order expansion of αMS



5 QCD on the Lattice 197

in terms of αV [87]:

α
(3)
MS

(e−5/6q) = α
(3)
V (q) + 2

π

[
α
(3)
V (q)

]2 − (0.3111 . . .)
[
α
(3)
V (q)

]3
, (5.154)

which yields α
(3)
MS

(3.26 GeV). This coupling is then translated to α
(5)
MS

(MZ) via the
numerical integration of the four-loop RG β-function, including the effects from
quark mass thresholds at mc and mb, which finally yields

α
(5)
MS

(MZ) = 0.1170 ± 0.0012. (5.155)

This result is included in the world average of α
(5)
MS

(MZ) = 0.1176 ± 0.002 in
Ref. [61]. It is also in very good agreement with the non-lattice global estimate of
α
(5)
MS

(MZ) = 0.1182 ± 0.0027 [88].
The running and matching in this approach is done perturbatively, involving

energy scales from MZ down to mc. In this sense the method may be regarded
as similar in spirit to, say, the determination of αs from the semi-leptonic branching
ratio of τ decays, as in both cases the coupling is extracted from the perturbative
expansion of a particular observable. While for τ -lepton decays an experimentally
measured quantity is considered, it is the non-perturbatively computed data for the
Wilson loops in the lattice approach which are expressed in terms of the running
coupling. This contrasts with the Schrödinger functional approach, where also the
running is computed non-perturbatively, albeit with considerable numerical effort.

The error on the result in Eq. (5.155) is rather small. It is left for future studies
to confirm this level of precision, which must entail further investigations into the
influence of lattice artefacts, as well as the validity of the fourth root trick.

5.5.6 Light Quark Masses

We shall now apply the general framework of non-perturbative renormalization
to the determination of quark masses. Typically one distinguishes the “light”
u, d, s quarks from the “heavy” c, b, t quarks. At first, this distinction may seem
rather arbitrary. It is actually based on the relative magnitude of the quark masses
compared with the chiral symmetry breaking scale �χ , which separates “soft”
from “hard” momentum scales. Masses and momenta well below �χ break chiral
symmetry only softly, so that spontaneous chiral symmetry breaking still dominates
over the explicit breaking generated by non-zero values of the quark masses. Gasser
and Leutwyler [89, 90] have demonstrated that QCD with u, d, s flavours can be
studied via an “effective” theory of Goldstone boson fields. This approach, called
Chiral Perturbation Theory (ChPT), has an SU(3)L ⊗ SU(3)R chiral symmetry,
which is spontaneously broken to the SU(3) vector subgroup. The associated
Goldstone bosons are then identified with the pions, kaons and η-mesons, whose
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masses are indeed small compared to typical hadronic scales, such as the mass of
the nucleon, for instance. Thus, the magnitude of �χ is identified with a value close
to 1 GeV. In ChPT, quantities like hadron masses, decay rates or cross sections
are computed through an expansion in powers of quark masses (and 4-momenta)
about the chiral limit. The inclusion of the charm quark into the formalism is rather
useless, since the masses if the lightest charmed pseudoscalar mesons are far greater
than �χ ≈ 1 GeV.

The top quark can be safely ignored in this context, since its lifetime is an order
of magnitude shorter than typical QCD processes. As a consequence, the top quark
does not undergo any hadronization effects (for instance, “toponium”, i.e. t t̄ bound
states have never been observed), but rather decays weakly into a W -boson and a
b-quark.

The mass of the b-quark is rather large (and to some extent this is also true
for the charm quark), so that one may attempt to determine their values from
perturbative expansions in αs of some mass-dependent quantity. By contrast, in
the light quark sector non-perturbative effects such as spontaneous chiral symmetry
breaking dominate. As far as the determination of the masses of the u, d, s quarks
is concerned, ChPT is of limited value, since only ratios of quark masses can
be predicted, but not their absolute values. The reason is that although the light
quark masses appear as parameters of ChPT, their values cannot be fixed by
chiral symmetry (see Sect. 5.6.1 for more details). The absolute normalization must
therefore be provided by non-perturbative methods such as lattice simulations or
QCD sum rules.

Below we will focus on attempts to compute the values of the light quark
masses in units of some hadronic quantity. As indicated in Sect. 5.5.1, this entails
the knowledge of the renormalization factor that links lattice regularization to the
chosen continuum scheme. Lattice simulations have maximum impact in the light
quark sector, owing to the dominance of non-perturbative effects, which is in fact
signified by the large uncertainties quoted for the values of the u, d and s quark
masses in the particle data book [61].

The general procedure for the determination of light quark masses in lattice QCD
starts from the PCAC relation, Eq. (5.116). Assuming exact isospin symmetry,mu =
md , one can consider a generic light flavour � with mass m� ≡ m̂ = 1

2 (mu + md).
In order to determine, say, the combination m̂ + ms , one must define a particular
hadronic renormalization scheme, by specifying the lattice scale and the hadronic
quantity that fixes the value of m̂ + ms . Furthermore, the renormalization factor
which connects hadronic and continuum schemes must be known. Equation (5.116)
can then be rewritten such that it yields the sum of RG-invariant quark masses M̂ +
Ms in units of the quantity Q which sets the lattice spacing:

M̂ + Ms

Q
= ZM ×

(
f bare

PS Q

Gbare
PS

)∣∣∣∣∣
mPS=mK

×
(
m2

K

Q2

)∣∣∣∣∣
exp

+ O(ap). (5.156)
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In this expression, the subscript “exp” denotes the experimental values for the
respective quantities, while the matrix element Gbare

PS is given by

Gbare
PS

∣∣∣
mPS=mK

≡ Gbare
K = 〈0 ∣∣(�̄γ5s)lat

∣∣K 〉 . (5.157)

The pseudoscalar decay constant f bare
PS parameterizes the matrix element of the

unrenormalized axial current, i.e.

f bare
PS mPS

∣∣∣
mPS=mK

≡ f bare
K mK = 〈0 ∣∣(�̄γ0γ5s)lat

∣∣K 〉 . (5.158)

The renormalization factor ZM relates the bare current quark mass to the RG-
invariant mass. Thus, the task for lattice calculations is to compute the ratio
f bare

PS Q/Gbare
PS for a generic pseudoscalar state and tune the bare quark mass such

that mPS = mK. By combining the result with the renormalization factor ZM
and the experimental value of m2

K/Q2, the RGI quark masses in units of Q

are obtained up to lattice artefacts of order ap, where p is characteristic of the
details of the discretization. Since the RGI quark masses are scale- and scheme-
independent quantities, the factor ZM depends only on the bare coupling g0.
Using the Schrödinger functional as the intermediate renormalization scheme, non-
perturbative estimates of ZM computed for O(a) improved Wilson fermions within
a wide range of bare couplings, have been published in Refs. [75] and [78]. In this
case, ZM is given by

ZM(g0) = M

m̄SF(μ0)

ZA(g0)

ZP(g0, aμ0)
, (5.159)

where the ratio M/m̄SF(μ0) is computed via the finite-size scaling procedure. The
transition between lattice regularization and the SF-scheme is accomplished by
determining ZP and the renormalization factor ZA of the axial current.14 Note that
the dependence on the intermediate matching scale μ0 drops out completely in this
expression. Finally, the conversion to the MS-scheme is performed by considering

Zm(g0, aμ) ≡ m̄MS(μ)

M
ZM(g0), (5.160)

where the ratio m̄MS(μ)/M can be computed through the numerical integration of
the perturbative approximation of the anomalous dimension τ and the β-function at
four loops. This yields [35, 78]

m̄MS(2 GeV)

M
=
{

0.7208, Nf = 0
0.7013, Nf = 2 .

(5.161)

14If the fermionic discretization preserves chiral symmetry ZA = 1, while for Wilson fermions ZA
should be computed non-perturbatively. For the SF this was performed in Refs. [91, 92].
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Table 5.2 Results for the strange quark mass in the MS-scheme at μ = 2 GeV and for the ratio
ms/m̂, in the continuum limit of the quenched approximation

Collaboration Action Q Renorm. m
(Q)
s [MeV] ms/m̂ m

(r0)
s [MeV]

SPQcdR [93] Wilson mK∗ RI 105(9)(6) 24.3(2)(6) 95(9)(5)

CP-PACS [47] Wilson mρ pert. 114(2)(6
3) 26.5(5.1

3.4) 98(2)(6
3)

ALPHA/UKQCD [35] Clover fK SF 97(4) 99(4)

JLQCD [94] Stagg. mρ RI 106(7) 25.1(2.4) 95(6)

The table includes information on the fermionic action employed in the simulations, the quantity
Q that sets the scale, and the type of renormalization (RI/MOM, SF or tadpole improved
perturbation theory. The right-most column contains the results for the strange quark mass when
converted into a common hadronic scheme, in which the scale is set by Q′ = 1/r0, assuming that
r0 = 0.5 fm

Estimates for the strange quark mass itself can be obtained in two ways: first, one
combines M̂ + Ms with the ratio Ms/M̂ = 24.4 ± 1.4 estimated in ChPT [38].
Alternatively, one might attempt to compute M̂ directly from lattice data, by
considering Eq. (5.116) for a pion. In this case, however, one relies on chiral
extrapolations, because of the difficulties involved when tuning the masses of the
light quarks towards the values of the physical up- and down-quark masses.

In Table 5.2 we present a selection of results for the mass of the strange quark
in the quenched approximation, normalized in the MS-scheme at μ = 2 GeV,
as well as the ratio Ms/M̂ . Two observations are worth mentioning: first, direct
determinations of Ms/M̂ via chiral extrapolations agree well with the estimate from
ChPT, even though the chiral limit is ill-defined in the quenched approximation.
Second, the different systematics in the simulations (lattice actions, renormalization
of local operators) generate a spread of seemingly incompatible results for the mass
of the strange quark. However, the spread can be traced to the particular choice of
hadronic renormalization scheme. To this end one can compute the relation between
quark masses computed for two different lattice scales, Q and Q′. From Eq. (5.156)

one easily infers that the strange quark mass m
(Q′)
s estimated using Q′, is related to

its counterpart m(Q)
s via [37]

m(Q′)
s [MeV] =

(
Q′

Q

)
lat

(
Q

Q′

)
exp

m(Q)
s [MeV]. (5.162)

Here, the subscripts “lat” and “exp” refer to lattice and experimental estimates of
the scale ratios. The ratio (Q′/Q)lat can be determined in the continuum limit using
published lattice data, and the deviation of the proportionality factor from unity is a
measure of the relative quenching effects, when either Q or Q′ is chosen to set the
scale. Once the results have been converted to the common scale r0, the estimates for
ms in the continuum limit show remarkable consistency, despite the very different
systematic effects among the simulations included in this analysis (c.f. Table 5.2).
This demonstrates that lattice artefacts and renormalization effects can be controlled
at the level of a few percent with the available techniques.
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Table 5.3 Selection of recent unquenched results for the light quark masses

Collaboration Nf Action Q Ren. ms [MeV] ms/m̂ m̂ [MeV]
CPPACS/

JLQCD
[95] 2+1 Clover mρ pert. 91.1(14.6

6.2 ) 3.54(0.64
0.35)

HPQCD [96] 2+1 Stagg. �ϒ ′−ϒ pert. 87(8) 27.4(4) 3.2(3)

QCDSF/

UKQCD
[97] 2 Clover mN, r0 RI 111(9) 27(3) 4.1(4)

SPQcdR [98] 2 Wilson mK∗ RI 101(26
8) 4.3(4)

ALPHA [78] 2 Clover r0 SF 97(22)

CPPACS [99] 2 Clover mρ pert. 88(4
6) 26(2) 3.44(14

22)

ETM [100] 2 tmQCD fπ RI 105(3)(9) 27.3(3)(1.2) 3.85(12)(40)

The challenge for current and future simulations is to eliminate the remaining
uncertainty due to quenching. Several simulations with Nf = 2 or 2 + 1 flavours
of dynamical quarks15 based on different fermionic discretizations have produced
results for the light quark masses, which are shown in Table 5.3. Despite the
enormous progress that has been made in simulating light dynamical quarks,
it is important to realize that systematic effects such as lattice artefacts and/or
renormalization effects are currently not as well controlled as in the quenched
theory. The fact that affordable lattice spacings are still relatively large implies that
extrapolations to the continuum limit are in general longer than in the quenched
approximation, thereby leading to larger errors. In some cases it is not even clear
whether the leading lattice artefacts in dynamical simulations have been isolated.
Also, the quantity Q that sets the scale must be known at least as accurately as the
quark mass itself, and hence the determination of these observables may prove just
as costly. Finally, dynamical quark masses are still fairly large, especially in many
simulations using Wilson fermions, and thus the long and potentially uncontrolled
chiral extrapolations significantly affect estimates for the isospin-averaged light
quark mass m̂.

5.6 Spontaneous Chiral Symmetry Breaking

Chiral symmetry has already been mentioned in connection with the masses of the
light quarks. Here we will extend the general framework and elaborate on effective
descriptions of QCD at low energies, which can be treated analytically. As we
shall see, much can be learnt via the interplay of such effective theories and lattice
simulations of QCD.

15Nf = 2 usually denotes a degenerate doublet of light (u, d) quarks, while Nf = 2 + 1 denotes a
degenerate doublet together with a heavier third flavour, i.e. the strange quark.
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Massless QCD with Nf flavours is invariant under independent rotations of the
left- and right-handed components of the quarks fields. If one defines the field � as
the vector of Nf Dirac spinors ψi via

� = (ψ1, . . . , ψNf

)T
, (5.163)

its left- and right-handed components are given by

�L := (1Nf⊗P−
)
�, �R := (1Nf⊗P+

)
�, P± = 1

2 (1 ± γ5) . (5.164)

The action of the massless theory is then invariant under transformations like

� → � ′ = exp {iP−(ωL·T ) + iP+(ωR·T )}�, (5.165)

where ωL, ωR are real vectors, and T denotes the generators of SU(Nf), which
satisfy

[
T a, T b

]
= if abcT c, Tr (T aT b) = 1

2δ
ab. (5.166)

The above transformation can be rewritten in terms of vector and axial rotations, i.e.

� → � ′ = exp {iαV ·T + iαA·T γ5}�, (5.167)

where αV ≡ 1
2 (ωR + ωL) and αA ≡ 1

2 (ωR − ωL). Invariance under these
transformation laws is what one usually means when one says that (massless) QCD
is invariant under a global SU(Nf)L ⊗ SU(Nf)R symmetry.

Actually, QCD has even more global symmetries, namely a U(1)V symmetry,
which corresponds to a common rotation of all quark flavours. The conserved charge
derived from the Noether current, which is associated with this unbroken symmetry,
is the quark number. The conservation of the axial current associated with the
remaining axial U(1) symmetry is, however, severely broken by an anomalous term,
which gives rise to strong non-perturbative effects generated by instantons. Without
going into further detail here, we refer to common textbooks.

Returning now to SU(Nf)L ⊗ SU(Nf)R, we note that symmetries in sub-nuclear
physics are usually deduced from the particle spectrum. That is, symmetries man-
ifest themselves through the occurrence of mass-degenerate (or nearly degenerate)
particle multiplets that can be grouped according to the irreducible representations
of the symmetry group. Indeed, for Nf = 3 one finds that the light pseudoscalar
mesons, i.e. the pions, kaons and η-mesons form an octet. The mass splittings
among the members of the octet are small when viewed on typical hadronic scales,
and arise due to the unequal, non-zero masses of the light quarks. However, if
the pseudoscalar octet were interpreted as a manifestation of an (approximate)
SU(3)L⊗SU(3)R chiral symmetry, one would expect that each member of the octet
is accompanied by a parity partner, i.e. a scalar meson, whose mass is of the same
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order of magnitude. This is not observed in experiment, where the lightest scalar
mesons are found to lie 600–700 MeV above the pseudoscalar octet. One therefore
concludes that the symmetry must be spontaneously broken. The term “spontaneous
breaking” refers to the fact that theories like QCD possess more internal symmetries
than those that can be inferred from the particle spectrum. In general, spontaneously
broken symmetries are not realized as symmetry transformations involving the
physical states of the theory. In particular, the ground state, i.e. the vacuum, is not
invariant under the transformation. As discussed in many textbooks, it is precisely
the invariance of the vacuum under the symmetry transformation that is required
to ensure the degeneracy of the particle spectrum. If the vacuum is not invariant,
certain operators may acquire a non-vanishing expectation value. In fact, a sufficient
condition for the spontaneous breaking of the physical SU(3)L ⊗ SU(3)R chiral
symmetry is fulfilled if the expectation value of the scalar density, �̄� , is non-zero,
i.e.

〈
�̄�

〉 ≡ 〈ūu + d̄d + s̄s
〉 �= 0. (5.168)

Furthermore, according to Goldstone’s theorem [101], the generator of each broken
symmetry is associated with a massless particle. Since the masses of the members
of the pseudoscalar octet are rather small in comparison with the proton mass, they
are identified as the Goldstone bosons of the spontaneously broken chiral symmetry.

Spontaneous chiral symmetry breaking is an entirely non-perturbative phe-
nomenon. The task is then to explore the breaking mechanism and compute the
value of the quark condensate

〈
�̄�

〉
. As shall be outlined below, this can be achieved

through the interplay of lattice simulations and effective low-energy descriptions of
QCD.

5.6.1 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) has already been mentioned in connection with
extrapolations of lattice data to the physical values of the up- and down-quark
masses, and also in the context of lattice determinations of the strange quark mass.
Here we present a brief introduction into the general formalism. More thorough
reviews can be found in Refs. [102, 103].

Chiral Perturbation Theory is an effective theory, based on a systematic expan-
sion of the low-energy dynamics of QCD in powers of the 4-momentum and the
quark mass about the chiral limit [89, 90], i.e.

Leff = L(2)
eff + L(4)

eff + . . . , (5.169)

where the superscripts label the order of the expansion in powers of p. In contrast to
QCD, the basic degrees of freedom which appear in Leff are the Goldstone bosons,
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rather than the fundamental quarks and gluons. ChPT is parameterized in terms of a
set of empirical couplings, usually called “low-energy constants” (LECs). At lowest
order, the effective chiral Lagrangian (in Euclidean space-time) reads

L(2)
eff = 1

2F
2
0

{
1
2 Tr

(
∂μU

†∂μU
)− B0Tr

(M(U + U†)
) }

, (5.170)

where M = diag(mu, md, ms) is the quark mass matrix, and U(x) collects the
Goldstone boson fields, i.e.

U(x) = exp

(
i

F0
λ · φ(x)

)
; λ · φ ≡

8∑
a=1

λaφa =

⎛
⎜⎜⎝

π0 + 1√
3
η

√
2π+ √

2K+
√

2π− −π0 + 1√
3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η

⎞
⎟⎟⎠ .

(5.171)

The λa’s denote the Gell-Mann matrices which are normalized as Tr (λaλb) = 2δab.
The LECs at leading order are B0 and F0, where the latter corresponds to the pion
decay constant in the chiral limit.16 The expression forL(4)

eff , i.e. the interaction terms
at next-to-leading order in the chiral expansion, contains 12 additional interaction
terms, multiplied by the LECs L1, . . . , L10, H1, H2. The values of the LECs are
usually determined by matching the expressions of ChPT for physical observables
to experimental data. However, it turns out that the complete set of LECs cannot
be obtained in this way. Rather, in order to fix the values of some LECs, one must
resort to additional theoretical assumptions. One particular example is the value of
B0, which appears in the chiral expansion of the pion mass at lowest order (see also
Eq. (5.80)):

m2
π = B0(mu + md). (5.172)

From this expressions it is clear that B0 can only be determined using mπ as input
if the physical values of the quark masses are known in the first place. By the same
token, the value of m̂ = 1

2 (mu + md) can only be inferred if an estimate for B0
is available. However, the a priori unknown parameter B0 drops out in suitably
chosen ratios of m2

π ,m
2
K, . . .. This explains why ChPT can be used to predict the

ratios of the light quark masses but fails to provide an absolute mass scale. Another
reason why the complete set LECs cannot be determined from chiral symmetry
considerations alone is the fact that the effective Lagrangian beyond leading order is
invariant under a symmetry transformation which involves the LECs and the mass
matrix M, but which is absent in QCD. This is the so-called “Kaplan-Manohar
ambiguity” [104]. At this point it is clear that lattice simulations of QCD can provide
valuable input for the determination of LECs. For instance, since the values of the

16We use capital symbols for decay constants whenever we refer to a normalization in which
Fπ � 93 MeV.
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quark masses are input parameters in the simulations, lattice QCD allows to map out
the quark mass dependence of the masses of Goldstone bosons and thus determine
the LEC B0. We shall see below that B0 is related to the quark condensate 〈�̄�〉
which can be considered as the order parameter for spontaneous chiral symmetry
breaking. Furthermore, as we have already discussed in Sect. 5.5.6, absolute values
of quark masses are accessible via lattice QCD.

We end our brief introduction to ChPT with the derivation of a few relations
which will be useful for our discussion of chiral symmetry breaking below. In
particular, we shall derive the leading-order mass formulae such as Eq. (5.80) and
establish a link between the quark condensate and B0. To this end we expand the
field U in the chiral Lagrangian L(2)

eff in powers of the Goldstone boson fields.
Assuming exact isospin symmetry, mu = md , one finds at lowest order in φa :

L(2)
eff = 1

2

8∑
a=1

∂μφa∂μφa + . . .

+1

2
(mu + md)B0

3∑
a=1

φ2
a + 1

2
(m̂ + ms)B0

7∑
a=4

φ2
a

+1

3
(m̂ + 2ms)B0φ

2
8 + . . . . (5.173)

After identifying φ1, φ2, φ3 with the pions, φ4, . . . , φ7 with the kaons, and φ8 ≡ η,
one derives the leading-order relations between the quark masses and the masses of
the Goldstone bosons, viz.

m2
π = 2B0m̂, m2

K = B0(m̂ + ms), m2
η = 2

3B0(m̂ + 2ms). (5.174)

Thus, the relation for a generic pseudoscalar Goldstone boson made up of quarks
with masses m1 and m2 is precisely what was already shown in Eq. (5.80). We note
that from Eq. (5.174) one easily derives the Gell-Mann–Okubo mass relation, i.e.

3m2
η + m2

π − 4m2
K = 0, (5.175)

which is satisfied experimentally within a few percent. Furthermore, Eq. (5.174)
yields the ratio ms/m̂ at lowest order, viz.

ms

m̂
= 2m2

K − m2
π

m2
π

� 24, (5.176)

which is already close to the estimate at next-to-leading order of ms/m̂ = 24.4 ±
1.5 [38], quoted in Sect. 5.5.6.

For the discussion of spontaneous symmetry breaking, it is useful to establish
a connection between the quark condensate in QCD,

〈
�̄�

〉
, and the LECs which
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parameterize the effective chiral Lagrangian. This link is provided by the so-called
Gell-Mann–Oakes–Renner relation [105], which we are going to derive below. To
this end we consider the QCD Lagrangian in the continuum:

LQCD = −1

4
Fa
μν(x)F

a
μν(x) +

∑
f

ψ̄f (x)
(
γμDμ + mf

)
ψf (x). (5.177)

The path integral is defined as

ZQCD =
∫

D[Aμ]D[ψ̄, ψ] exp

{
−
∫

d4x LQCD

}
, (5.178)

and the expression for the quark condensate can be formally derived by taking
derivatives with respect to the light quark masses, i.e.

∑
f=u,d,s

∂ ln ZQCD

∂mf

∣∣∣∣
mf =0

= − 〈ūu + d̄d + s̄s
〉∣∣
mf =0 ≡ − 〈�̄�

〉
. (5.179)

What is the analogue of this expression in the effective chiral theory? To answer this
question one takes the lowest-order chiral Lagrangian of Eq. (5.170) and defines the
corresponding path integral17

ZChPT =
∫

D[U ] exp

{
−
∫

d4x L(2)
eff

}
. (5.180)

Since L(2)
eff contains the quark mass matrix one can consider similar derivatives, i.e.

∑
f=u,d,s

∂ lnZChPT

∂mf

∣∣∣∣
mf =0

= F 2
0 B0

2

∑
f=u,d,s

∂

∂mf

〈
TrM(U + U†)

〉∣∣∣
mf =0

= 3 · F 2
0 B0 + . . . ,

(5.181)

and comparison with Eq. (5.179) yields

− 1

3

〈
ūu + d̄d + s̄s

〉 ≡ Σ = F 2
0 B0. (5.182)

In other words, the quark condensate is related to the slope parameter in the lowest-
order mass formulae and the pion decay constant in the chiral limit, F0. This result
is known as the Gell-Mann–Oakes–Renner relation.

17It should be obvious that the field U must not be confused with the link variable considered in
previous sections.
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5.6.2 Lattice Calculations of the Quark Condensate

The Gell-Mann–Oakes–Renner relation is the starting point for many lattice deter-
minations of the quark condensate. For a generic pseudoscalar meson consisting of
a mass-degenerate quark and antiquark, i.e. m1 = m2 ≡ m, the LEC Σ is given by

Σ = lim
m→0

(
m2

PSF
2
PS

2m

)
. (5.183)

The technical drawback of this straightforward approach is that the chiral limit in
the above expression is difficult to take in practice, as we have mentioned several
times already. In the quenched approximation the situation is even worse: due to the
appearance of quenched chiral logarithms (c.f. Eq. (5.82)) the ratio m2

PS/m becomes
singular at vanishing quark mass, and hence the chiral limit does not exist. Since
the quenched approximation is being abandoned, this issue will gradually become
irrelevant.

However, a more serious obstacle remains in the case of dynamical simulations
with Wilson fermions: since this particular type of regularization breaks chiral
symmetry explicitly, the matching of simulation data at non-zero lattice spacing to
the expressions of ChPT is—strictly speaking—not permitted. Matching is certainly
justified if a fermionic discretization is employed which preserves chiral symmetry,
such as overlap or domain wall fermions, or if results obtained using Wilson
fermions are extrapolated to the continuum limit before a comparison to ChPT is
performed.

A complementary approach for determining the condensate on the lattice is based
on the Banks–Casher relation [106]. It provides a link between the LEC Σ and the
spectral properties of the Dirac operator, viz.

Σ = lim
λ→0

lim
m→0

lim
V→∞

π

V
ρ(λ), (5.184)

where V is the space-time volume. The spectral density ρ(λ) is defined as follows:
Let D denote the massless Dirac operator in the continuum, satisfying {γ5,D} = 0.
Its eigenvalue equation reads

Dψn = iλnψn, λn ∈ R, (5.185)

where the eigenvalues and eigenfunctions depend on the gauge field. A suitable
definition of the spectral density is then represented by

ρ(λ) :=
∑
n

〈
δ(λ − λn)

〉
, (5.186)
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where the expectation value is taken with respect to the QCD functional integral.18

Note that in Eq. (5.184) the ordering of limits must be obeyed. In particular, since
the spontaneous breaking of a continuous symmetry cannot occur in finite volume,
the limit V → ∞ must be taken before the chiral limit and the spectrum in the deep
infrared are considered.

The Banks–Casher relation provides not only a method to determine the conden-
sate, but also suggests a mechanism how spontaneous chiral symmetry breaking
comes about. Indeed, Eq. (5.184) implies that a non-zero value of the quark
condensate is generated through a non-vanishing value of the spectral density in
the deep infrared. In other words, spontaneous chiral symmetry breaking is driven
by an accumulation of small eigenvalues. An immediate consequence of the Banks–
Casher relation is that the level spacing �λ between the small eigenvalues is given
by

�λ ≡ 1

ρ(λ)
= π

VΣ
. (5.187)

Hence, as V → ∞ the level spacing becomes arbitrarily small. In the free theory,
i.e. in the absence of a non-trivial gauge field one finds that ρ(λ) ∝ λ3, which
vanishes as λ → 0. The accumulation of eigenvalues near zero with a rate predicted
by Eq. (5.187) must therefore arise through the interaction with the gauge field.

In order to test the Banks–Casher scenario, a possible strategy is to compute
the spectral density and check whether it actually produces an arbitrarily dense
spectrum near the origin. Analytic predictions for ρ(λ) can be derived in the
framework of effective theories of QCD at low energies, namely ChPT, as well
as chiral Random Matrix Theory (RMT). The latter also yields predictions for the
distributions of individual eigenvalues, in addition to the spectral density.

Chiral Random Matrix Theory goes back to an idea of Wigner who tried to utilize
statistical properties for the theoretical description of systems with many degrees
of freedom and complicated dynamics, such as nuclear resonances. Rather than
trying to model the local interactions within such a system explicitly, all possible
interactions that are consistent with the symmetries of the theory are equally likely.
The Hamiltonian is then approximated by a matrix whose elements are uncorrelated
but obey a particular probability distribution. The main guiding principle for the
RMT description of QCD is the requirement that all global symmetries must be
respected. The massless Dirac operator can then be represented by an N ×N matrix
D̂ with an off-diagonal block structure which is characteristic for systems with
chiral symmetry:

D̂ =
(

0 W

−W † 0

) }N+
}N−

. (5.188)

18A normalization factor of V−1 must be included in Eq. (5.184) since ρ(λ) is proportional to the
volume.
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As illustrated by the above expression, the matrix W is, in general, rectangular with
N+ rows and N− columns, such that N = N+ + N−. For N+ �= N− the matrix D̂

has |N+ −N−| zero modes, and the index ν ≡ N+ −N− may be identified with the
topological charge in QCD. With this definition, D̂ is anti-hermitian and has purely
imaginary eigenvalues which come in complex conjugate pairs:

D̂φn = iμnφn, μn ∈ R. (5.189)

One can define the system’s partition function in a sector of fixed topological charge
ν via

Zν =
∫

D[W ] det
(
D̂ + m

)Nf e− 1
2NTr (W †W)

, (5.190)

where Nf is—as usual—the number of dynamical quark flavours. It makes sense to
identify the matrix size N with the physical volume V of the theory (up to some
proportionality constant).

In order to study the spectral properties of D̂ in the deep infrared, it is useful to
rescale the eigenvalues by the system size

z ≡ μnN, N ∝ V (5.191)

since, according to Eq. (5.187), the level spacing of the scaled eigenvalues z is of
order one. The so-called microscopic spectral density in the sector of topological
charge ν is then defined as

ρ(ν)
s (z) := lim

N→∞
∑
n

〈δ(z − μnN)〉ν , (5.192)

where the expectation value 〈· · · 〉ν is taken with respect to the partition function Zν .
An explicit expression for ρ(ν)

s (z) in terms of Bessel functions has been worked out
by Verbaarschot and Zahed [107]

ρ(ν)
s (z) = z

2

{[
Jν+Nf(z)

]2 − JNf+ν+1(z) JNf+ν−1(z)
}
. (5.193)

The microscopic spectral density is the convolution of the distribution functionsp(ν)
k

of the individual scaled eigenvalues, i.e.

ρ(ν)
s (z) =

∞∑
k=1

p
(ν)
k (z),

∫ ∞

0
dz p(ν)

k (z) = 1. (5.194)
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Fig. 5.16 RMT predictions
for the microscopic spectral
density and distributions for
individual eigenvalues in the
sector with topological charge
ν = 0
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Chiral RMT yields predictions for these distributions. For instance, for the lowest
eigenvalue in the sector with ν = 0 one obtains for Nf = 0

p
(0)
1 (z) = 1

2
z e−z2/4. (5.195)

For further illustration the microscopic spectral density and the distribution func-
tions for a few of the lowest eigenvalues are plotted in Fig. 5.16. The result for
ρ
(ν)
s (z) indicates that an accumulation of small eigenvalues does indeed take place.

Since one considers the simultaneous limits μ → 0 and N → ∞ for fixed z, a
non-zero value of ρ

(ν)
s (z) for finite z signals that the spectrum is packed more and

more densely near the origin.
Can the predictions of RMT be verified from first principles in simulations of

lattice QCD? The answer is ‘yes’, provided one considers a particular kinematical
situation, commonly referred to as the “ε-regime” of QCD. It is based on the
formulation of QCD in a large but finite volume of spatial size L and for arbitrarily
small quark mass. The Compton wavelength of the pion then exceeds the spatial
size, and thus the ε-regime is characterized by

mπL � 1, FπL � 1. (5.196)

In this particular situation the path integral of the theory is dominated by zero
momentum modes. In a symmetric finite box with volume V = L4, the minimum
non-zero momentum is given by pmin ∝ 1/L. Let us recall the expression for the
lowest-order effective chiral Lagrangian, i.e.

L(2)
eff = 1

2F
2
0

{
1
2 Tr

(
∂μU

†∂μU
)− mΣ Tr

(
eiθ/NfU + h.c.

) }
, (5.197)
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where we have included the vacuum angle θ and assumed that M ≡ m1. If the
quark mass m is tuned so that

mΣ � F 2
0 p

2
min ∼ F 2

0 /L
2, (5.198)

the statistical weight of fields with ∂μU �= 0 will be strongly suppressed in the path
integral. In other words, the mass term will dominate over the kinetic term, except
for fields U with ∂μU = 0. Since 2mΣ/F 2

0 = m2
PS, the conditions in Eq. (5.196),

which define the kinematical situation of the ε-regime, are equivalent to

mΣV � 1. (5.199)

The zero-momentum part can be represented by a constant SU(3) matrix U0 such
that

U(x) = U0 e2iξ(x)/F0, U0 ∈ SU(3), (5.200)

where the field ξ incorporates the fluctuations about the zero momentum mode.
According to Leutwyler and Smilga [108], the path integral of the theory in
topological sector ν can be written in the form

Z(0)
ν =

∫
D[U0] (detU0)

ν exp (mΣV ReTrU0) . (5.201)

After this somewhat lengthy preparatory discussion, the connection between QCD
in the ε-regime and chiral RMT can finally be established. An important result
derived by Shuryak and Verbaarschot [109] states that the path integral Z(0)

ν can be
mapped exactly onto the partition function Zν of RMT. One therefore expects that
the low-lying eigenvalues of QCD in the ε-regime are distributed in the same way
as those in RMT. By computing the former in a lattice simulation and performing
a comparison to the analytically known distributions in RMT, one may verify the
Banks–Casher scenario of spontaneous chiral symmetry breaking.

The Neuberger-Dirac operator DN of Eq. (5.47) is ideally suited for this task.
Since it satisfies the Ginsparg-Wilson relation, chiral symmetry is preserved at the
level of the discretized theory. Furthermore, DN can be shown to satisfy an exact
index theorem, so that it sustains |ν| exact zero modes on gauge configurations
with topological charge ν. This allows for an unambiguous identification of
topological sectors to which the path integral Z(0)

ν is restricted [110]. Therefore, the
investigation of spontaneous chiral symmetry breaking is a prime example where it
is absolutely vital that the lattice-regularized theory obeys the same symmetries that
are present in the continuum.

Before we proceed we must elucidate the relation of the spectra of the random
matrix D̂ and the Neuberger-Dirac operator. While the eigenvalues of D̂ are purely
imaginary, the operator DN is unitary, and hence its eigenvalues lie on a circle with
radius 1/a in the complex plane, centered around the point 1/a on the real axis.
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Fig. 5.17 Comparison of
simulation results for ratios of
eigenvalues with Random
Matrix Theory (horizontal
bars) in the sectors with
topological charge
ν = 0, 1, 2 [111]
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Thus, if γ denotes an eigenvalues of DN, it can be parameterized as

γ = 1

a

(
1 − eiφ), a = a

1 + s
. (5.202)

Since the radius of the circle diverges in the continuum limit, the low-lying part of
the spectrum satisfies |γ | � 1/a, and hence Reγ � 0. One can then identify an
eigenvalue μ of D̂ with Imγ , i.e.

μ ↔ Imγ � |γ | = 1

a
[2(1 − cosφ)] . (5.203)

A simple but effective check of the RMT description of the low-lying spectrum can
be performed by comparing ratios of scaled eigenvalues. The combination |γk|ΣV

of the kth eigenvalue in QCD corresponds to μkN in RMT. If the low-lying spectra
in the two theories indeed coincide one expects the following equalities in a given
topological sector ν

〈|γk|〉ν
〈|γj |〉ν

!= 〈μk〉ν
〈μj 〉ν ≡

∫ ∞

0
dz z p(ν)

k (z)

/∫ ∞

0
dz z p(ν)

j (z). (5.204)

While the ratio 〈|γk|〉ν/〈|γj |〉ν is determined in the simulation, the two integrals on
the right-hand side can be evaluated analytically for the first few eigenvalues.19

In Refs. [111, 112] ratios for some of the lowest eigenvalues have been computed
in the quenched approximation. The results from [111] are shown in Fig. 5.17 for a
box size L = 1.49 fm. The agreement between lattice results and RMT is excellent.
By contrast, a smaller box size of about 1 fm yields significant discrepancies
between QCD and RMT, which can be as large as 10 standard deviations. This
is a reflection of the fact that the large volume limit must be taken before the RMT

19The expressions for the distributions p
(ν)
k (z) become rapidly more complicated as k increases,

so that one may have to resort to numerical evaluations of the integrals.
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behaviour sets in. Similar findings have been reported for QCD with Nf = 2 flavours
of dynamical overlap quarks [113].

The confirmation of the RMT prediction for the distribution of the low-lying
eigenvalues supports the Banks–Casher scenario of spontaneous chiral symmetry
breaking. In a subsequent step one may therefore extract the LEC Σ via the relation

〈|γk|〉νΣV = 〈μkN〉ν ≡
∫ ∞

0
dz z p(ν)

k (z). (5.205)

If Σ is identified with the expectation value of the scalar density, as suggested
by the effective low-energy description of QCD, it must be related to a particular
continuum scheme, like the MS-scheme of dimensional regularization. If the reg-
ularization prescription obeys chiral symmetry, the corresponding renormalization
factor, ZS, satisfies

ZS = ZP = 1/Zm. (5.206)

where Zm relates the bare quark mass to the chosen continuum scheme (for instance,
MS). Provided that ZS, or equivalently, Zm has been computed for a range of bare
couplings, the lattice estimates for Σ can be used to determine the renormalized
condensate in units of some scale, e.g.

r3
0ΣMS(μ) = ZS(g0, aμ)r3

0Σ + O(a2). (5.207)

For the Neuberger-Dirac operator, ZS has been computed non-perturbatively in the
quenched approximation [114], employing the technique outlined in Ref. [115]. The
resulting values for ZS could then be combined with the results for Σ extracted from
the matching to RMT from [111]. A subsequent extrapolation to vanishing lattice
spacing yields the results for the renormalized condensate in the continuum limit:

ΣMS(2 GeV) = (285 ± 9 MeV)3, (scale set by fK). (5.208)

The quoted error represents the total uncertainty arising from statistics, the uncer-
tainty in the renormalization factor, and the continuum extrapolation. If the nucleon
mass is used to set the scale the central value drops to 261 MeV, as a consequence
of the scale ambiguity encountered in the quenched approximation. We stress once
more that the chiral condensate is ill-defined in the quenched theory, and thus great
care must be taken when the results are interpreted in the context of the full theory.
Nevertheless, it is encouraging that for Nf = 2 flavours of dynamical quarks, a
similar calculation [113] finds ΣMS(2 GeV) = (251±7±11 MeV)3 at a � 0.11 fm,
in good agreement with the quenched result, given the inherent ambiguities and
inconsistencies of the latter.

Lattice results for the condensate have been reported by many other authors (e.g.
[116–125]), employing a variety of approaches. Although the various calculations
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are subject to different systematics, the overall picture is rather consistent, with val-
ues for the condensate centering around (250 MeV)3. As for many other quantities,
the influence of lattice artefacts and renormalization effects must be studied in more
detail, especially in the case of fully dynamical calculations. It is also important
to mention that analytic non-perturbative approaches to the strong interaction, such
QCD sum rules, also give broadly consistent results with lattice simulations within
the quoted uncertainties (see e.g. [126–128] and references therein). This completes
the consistent picture of chiral symmetry and its spontaneous breaking in QCD.

5.7 Hadronic Weak Matrix Elements

The experimental programme at the B-factories BaBar and Belle, as well as many
other experiments at high-energy colliders, such as the Tevatron and LEP, have
greatly enhanced the accuracy of many observables related to flavour physics and the
Cabibbo–Kobayashi–Maskawa (CKM) matrix. The main motivation for studying
flavour physics is to gain a proper understanding of CP violation and, in turn,
the matter-antimatter asymmetry which is apparently manifest in the universe. CP
violation is incorporated into the Standard Model via a complex phase in the CKM
matrix, and therefore a precise knowledge of its elements is required to decide
whether or not additional sources of CP violation must be considered.

In order to make these statements more precise we recall some basic definitions.
As is well known, the CKM matrix VCKM relates flavour to mass eigenstates. For
flavour-changing charged current transitions between up- and down-type quarks this
implies that, in addition to the dominant transitions like u ↔ d , c ↔ s and t ↔ b,
there are further transitions of lesser strength. The CKM matrix is therefore expected
to possess a hierarchical structure, with the diagonal elements Vud, Vcs and Vtb

being of order one. An approximate parameterization that takes this into account
is due to Wolfenstein [129]. By expanding VCKM in powers of the Cabibbo-angle
|Vus | ≡ λ � 0.22 one obtains

VCKM ≡
⎛
⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠ �

⎛
⎜⎜⎝

1 − λ2/2 λ Aλ3(ρ − iη)

−λ − iA2λ5η 1 − λ2/2 Aλ2

Aλ3(1 − ρ̄ − iη̄) −Aλ2 − iAλ4η 1

⎞
⎟⎟⎠ ,

(5.209)

with the remaining parameters A, ρ̄ and η̄ of order one.20 In the standard model,
VCKM is unitary, and, provided that one can determine its elements with sufficient
precision, any deviation from unitarity would be a signature of “new physics”.

20The relation of rescaled parameter ρ̄ to ρ is given by ρ̄ = ρ(1 − λ2/2 + O(λ4)), and a similar
relation holds for η̄ and η.
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Fig. 5.18 Constraints on the
apex of the unitarity
triangle [130]

Unitarity gives rise to relations such as

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (5.210)

which can be represented by a triangle. The strategy that has been adopted in order
to search for hints of new physics, is to use experimental and theoretical input to
over-constrain the unitarity relations like those in Eq. (5.210). The current status is
depicted in Fig. 5.18, where the unitarity triangle is plotted in the (ρ̄, η̄)-plane [130].

The experimentally measured quantities, i.e. the mass differences �Ms,�Md

and εK, the latter of which parameterizes indirect CP violation in the kaon system,
serve to constrain the apex of the unitarity triangle. They are proportional to the
relevant CKM matrix elements, i.e.

�Md = G2
FM

2
W

6π2 ηBS
( mt

MW

)
f 2

BB̂B
∣∣VtdV

∗
tb

∣∣2, �Ms

�Md

= f 2
Bs
B̂Bs

f 2
BB̂B

mBs

mB

|Vts|2
|Vtd |2 ,

εK ∝ B̂K Im(VtdV
∗
t s), (5.211)

where GF is the Fermi constant, and MW,mt denote the masses of the W -boson and
top quark, respectively. The proportionality factors in the above expressions involve
the leptonic B-meson decay constants fB and fBs , as well as the B-parameters B̂B,
B̂Bs and B̂K, which in turn parameterize the transition amplitudes for B0 − B̄0,
B0

s − B̄0
s , and K0 − K̄0 mixing. While the decay constants are difficult to measure

with sufficient accuracy, due to the fact that the leptonic decay rates are suppressed,
the B-parameters are not at all accessible in experiment. One must therefore resort
to theoretical estimates of these quantities. Since non-perturbative effects must
inevitably be included, lattice simulations of QCD are ideally suited for this task.
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Lattice calculations of weak hadronic matrix elements is a major activity within
the lattice community, and a thorough coverage of all aspects would easily fill
an entire chapter. We shall therefore concentrate on some of the most important
quantities, and point out the main conceptual issues. It is strongly recommended that
the reader consult the regular reviews of the topic at the annual lattice conferences,
e.g. [131–135].

5.7.1 Weak Matrix Elements in the Kaon Sector

In the kaon sector, K0 − K̄0 mixing is one of the most important processes. The
B-parameter BK parameterizes the non-perturbative contribution to indirect CP
violation. It is defined by the ratio of the relevant operator matrix element to its
value in the so-called “vacuum saturation approximation”:

BK(μ) =
〈
K̄0
∣∣Q�S=2(μ)

∣∣K0
〉

8
3f

2
Km2

K

. (5.212)

Here, μ denotes the renormalization scale at which the �S = 2 four-quark operator
Q�S=2, defined by

Q�S=2 = [s̄γμ(1 − γ5)d
] [

s̄γμ(1 − γ5)d
] ≡ OVV+AA − OVA+AV, (5.213)

is considered. The relation between εK and the CKM matrix elements is provided
by the RG-invariant B-parameter B̂K. In NLO perturbation theory B̂K is related to
BK(μ) via

B̂K =
(
ḡ(μ)2

4π

)γ0/2b0
{

1 + ḡ(μ)2

[
b0γ1 − b1γ0

2b2
0

]}
BK(μ), (5.214)

where γ0, γ1 denote the coefficients in the perturbative expansion of the anomalous
dimension of Q�S=2. Since QCD is parity-conserving, the physically relevant
operator in the above expression is the parity-even combination OVV+AA. The
typical left-handed chiral structure of this operator, which is characteristic for
weak transitions, poses a problem for lattice calculations if Wilson fermions are
employed. In this case the discretization breaks chiral symmetry explicitly, and
thus OVV+AA mixes under renormalization with operators involving the opposite
chirality. Therefore, the general renormalization pattern is

OR
VV+AA(μ) = Z(g0, aμ)

{
Obare

VV+AA +
4∑

i=1

�i(g0)O
bare
i

}
(5.215)
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Thus, in order to determine the physical matrix element, one must not only
determine the overall renormalization factor Z, but also the mixing coefficients
�i . Several techniques have been developed [136–138] to address this problem,
which is merely an inconvenience rather than a serious obstacle. In a formulation
based on staggered fermions the problem is absent, since the remnant U(1) ⊗ U(1)
symmetry protects the operator from mixing with other chiralities. However, a
drawback of the staggered formulation is the broken flavour (“taste”) symmetry,
which may lead to significant complications [139]. Fermionic discretizations based
on the Ginsparg-Wilson relation, such as domain wall or overlap fermions do not
suffer from the mixing problem, whilst preserving all flavour symmetries. Finally,
the mixing problem can also be circumvented for Wilson-like discretizations in the
context of twisted-mass QCD [140, 141]. With the help of a suitably chosen flavour
rotation (see Eq. (5.51)), the matrix element of OVV+AA in QCD can be mapped
exactly onto that of the parity-odd operator OVA+AV in the chirally twisted theory,
viz.

〈
K̄0
∣∣∣Obare

VA+AV

∣∣∣K0
〉
tmQCD

= i
〈
K̄0
∣∣∣Obare

VV+AA

∣∣∣K0
〉
QCD

. (5.216)

It has been shown that OVA+AV renormalizes purely multiplicatively [142], i.e.
all mixing coefficients vanish. The overall multiplicative, scale-dependent renor-
malization factor of OVA+AV which yields the physical matrix element has been
determined non-perturbatively [143], using the finite-size scaling procedure based
on the Schrödinger functional formalism described in Sect. 5.5.2.

We now give a summary of the current status of BK. Here, the calculation
by the JLQCD Collaboration [154], based on staggered quarks in the quenched
approximation, has served as a benchmark result for a long time. Their result,
for which the perturbatively renormalized matrix element was extrapolated to the
continuum limit, has since been confirmed by many other calculations employing
different fermionic discretizations and different renormalization techniques. These
include domain wall [148, 149] and overlap quarks [150, 151], as well as the
Wilson formulation [153, 155]. Moreover, a calculation employing twisted mass
QCD has been completed [152], which includes non-perturbative renormalization
and a thorough investigation of the continuum limit.

Recently, results for BK from simulations with dynamical quarks have become
available, both for Nf = 2 [146, 147] and Nf = 2 + 1 flavours [144, 145]. A
compilation of quenched and unquenched results is shown in Fig. 5.19. Although
the figure suggests a trend in the data which points to slightly lower estimates for
B̂K if dynamical quarks are switched on (see Fig. 5.19), the quoted uncertainties are
still too large to point to a significant deviation. In particular, a systematic study
of the continuum limit in the unquenched case is not yet available. It is interesting
to compare the results for B̂K to the non-lattice determination in Ref. [130]. Here,
the determinations of the angles of the unitarity triangle from experimental data
in conjunction with direct measurements of �Md,�Ms and εK allow to fit the
values of several of the quantities in Eq. (5.211), which incorporate the hadronic
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Nf = 0

Nf = 2

Nf = 2+1

0.6 0.8 1.0
BK

RBC 2004, DWF, RI/MOM
CP-PACS 2001, DWF, pert.
BosMar 2003, overlap, RI/MOM
MILC 2003, overlap, RI/MOM

ALPHA 2007, tmQCD, SF, a=0

JLQCD 1997, stagg., pert., a=0

RBC 2006, DWF, RI/MOM
UKQCD 2004, SW/Wilson, pert.,

RBC/UKQCD 2007, DWF, RI/MOM
HPQCD/UKQCD 2006, stagg., pert.

SPQcdR 2004, SW/Wilson, RI/MOM

Fig. 5.19 Recent lattice results for the RGI kaon B-parameter B̂K. From top to bottom, the
plotted values are taken from Refs. [144–154]. Dotted error bars (where shown) indicate the
quoted systematic error. The labels include information on the fermionic discretization and the
intermediate renormalization scheme, if non-perturbative renormalization was used. We also
indicate whether or not the results have been extrapolated to the continuum limit. The vertical
lines represent the (non-lattice) result from [130], with the quoted uncertainty (see text)

uncertainties. In this way one obtains B̂non − lattice
K = 0.94 ± 0.17, which is shown

as the vertical band in Fig. 5.19. Clearly, within the rather large error margins, this
result is compatible with all lattice determinations, quenched or unquenched.

First Row Unitarity and the Value of |Vus | In addition to Eq. (5.210), the unitarity
of the CKM matrix implies many other constraints on its elements, such as those
which appear in the first row:

|Vud |2 + |Vus |2 + |Vub|2 = 1. (5.217)

Owing to the smallness of |Vub|, i.e. |Vub|2 � 2 ·10−5, the direct verification of first
row unitarity with the current experimental and theoretical accuracy rests on the
precise knowledge of |Vud | and |Vus|. The value of |Vud | can be determined with
high accuracy from super-allowed nuclear β-decays (0+ → 0+ transitions), and in
the current edition of the particle data book the best estimate is quoted as [61]

|Vud | = 0.97377 ± 0.00027. (5.218)
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The value of |Vus | can be extracted from the decay rate of K�3 transitions, i.e.

�(K → π�ν�) ∝ G2
Fm

5
K

192π3 |Vus |2
∣∣∣f Kπ+ (0)

∣∣∣2 , (5.219)

where f Kπ+ is one of the two form factors which parameterize the hadronic matrix
element for semi-leptonic K → π�ν� transitions, i.e.

〈
π( �pπ)

∣∣(s̄γμu)(0)∣∣K( �pK)
〉 = f Kπ+ (q2)(pK + pπ)μ + f Kπ− (q2)(pK − pπ)μ,

qμ = (pK − pπ)μ. (5.220)

In order to arrive at a precise estimate for |Vus |, f Kπ+ (q2) must be determined with
an accuracy at the level of 1%, since the decay rate and hence the combination
|Vus |2 [fKπ+ ]2 can be measured rather precisely. The form factor f Kπ+ admits a
chiral expansion; At zero momentum transfer it reads

f Kπ+ (0) = 1 + f2 + f4 + . . . . (5.221)

While the leading chiral correction, f2 = −0.023, has been computed long ago
[156], knowledge on f4 and the higher corrections is still fairly limited. The strategy
pursued in lattice calculations [157] is based on computing the quantity

�f ≡ f Kπ+ (0) − (1 + f2), (5.222)

which is a measure of the contributions beyond leading order. An old phenomeno-
logical estimate by Leutwyler and Roos [158] yields the value �f = −0.016(8).
It is clearly desirable to check this result and ultimately replace it by a model-
independent estimate based on QCD.

Semi-leptonic form factors can be determined in lattice simulations by comput-
ing suitable three-point correlation functions, in which the initial and final hadronic
states are projected onto non-vanishing momentum. The main issues that must be
addressed in order to judge the accuracy of the form factor determination are listed
in the following:

• The dependence of the form factors on the momentum transfer q2 must be
modelled, in order to interpolate their values to q2 = 0. Typical ansätze
for the interpolation include linear or quadratic functions of q2, as well as
formulae based on pole dominance [159]. The freedom of choosing a particular
ansatz introduces a certain ambiguity, since different model functions yield
slightly different results. Via the introduction of so-called twisted boundary
conditions [159–164], the q2 resolution of form factors can be significantly
improved;

• As for all quantities involving pions, a chiral extrapolation of lattice results
must be performed. Clearly, in order to obtain f Kπ+ (0) and hence �f with
small controlled errors, a reliable chiral extrapolation is perhaps the single most
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Table 5.4 Recently published lattice results for the quantity �f

Collaboration Nf Action fKπ+ (0) �f mmin
π [MeV]

Bećirević et al. [157] 0 Clover 0.960(5)(6) −0.017(5)(7) 490

RBC [165] 2 DWF 0.968(9)(6) −0.009(9)(6) 490

UKQCD/RBC [166] 2 + 1 DWF 0.964(5) −0.013(5) 330

Leutwyler and Roos [158] ./. ./. 0.961(8) −0.016(8) ./.

Bijnens and Talavera [167] ./. ./. 0.976(10) −0.001(10) ./.

Jamin et al. [168] ./. ./. 0.974(11) −0.003(11) ./.

Cirigliano et al. [169] ./. ./. 0.984(12) 0.007(12) ./.

The minimum value of the pion mass used in the simulations is listed in the right-most column.
The lower part of the table contains analytical estimates

important issue. Thus, the ability to simulate as deeply as possible in the chiral
regime will be decisive for the final accuracy;

• Other systematic uncertainties include control over lattice artefacts, which is
closely related to the renormalization of local operators, such as the vector
current, which appears in Eq. (5.220). If chiral symmetry is broken explicitly,
the (local) vector current is not conserved, and in order to guarantee a smooth
approach to the continuum limit, its renormalization factor, ZV, must be included.
However, in all recent simulations the form factor has been extracted from
suitably chosen ratios in which ZV drops out.

A compilation of recent results for the form factor fKπ+ (0) and the quantity �f

are presented in Table 5.4, where they are compared to analytical estimates. The
agreement with the old result by Leutwyler and Roos is quite striking. Despite a
tendency among the more recent analytical calculations to produce slightly larger
estimates for �f , all results are in good agreement within the quoted uncertainties.

An alternative method to determine |Vus| from experimental data was proposed
by Marciano [170]. Instead of considering semi-leptonic decays, it is based on the
leptonic decay rates, i.e.

�(K → μν̄μ(γ ))

�(π→eν̄e(γ ))
∝ |Vus |2

|Vud |2
f 2

KmK

f 2
πmπ

. (5.223)

Hence, the task is to provide an input value for the ratio of decay constants, fK/fπ .
This quantity is well-suited for lattice calculations in several respects: first, ratios
of quantities can be computed with high statistical accuracy, owing to the fact
that the fluctuations in the numerator and denominator are correlated. Second,
the renormalization factor of the axial current, ZA, drops out in the ratio fK/fπ .
However, since the quantity of interest involves a chiral extrapolation, the same
caveats as in the case of the pion form factor, apply in this case. In particular,
it is mandatory to go as close as possible to the physical mass of the pion. The
quenched approximation is clearly of very limited value in this context, since the
chiral behaviour and hence the actual value of fK/fπ may strongly depend on the
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Table 5.5 Recently published results for fK/fπ in lattice QCD with dynamical quarks

Collaboration Nf Action fK/fπ mmin
π [MeV]

CP-PACS [52] 2 Clover 1.19(3) 500

JLQCD [172] 2 Clover 1.148(11)(12
5 )(

2
3) 500

ETM [100] 2 tmQCD 1.227(9)(24) 290

MILC [173] 2 + 1 Stagg. 1.208(2)( 7
14) 290

NPLQCD [174] 2 + 1 Stagg./DWF 1.218(2)(11
24) 290

RBC/UKQCD [175] 2 + 1 DWF 1.24(2) 330

HPQCD [176] 2 + 1 Stagg. 1.189(7) 250

number of active sea quarks. Furthermore, it is known that in the continuum limit of
the quenched approximation the value fK/fπ is underestimated by about 10% [171].

Recent results for fK/fπ in lattice QCD with dynamical quarks are listed in
Table 5.5. A caveat that applies to all such compilations is that systematic errors
are not estimated in a uniform manner. For instance, none of the listed results (with
the exception of [52]) is based on a systematic scaling study aimed at separating
cutoff effects from the actual mass dependence, although the influence of lattice
artefacts has been included in some error estimates by including cutoff effects into
a generalized chiral fit. Moreover, not all of the listed values of fK/fπ include
finite-volume corrections, which can be computed in ChPT and incorporated into
the ansatz for the chiral fit [177, 178]. Despite these caveats it appears, though, that
the estimates for fK/fπ based on fits including pion masses well below 500 MeV
are compatible with each other.

5.7.2 Weak Matrix Elements in the Heavy Quark Sector

The main obstacle for calculations of weak matrix elements involving heavy quarks,
and in particular the b-quark, is that one is faced with a multi-scale problem. In
Sect. 5.2.5 we have already discussed systematic effects in lattice calculations that
arise from finite-size effects and lattice artefacts. Translating the relations in (5.79)
directly to the b-quark sector, one finds that the following inequalities cannot be
satisfied simultaneously, at least not with the currently available computer power:

amb � 1, mπL � 1, L/a � 50. (5.224)

Violation of the first relation implies the presence of large lattice artefacts, the
second inequality must be satisfied if one wants to avoid uncontrolled finite-volume
effects, and the third is dictated by memory capacities of current computers. With
a b-quark mass of mb ≈ 4 GeV and typical inverse lattice spacings of a−1 �
4.5 GeV, it is evident that the b-quark cannot be studied directly, since its Compton
wavelength is smaller or of the same order of magnitude than the lattice spacing
itself.
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Several strategies to deal with this problem have been applied over many years,
among them the “static approximation” [179], the non-relativistic formulation
(NRQCD) [180], the so-called “Fermilab-approach” [181] and finite-size scaling
techniques [182, 183].

Since the charm quark is lighter than the b-quark by roughly a factor three, one
may attempt to treat charm as a fully relativistic, propagating quark in simulations.
Still, one can incur large lattice artefacts in this way, and a careful extrapolation
to the continuum limit is then required. However, such an extrapolation may be
spoilt if the leading lattice artefacts cannot be isolated in the results, due to the
relatively large mass of the charm quark. Still, if one has reason to trust the results
obtained for relativistic charm quarks, one may extrapolate them to the mass of b-
quark, which is yet another way of circumventing the problem that the b-quark is
too heavy to be treated relativistically. Typically, the ansatz for the extrapolation of
a particular quantity to the mass of the b-quark is motivated by its expected quark
mass dependence in Heavy Quark Effective Theory (HQET).

In the static approximation the b-quark is assumed to be infinitely heavy [179].
In this formalism it is convenient to represent the b-quark by a pair of spinors,
(ψh,ψh̄), which propagate forward and backward in time, respectively, and which
satisfy

P+ψh = ψh, P−ψh̄ = ψh̄, P± = 1
2 (1 ± γ0). (5.225)

While the field ψh annihilates a heavy quark, ψh̄ creates a heavy antiquark. The
dynamics of these fields in the discretized version of the theory is described by the
Eichten-Hill action [184]

Sstat = a4
∑
x

{
Lstat

h + Lstat
h̄

}
, Lstat

h = ψ̄h(x)∇∗
0ψh(x), Lstat

h̄
= −ψ̄h̄(x)∇0ψh̄(x),

(5.226)

where ∇0, ∇∗
0 denote the forward and backward covariant lattice derivatives in the

temporal direction. Although the numerical computation of the quark propagator
based on the Eichten-Hill action is relatively “cheap”, simulation results in the static
approximation typically suffer from relatively large statistical noise. Without going
into detail we note that the signal-to-noise ratio can be significantly improved if one
replaces the temporal link variables in ∇0 and ∇∗

0 by suitably chosen generalized
parallel transporters. A full account can be found in Ref. [185].

Obviously, the static approximation represents only the leading term in an
expansion of the quark action in inverse powers of the heavy quark mass, and thus
one expects corrections in powers of 1/mh. As described in Ref. [182], one can
set up a formalism in which the leading corrections to physical observables can be
systematically computed as operator insertions in correlation functions defined with
respect to the static action Sstat. Again, we refrain from describing any further details
and refer the reader to the original literature [182, 186].
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Higher-order corrections to the static approximation can also be incorporated into
the theory by adding the appropriate 1/mh terms to the action itself. In this way one
obtains a non-relativistic version of QCD (NRQCD) [180], in which the mass of the
heavy quark is imposed as a cutoff on relativistic momentum modes, i.e.

p ∼ mhv � mh, (5.227)

where v denotes the four-velocity of the heavy quark. Heuristically, the introduction
of the cutoff is justified since the internal typical momentum modes of hadrons
containing a heavy quark are much smaller than the mass of the latter. The loss of
relativistic states can be compensated by adding new local interaction terms order
by order in p/mh ∼ v to Lstat

h and Lstat
h̄

. In general, these additional interaction
terms will generate mixing between quark and antiquark. However, by applying a
Foldy-Wouthuysen transformation, the fields can be decoupled. At the level of the
classical theory, the 1/mh correction to the NRQCD Lagrangian for the forward
propagating field reads

L(1); class
h = − 1

2mh

{
ψ̄hD·Dψh + ψ̄hσ ·Bψh

}
, (5.228)

and D is the vector of the covariant derivatives in the spatial directions.
In the quantized version of the theory, the coefficients which multiply the fields

in the above expression become dependent on the gauge coupling and must be
appropriately tuned to guarantee the correct matching of the non-relativistic theory
to standard QCD at order in 1/mh. Thus, the lattice-regularized version of the 1/mh

correction reads

L(1)
h = −

{
ω1ψ̄h∇ · ∇ψh + ω2ψ̄hσ · B̂ψh

}
, (5.229)

where B̂ denotes a lattice representation of the magnetic field. The coefficients ω1
and ω2 are formally of order 1/mh and are found to be linearly divergent in the
lattice spacing a. Therefore, at a given order in the non-relativistic expansion of
the action, a finite cutoff must be kept, and in this sense the effective theory is non-
renormalizable. All this implies that in NRQCD the continuum limit, a → 0, cannot
be taken. Instead, one must argue that lattice artefacts are small in the range of lattice
spacings where the calculations are performed.

Another approach can be based on the idea that the Wilson fermion action is
suitably adapted for heavy quarks, such that the Wilson quark propagator does not
deviate from the continuum behaviour even for quark masses am >∼ 1, i.e. for quark
masses near or above the cutoff [181]. According to Ref. [181] this can be achieved
by modifying the normalization of the quark fields (see Eq. (5.36)) in the discretized
lattice theory, i.e.

ψ(x) → √
2κ eamP/2ψ(x), ψ̄(x) → ψ̄(x) eamP/2

√
2κ, (5.230)
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where the “pole mass” amP of the Wilson propagator is given by

amP = ln(1 + am), (5.231)

and am denotes the bare subtracted quark mass in the Wilson theory (see Eq. (5.39)).
The factor

√
2κ eamP/2 is designed to interpolate smoothly between the relativistic

and non-relativistic regimes. As a consequence, in order to cancel the effects of large
quark masses in hadronic matrix elements involving b-quarks, the normalization of
quark fields is modified according to the above prescription. The so-called “Fermi-
lab approach” to heavy quark physics on the lattice is based on the normalization
in Eq. (5.230). Essentially it amounts to formulating an effective theory for quarks,
whose spatial momenta are small, |a �p| � 1, with mass-dependent coefficients.
Like in the case of the static approximation, the formalism allows to take the
continuum limit. Related approaches to the Fermilab method have been presented
in Refs. [187, 188].

Finally, we briefly introduce another strategy to deal with heavy quarks on the
lattice and the related multi-scale problem [182, 183]. Here the condition mπL � 1
in Eq. (5.224) is sacrificed in favour of amb � 1. In this way one is able to
accommodate a fully relativistic b-quark at the expense of having to deal with
strong finite-volume effects. The key observation is that the “distortion” due to
unphysically small volumes can be computed in a series of finite-size scaling steps,
which relate the results obtained on a sequence of lattice sizes L0, L1, . . . . Like in
the case of the non-perturbative determination of the RG running of the coupling
and the quark mass discussed in Sect. 5.5.2, one can set up a recursive finite-size
scaling procedure, which traces the volume dependence of observables. Here it is
mostly sufficient to apply two or three steps in the scaling sequence.

In the remainder of this section we shall discuss some selected results. Regarding
the vast number of individual results, we do not attempt to provide a complete
review of the current status of lattice calculations of weak matrix elements in the
heavy quark sector. Regular appraisals of the progress made in studying these
systems can be found in the rapporteur talks on the subject at the annual conferences
on lattice field theory [132, 133, 135]. Instead we shall discuss the relation between
CKM matrix elements and the quantities that must be computed in order to extract
the former from experimental data without resorting to model assumptions.

Heavy-Light Decay Constants From Eq. (5.211) and Fig. 5.18 one infers that

the ratio ξ ≡ fBs

√
B̂Bs/fB

√
B̂B of decay constants and B-parameters is a key

quantity, since it links �Ms/�Md to the ratio |Vts|2/|Vtd |2 of CKM matrix
elements. Typically, one determines decay constants and B-parameters separately,
since the former can be easily extracted from hadronic two-point functions, while
the latter may undergo complicated mixing patterns, depending on the fermionic
discretization. The decay constant of, say, a B+ meson, is defined via the matrix
element of the heavy-light axial current, i.e.

fBmB = 〈0 |(ūγ0γ5b)|B+〉 . (5.232)
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If the matrix element on the right-hand side is computed in a lattice simulation, then
the axial current defined in the discretized theory must be matched to its counterpart
in the continuum formulation. The details of the matching procedure depend on the
type of fermionic discretization and the chosen treatment to represent the heavy-
light axial current on the lattice (e.g. static approximation, NRQCD, etc.). If the
b-quark is treated in the static approximation, the axial current has a non-vanishing
anomalous dimension, and hence its running must be determined as well. Therefore,
the various techniques which have been developed to compute the renormalization
factors of local operators non-perturbatively, are of particular relevance also in the
study of heavy-light decay constants [189]. In particular, non-perturbative estimates
for the renormalization factor of the axial current, ZA, are required to ensure a
smooth convergence towards the continuum limit.

We now present results for fB and fBs . From Chiral Perturbation Theory one
expects that the bulk of the SU(3)-flavour breaking effect in ξ (i.e. the deviation
of ξ from unity) is carried by the decay constants. The full expression at NLO for
fBs/fB reads [190]

fBs

fB
− 1 = (m2

K − m2
π)f2(μ) − 1 + 3g2

(4πfπ )2

[
1

2
IP(mK) + 1

4
IP(mη) − 3

4
IP(mπ)

]
,

(5.233)

where IP(mPS) = m2
PS ln(m2

PS/μ
2) and f2 is a low-energy constant, and g2 is the

strength of the B∗Bπ vertex. As was pointed out by Kronfeld and Ryan [191],
the contribution from the chiral logarithms can be sizeable, so that a naïve linear
extrapolation of lattice data from the region of the strange quark mass tends to
underestimate fBs/fB. By contrast, the corresponding ratio BBs/BB is expected to
be close to one, since the coefficient of the chiral logarithm nearly vanishes. Since
fBs/fB enters directly into fits to the CKM parameters, many attempts were made
to pin down its value precisely. As in the case of fK/fπ discussed earlier, the main
issue for lattice calculations is whether the quark masses employed in simulations
are small enough to allow for a controlled chiral extrapolation based on the NLO
formulae. The influence of the chiral logarithms has so far been detected only in
simulations based on Nf = 2+1 flavours of rooted staggered quarks. Using NRQCD
to treat the b-quark, the authors of [192] find

fBs

fB
= 1.20 ± 0.03 ± 0.01, Nf = 2 + 1, (5.234)

where the first error is statistical, while the second is an estimate of the systematic
uncertainty. This result awaits confirmation from simulations with sea quark masses
as small as those used in [192], but employing different fermionic discretizations,
both in the sea and valence quark sectors. This is of particular relevance, since the
typical spread among the recently published results is of the same order or even
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larger than the uncertainty quoted above. Further discussions and compilations of
lattice data for fBs/fB can be found in [133, 193].

Estimates for absolute values of heavy-light decay constants are also highly
desirable, especially since fB is hard to determine experimentally, even at the B-
factories, since the B → τντ decay rate is suppressed. For fBs the suppression
is even stronger, and thus the prospects for an experimental determination of this
quantity are extremely uncertain. The main issues facing lattice calculations are the
influence of lattice artefacts in conjunction with the renormalization of the axial
current, and the dependence of results on the number of dynamical quark flavours.

As an example for one of the most advanced quenched calculations for fBs

we shall briefly discuss the result by the ALPHA collaboration [198], which also
illustrates the interplay between various methods to treat the b-quark. In Ref. [198]
the results obtained in the static approximation were combined with data computed
around the mass of the charm quark. Provided that estimates for the decay constants
in both datasets have been extrapolated to the continuum limit, a subsequent
interpolation in the heavy quark mass yields the desired result for fBs . The ansatz
for the interpolation is based on the expression

fPS
√
mPS = CPS(M/�MS) γ

(
1 + δ

mPS

)
, (5.235)

where fPS is a generic heavy-light decay constant, γ, δ are real constants, and the
factor CPS arises from the matching between the static approximation and QCD
with fully relativistic quarks. Thus, using the static approximation as the limiting
case removes the systematic error due to the uncontrolled extrapolation to the mass
of the b-quark. The resulting estimate for fBs is [198]

fBs = 193 ± 6 MeV, Nf = 0. (5.236)

Non-perturbative renormalization has been employed in both the static approxima-
tion and the relativistic formulation. Except for the unknown systematic error due
to quenching, the quoted error contains all uncertainties. The above result has been
confirmed by the approach based on the finite-size scaling method [199].

Turning now to unquenched simulations, we compare the above value to the
result by the HPQCD Collaboration [192], which was obtained using NRQCD for
the b-quark, while Nf = 2 + 1 rooted staggered quarks were used as sea quarks.
Here, the estimate for fBs results from a combination of the value for fB and the
ratio fBs/fB already quoted in Eq. (5.234). In this way one obtains

fBs = 259 ± 32 MeV. (5.237)

Thus, in spite of the large error, it appears that the inclusion of dynamical quark
effects increases the estimate for heavy-light decay constants. This is also supported
by other simulations. For instance, using their simulation results in quenched QCD
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Fig. 5.20 Recent lattice results for fBs . From left to right the results are taken from the following
papers. Nf = 0 : [194–207]; Nf = 2 : [203, 204, 207, 208], [209]; Nf = 2 + 1 : [192, 210].
The labels indicate the method used to treat the b-quark in the simulation (“ext” and “int” stand
for extrapolations and interpolations to the mass of the b-quark, respectively. The horizontal lines
represent the (non-lattice) result from [130], with the quoted uncertainty

and with Nf = 2 flavour of dynamical Wilson quarks, the CP-PACS Collaboration
find [203]

f
Nf=2
Bs

f
Nf=0
Bs

= 1.14 ± 0.05. (5.238)

The “non-lattice” determination of fBs via fits using the experimental results for the
angles of the unitarity triangle as input [130] also point to a larger value compared
to the quenched theory, as can be seen from the horizontal band in the compilation
in Fig. 5.20.

In current unquenched simulations, systematic effects such as lattice artefacts
and the renormalization of local operators are not yet controlled at a similar
level compared to the quenched approximation. Thus, despite the fact that these
calculations are much more “realistic” in that they include sea quarks, the quoted
overall uncertainties are still relatively large.

B-Parameters B̂Bd and B̂Bs Following the recent experimental determination
of the mass difference �Ms at the Tevatron [211, 212], lattice determinations of
the B-parameters B̂Bd and B̂Bs have received much attention. Although the first
calculations date back to the 1990s, relatively few results are available, due to
several specific technical difficulties. First, the complicated renormalization and
mixing patterns of four-quark operators which afflict lattice calculations of the kaon
B-parameter B̂K are also encountered in the b-quark sector. Second, there is the
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Table 5.6 Published lattice results for the B-parameter BBd (mb) in the MS-scheme and the ratio
BBs/BBd

Collaboration Nf Action BBd(mb) BBs/BBd

Gadiyak et al. [213] 2 DWF 1.06(6)(3) static

JLQCD [209] 2 Clover 0.836(27)(56
62) 1.017(16)(56

17) NRQCD

Gimenez et al. [214, 215] 0 Clover 0.81(5)(4) 1.01(1) Static

UKQCD [215, 216] 0 Clover 0.79(4)(4) 1.02(2) Static

Christensen et al. [217] 0 Wilson 0.98(4) 0.99(1)(1) Static

SPQcdR [218, 219] 0 Clover 0.87(4)(5
4) 0.99(2) rel./ext.

UKQCD [195] 0 Clover 0.98(2)(0
2) rel./ext.

The method to treat the heavy quark is specified in the last column

added complication which arises from the fact that the b-quark cannot be simulated
directly.

In Table 5.6 we list published results for BBd(mb) and the ratio BBs/BBd from
a variety of methods to treat the heavy quark. The table shows that all results
are broadly consistent with each other at the level of 10%, despite the different
systematics. Moreover, none of the listed estimates is based on non-perturbative
renormalization factors, and furthermore all entries have been computed for a
fixed value of the lattice spacing, i.e. a systematic study of the continuum limit
is lacking even in the quenched approximation. As for the ratio BBs/BBd , it should
be mentioned that the quark masses in the simulations correspond to pion masses
not much smaller than 500 MeV. However, in view of the fact that the bulk of the
relevant SU(3)-flavour breaking effect in �Ms/�Md is expected to come from the
ratio of decay constants, fBs/fBd , this may not be such a serious limitation. Results
for BBd and BBd computed on dynamical gauge configurations with rooted staggered
quarks should be published soon.

Another recent development is the implementation of non-perturbative renormal-
ization for heavy-light four-quark operators in the static approximation [220, 221].
If the b-quark is treated in the static approximation, the �B = 2 four-quark operator
must be matched to its counterpart in the static theory, i.e.

Q�B=2(mb) = CL(mb,μ)Q̃1(μ) + CS(mb,μ)Q̃2(μ), (5.239)

where

Q̃1 = (ψ̄hγμ(1 − γ5)�
) (

ψ̄h̄γμ(1 − γ5)�
) ≡ ÕVV+AA + ÕVA+AV

Q̃2 = (ψ̄h(1 − γ5)�
) (

ψ̄h̄(1 − γ5)�
) ≡ ÕSS+PP + ÕSP+PS, (5.240)

with � denoting the light (d or s) flavour. For the physical matrix element only
the parity-even operators ÕVV+AA and ÕSS+PP are relevant. If chiral symmetry
is not preserved by the discretization, four-quark operators such as ÕVV+AA
undergo complicated mixing patterns under renormalization, which necessitate
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finite subtractions similar to those required for the operator OVV+AA in Eq. (5.215).
However, just as in the case of K0 − K̄0 mixing, the parity-even operators ÕVV+AA
and ÕSS+PP can be mapped onto their parity-odd counterparts ÕVA+AV and ÕSP+PS
by a flavour rotation, which realizes the transition to tmQCD at maximal twist angle.
Moreover, it can be shown [220] that the combinations

Õ ′
1 ≡ ÕVA+AV, Õ ′

2 ≡ ÕVA+AV + 4ÕSP+PS (5.241)

renormalize purely multiplicatively. The RG running of these operators, as well as
the matching to hadronic schemes based on tmQCD have been determined non-
perturbatively in the SF scheme for Nf = 0 [221] and Nf = 2 [222], which
will eventually allow for a determination of B̂Bs and B̂B with full control over
renormalization and discretization effects. Corrections of order 1/mb can be taken
into account through an interpolation between the results obtained in the static
approximation and for relativistic heavy quarks with masses in the region of that
of the charm quark.

Semi-Leptonic B-Decays The CKM elements |Vub| and |Vcb|, which appear in
the unitarity triangle relation equation (5.210), can be extracted from both inclusive
and exclusive B-meson decays. However, |Vub| is still one of the most poorly
constrained CKM elements. Its value can be determined by combining lattice
calculations of semi-leptonic form factors for exclusive decays such as B̄0 →
π+�−ν̄� with the experimentally measured decay rate. If the leptons are assumed
to be massless, the latter yields the combination [|Vub| f+(q2)]2, while the form
factor f+(q2) can be extracted from the matrix element

〈
π( �pπ)

∣∣(b̄γμu)(0)∣∣B( �pB)
〉 =

[
(pB + pπ)μ − qμ

m2
B − m2

π

q2

]
f+(q2) + qμ

m2
B − m2

π

q2
f0(q

2).

(5.242)

Here, qμ ≡ (pB −pπ)μ denotes the momentum transfer. For a B-meson at rest one
has

q2 = m2
B + m2

π − 2mB

√
m2

π + �p2
π . (5.243)

In order to avoid large lattice artefacts, typical values of the pion momentum in
simulations are restricted to

| �pπ | � 1 GeV. (5.244)

Therefore, lattice calculations typically yield the form factors f+ and f0 near
q2 = q2

max. By contrast, the bulk of the experimental data is recorded in bins
with small values of q2, since the decay rate is suppressed near q2

max. Therefore,
an extrapolation to small values of q2 must be performed, which requires an
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Fig. 5.21 Form factors f+
(upper data set) and f0 for
B → π�ν decays (taken from
Ref. [224]). The data are
taken from Refs. [225]
(UKQCD), [226] (Abada et
al.), [227] (El-Khadra et al.),
[228] (JLQCD) and [229]
(FNAL04). The unquenched
results by HPQCD have been
updated [230]
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ansatz for the shape of the form factor. Although a parameterization of the q2-
dependence which goes beyond vector pole dominance and is also consistent with
the expected heavy-quark scaling laws has been proposed [223], the extrapolation
to small momentum transfers typically introduces some model dependence in the
result for |Vub|.

Figure 5.21 shows a compilation of lattice data for the form factors as a
function of q2 together with the curves which represent the extrapolations to
q2 = 0. The problem of the model dependence introduced by the extrapolation
to small momentum transfer can be avoided by combining form factors from lattice
simulations with the decay rate measured in restricted intervals of q2, which overlap
with the range of momentum transfers that are directly accessible in simulations.
Such a procedure has been performed by the CLEO Collaboration [231]. The result
for |Vub| obtained in this way is somewhat smaller compared to the standard method
based on form factor extrapolations, but the uncertainties are still quite large. For the
actual estimates of |Vub| obtained in this way, the reader may consult the original
papers.

Semi-leptonic heavy-to-heavy decays such as B̄ → (D,D∗)�ν̄� offer a way
to determine |Vcb|. In this case it is convenient to use the four-velocities of the
two mesons as the kinematical variables instead of the four-momenta. The decay
amplitudes are then parameterized in terms of six form factors, i.e.

〈
D(v′)

∣∣(c̄γ μb)
∣∣B(v)

〉
√
mBmD

= (v + v′)μh+(ω) + (v − v′)μh−(ω)

〈
D∗(v′, ε)

∣∣(c̄γ μb)
∣∣B(v)

〉
√
mBm∗

D

= iεμναβε∗
ν v

′
αvβhV(ω) (5.245)

〈
D∗(v′, ε)

∣∣(c̄γ μγ5b)
∣∣B(v)

〉
√
mBm∗

D

= (ω + 1)ε∗μhA1(ω) − ε∗ · v [vμhA2(ω) + v′μhA3(ω)
]
,
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where ω = v·v′. In the limit of infinite heavy quark mass, four out of these six form
factors can be replaced by a single, universal form factor, ξ(ω), which is called the
Isgur-Wise function [232]

mb, mc → ∞ ⇒ h+(ω) = hA1(ω) = hA3(ω) = hV(ω) = ξ(ω), (5.246)

while h−(ω) and hA2(ω) vanish as mb, mc become infinitely heavy. Outside the
exact heavy-quark limit, the relation between the Isgur-Wise function and the form
factors is modified. For instance,

h+(ω) = (1 + β+(ω) + γ+(ω)) ξ(ω), (5.247)

where β+, γ+ parameterize radiative corrections and corrections arising from
operators of higher dimension, which are suppressed by additional inverse powers of
the heavy quark mass. Similar relations hold for hA1, hA3 and hV. Another important
result, known as Luke’s Theorem [233], states that at zero recoil, v = v′, i.e. ω = 1,
the leading corrections to the form factors h+ and hA1 are quadratic in the inverse
heavy quark mass.

With this setup one may devise a strategy to determine |Vcb| by combining the
experimentally determined decay rate with lattice calculations of the form factors.
The differential decay rate for B̄ → D∗�ν̄� in the limit of zero recoil reads

lim
ω→1

1√
ω2 − 1

d�(B → D∗�ν)
dω

= |Vcb|2 G2
F

4π3 (mB − mD∗)2m3
D∗ [hA1(1)]2,

(5.248)

which, owing to Luke’s Theorem, receives corrections of order 1/m2
c only. For

ω > 1 the single axial form factor hA1 must be replaced by a linear combination
of several form factors. Thus, the theoretical uncertainties appear to be controlled
best at zero recoil. Since the rate is suppressed near ω = 1, the measured decay
rate must be extrapolated to that value to determine |Vcb|. Most of the published
lattice calculations of the form factors and the Isgur-Wise function [234–238] are
therefore focused on the determination of the slope of ξ(ω) at ω = 1. The measured
decay rate can then be extrapolated to zero recoil using a particular parameterization
of ξ(ω), with its slope constrained via the lattice calculation. After taking radiative
and power corrections into account, a value for |Vcb| can be extracted.

A different but related strategy is to compute the form factors h+(1) and hA1(1)
directly via suitably chosen double ratios of hadronic matrix elements in which
many systematic effects can be expected to cancel [239, 240]. Using the “Fermilab
approach” for the heavy quarks in the quenched approximation, the authors of
Ref. [240] find

hA1(1) = 0.913+0.024 +0.017
−0.017 −0.030, (5.249)
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where the first error is statistical, while the second represents an estimate of various
systematic uncertainties added in quadrature. Again, this result can be combined
with the experimental decay rate to determine |Vcb|. More details can be found in
[240].

Most lattice studies of heavy-to-heavy semi-leptonic B-decays have been
restricted to the quenched approximation. However, results for the form factors
from dynamical simulations can be expected in the near future. Clearly, in order
to have maximum impact on the determination of |Vcb|, systematic effects arising
from lattice artefacts and the formulation used to treat the heavy quark must be
controlled to a high degree.

5.8 Concluding Remarks

In this article we have introduced the lattice approach to QCD and discussed
a variety of applications, which range from hadron spectroscopy, confinement,
quark masses and the running coupling, to spontaneous chiral symmetry breaking
and hadronic matrix elements for flavour physics. This illustrates not only the
versatility of the lattice method, but also indicates that lattice calculations have
become ever more important for making quantitative predictions in the notoriously
difficult sector of non-perturbative QCD. Still, a great number of other applications
have not even been covered here, including nucleon structure functions and form
factors, calculations at finite temperature and/or chemical potential, or detailed
investigations of the QCD vacuum structure.

That lattice calculations have reached this standing is owed to the enormous
progress which been made in developing more efficient algorithms for dynamical
fermions, better discretizations, as well as a number of new theoretical concepts
such as non-perturbative renormalization. These developments, in conjunction
with the availability of ever more powerful computers, shall allow for precise
computations of many phenomenologically relevant quantities, which previously
seemed virtually intractable.

5.9 Addendum: QCD on the Lattice

5.9.1 Introduction

Since the first edition of this article [241] the field of lattice QCD has undergone
a huge transformation. While the actual methodology was well established at
the time of writing (2007), few simulations employing dynamical quarks had
produced results with controlled errors, having a direct impact on phenomenology
and experiment. During the past ten years or so this has changed dramatically.
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Simulations with light dynamical quarks, whose masses correspond to the physical
value of the pion mass, have become the state of the art, and the effects of
dynamical strange and charm quarks are now routinely included as well. In fact,
lattice calculations of certain observables have reached (or are aiming for) a level
of precision where the effects of the breaking of isospin symmetry can no longer
be ignored. This necessitates that lattice QCD must account not only for the effects
of unequal u and d quark masses but also for corrections due to electromagnetism,
owing to the different electric charges of up- and down-type quarks.

In this context it is interesting to quote a remark by Ken Wilson, made at the
1989 International Conference on Lattice Field Theory [242]: “I still believe that an
extraordinary increase in computing power (108 is I think not enough) and equally
powerful algorithmic advances will be necessary before a full interaction with
experiment takes place.” Given that, in 1989, the most powerful supercomputers
could sustain 10 GFlops (i.e. 1010 floating point operations per second), Wilson’s
estimate was tantamount to requiring ExaFlops capabilities (1018 Flops) for lattice
QCD to make an impact, a performance figure that has only been reached very
recently by less than a handful of machines. The enormous progress that the field
of lattice QCD has already seen over the past decade proves that Wilson’s view was
far too pessimistic.21 For instance, results from lattice calculations for the decay
constants and form factors of mesons and baryons containing heavy quarks are vital
input for global analyses of observables in flavour physics, designed to constrain the
elements of the Cabibbo–Kobayashi–Maskawa matrix. Furthermore, lattice QCD
yields precise values for the masses of the light (u, d , s) quarks [244].

An impressive testimony to the importance of lattice QCD for the entire field
of particle physics is the regular report provided by the Flavour Lattice Averaging
Group (FLAG). Since its inception in 2007, FLAG has been charting the progress
in lattice QCD, by collecting results for a range of phenomenologically relevant
quantities. Taking inspiration from the Particle Data Group, FLAG assesses the
quality of individual calculations and produces world averages by combining those
results that satisfy a defined set of requirements regarding the overall control over
systematic effects. Three editions of the FLAG report, published in 2010 [245],
2013 [246] and 2016 [247], have appeared until now, and a fourth one has been
published in 2019 [248]. In fact, the current status of lattice calculations of many
observables that have been reviewed in the first edition of this article can be found
in these comprehensive reports.

This short review is organized as follows. In Sects. 5.9.2 and 5.9.3 we give
an update of lattice calculations applied to hadron spectroscopy, weak hadronic
matrix elements and the determination of Standard Model parameters such as quark
masses and the strong coupling constant. These quantities were covered extensively
in the original edition of [241]. Then, in Sect. 5.9.4 we extend the discussion to
the determination of quantities that describe structural and other properties of the
nucleon, such as form factors and the axial charge. Finally, in Sect. 5.9.5 we discuss
lattice calculations of the hadronic contributions to the muon anomalous magnetic

21Even Wilson himself acknowledged, at least partially, that this was the case [243].
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moment, which is a key quantity to study possible deviations from the Standard
Model. The review concludes with a few remarks on the progress achieved over the
past decade and an outlook for future calculations.

5.9.2 Hadron Spectroscopy

The calculation of the light hadron spectrum, i.e. the masses of the lowest-lying
mesons and baryons has long been regarded a benchmark for lattice QCD. In the
quenched approximation, i.e. in the absence of dynamical quarks, a significant
deviation between the calculated spectrum and experiment at the level of 10–15%
was observed. When the light hadron spectrum could eventually be accurately
reproduced within the overall uncertainty after the inclusion of light dynamical
quarks [249–252] (see Fig. 5.22), this was hailed as a major success of lattice QCD.
Thanks to these milestone results, the credibility of lattice calculations was firmly
established throughout the particle and hadron physics communities.

Calculations of the light hadron spectrum have since been further refined, by
taking the effects of isospin breaking into account. Strong isospin breaking arises
from the mass splitting between the u and d quarks, mu �= md . Since the electric
charges of u and d quarks differ as well, electromagntic interactions are another
source of isospin breaking. The formulation of QED on a lattice of finite volume
poses considerable technical challenges since the photon is massless. There are
several strategies to address the problem of the associated zero mode, and we refer
the reader to recent reviews of the subject [253–255], which also serve as a guide to
the literature.

After the inclusion of strong and electromagnetic isospin breaking effects, it
became possible to perform another benchmark calculation, namely the accurate
determination of the neutron-proton mass difference, as well as the mass splittings of
other baryonic iso-multiplets [256–259]. The ability to determine isospin breaking
effects arising from QED was also instrumental for calculations of the electromag-
netic mass splittings of pions and kaons [260–265], which can be used to study
violations of Dashen’s theorem [266]. The latter states that the electromagnetic self-
energies of the charged pions and kaons are identical, while those of their neutral

Fig. 5.22 The spectrum of
the lowest-lying hadrons as
computed in Ref. [250], to be
compared to Fig. 5.5 of the
original review [241]
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counterparts vanish. More details are found in section 3.1.1 of the FLAG report
[247].

Another recent focus of lattice spectroscopy has been the determination of the
excitation spectrum and the properties of hadronic resonances. This is a major
refinement of previous calculations in which the masses of resonances (the simplest
being the ρ-meson) were extracted naively from the exponential decay of the vector
correlation function, thereby ignoring the fact that resonances are characterized
both by a mass and a width. The general framework for the study of resonance
properties in lattice QCD was developed by Lüscher already in the 1980s and
1990s [267–270], and it is only now that the potential of this elegant and powerful
formalism can be fully exploited. The key idea that underlies the Lüscher method
is the realization that computing the energy levels of multi-particle states in a finite
volume gives access to the scattering phase shifts in infinite volume, provided that
the spectrum (including excited states) can be determined sufficiently well for a
range of kinematical situations. The latter are typically determined by the lattice
volume and/or the total momentum of the multi-particle system in question.

To be more specific, let us consider the simplest resonance, the ρ-meson, whose
properties can be accessed in p-wave ππ scattering. For energies below the inelastic
threshold, the Lüscher condition reads

φ(q) + δ1(k) = 0 mod π, q = kL

2π
, (5.250)

where φ(q) is a known kinematic function of the scaled scattering momentum
in units of the box size, q = kL/2π and δ1 is the scattering phase shift. The
scattering momentum k is determined from the nth energy level ωn in a finite
volume, according to

ωn =
√
m2

π + k2, (5.251)

where mπ is the pion mass. Figure 5.23 shows an example of a calculation of the
p-wave scattering phase shift as a function of the centre-of-mass energy [271].

Fig. 5.23 The p-wave
scattering phase shift of the
ρ-meson, computed for
mπ = 280 MeV as a function
of the centre-of-mass energy
[271]. Data obtained for two
different values of the lattice
spacing (open and filled grey
symbols) are shown. The
solid line is obtained from a
fit to a Breit-Wigner ansatz
for the resonance
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A crucial ingredient for the reliable determination of not just the energy level of
the ground state but also the excitation spectrum is the use of correlator matrices
computed using a suitable basis of interpolating operators (see Section 5.3 in
Ref. [241]). The diagonalization of the correlator matrix can be achieved by solving
a generalized eigenvalue problem from which the energy levels in a given channel
can be determined [272–274]. The sometimes arduous task of constructing efficient
interpolators for multi-particle states has been helped enormously by practical
methods to compute “all-to-all” quark propagators [275] and, in particular, the
so-called “distillation” technique [276, 277]. With these new developments it has
been possible to perform lattice investigations of ππ scattering and the ρ resonance
[278–291], as well as determinations of Kπ[292, 293] and KK scattering lengths
[294, 295]. The formalism has also been used to study meson-baryon [296–300] and
baryon-baryon [301, 302] interactions.

While the original Lüscher formalism was derived for the case of elastic two-
particle scattering, it has now been generalized to coupled-channel systems [303–
307], including the treatment of three-particle thresholds [308–315]. It also opens
the possibility to study weak non-leptonic kaon decays [316] and compute form
factors for timelike momentum transfers [317–320].

Moreover, the experimental discovery of new charmonium-like resonances,
commonly referred to as the X,Y and Z states, has kindled a new interest in
hadron spectroscopy. A distinctive feature of the new resonances is their closeness to
particle thresholds, and efforts are underway to gain a detailed understanding of the
resonance structure in the charm sector. Using the formalism described above, there
have been many calculations of a variety of charmonium-like resonances in lattice
QCD. In view of the vast literature, we refer the reader to several recent reviews of
the subject [321–323].

5.9.3 Parameters of the Standard Model

The Standard Model (SM) contains 19 parameters (excluding the neutrino sector)
whose values are not predicted by the theory itself but must instead be fixed using
experimental input. In many cases the relations between experimentally accessible
observables and SM parameters involve quantities that encode the effects of the
strong interactions. A well-known example is the kaon B-parameter BK that
enters the relation between the quantity εK , which is a measure of indirect CP
violation, and a particular combination of Cabibbo–Kobayashi–Maskawa (CKM)
matrix elements Vtd, Vts , i.e.

εK ∝ B̂K Im (Vtd V ∗
t s). (5.252)

While εK can be determined experimentally from a ratio of decay amplitudes
of long- and short-lived K-mesons, KL,S → (ππ)I=0, the parameter B̂K must
be extracted from the hadronic matrix element of a four-quark operator between



5 QCD on the Lattice 237

K0 and K̄0 states. Obviously, such a calculation must be performed in the non-
perturbative regime of QCD since it involves typical hadronic scales.

Other CKM matrix elements, such as Vus, Vub and Vcb are related to weak
processes involving kaons, D- and B-mesons, which are described by a variety
of leptonic decay constants (and their ratios), form factors of semi-leptonic meson
and baryon decays, as well as the B-parameters that encode strong interaction
contributions to B0−B̄0 and B0

s −B̄0
s mixing. All these quantities have been studied

in lattice QCD for many years, and increasingly precise estimates with controlled
systematic errors have appeared over the past decade. They have been instrumental
for recent analyses of the unitarity of the CKM matrix [324–327].

Similar considerations apply to SM parameters such as the strong coupling
constant αs and the masses of the quarks. While the asymptotic scaling behaviour
of αs gives rise to the dimensionful �-parameter that encodes the intrinsic scale
of QCD, the quark masses are external parameters. Providing the link between
experimentally accessible quantities and quark masses, as well as expressing the
�-parameter in units of some measurable low-energy quantity has been a primary
task for lattice QCD. Lattice calculations have also be instrumental for determining
the coupling constants of effective descriptions of QCD, such as the low-energy
constants of Chiral Perturbation Theory.

The importance of accurate, model-independent determinations of SM parame-
ters and input quantities for flavour physics has led to the foundation of the Flavour
Lattive Averaging Group (FLAG). Updates of the FLAG report have appeared at
regular intervals since the publication of its first edition in 2010 [245]. As part of its
mission, FLAG issues global estimates and averages of lattice results, provided that
they satisfy a set of defined quality criteria. FLAG estimates are quoted separately
according to the sea quark content of the calculations that enter the global analyses,
i.e. whether they have been obtained with a degenerate doublet of u, d quarks
(Nf = 2) or with an additional dynamical strange (Nf = 2 + 1) and charm quark
(Nf = 2+1+1). The current status of lattice QCD calculations of quark masses, the
strong coupling, decay constants, form factors, mixing parameters and low-energy
constants is summarized in Tables 1 and 2 of the 2016 FLAG report [247]. The
FLAG webpage22 contains additional updates. Below we comment on the current
status of a few selected quantities.

Quark Masses According to FLAG, the strange quark mass is known to 1%
precision, while the accuracy in the determination of the average u and d quark
mass, m̂ ≡ 1

2 (mu + md), varies between 1–5 %, depending on the sea quark
content [328–332, 332–340]. Thanks to the recent progress in including the effects
of isospin breaking in lattice QCD calculations, estimates for the masses of the
individual u and d quarks could also be obtained, typically with 2 − 5 % precision
[261, 262, 264, 330]. Furthermore, the masses of the heavy quarks have been
determined with excellent precision [328, 330–332, 335, 337, 341–348].

22http://flag.unibe.ch/.

http://flag.unibe.ch/
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Running Coupling A milestone was achieved by the ALPHA collaboration, who
published [349] an estimate for αs(M

2
Z) obtained by tracing the scale evolution

of the strong coupling non-perturbatively over several orders of magnitude into an
energy range where the application of perturbation theory can be considered safe (at
least as far as the quoted precision is concerned). Their main result is the determina-
tion of the �-parameter in three-flavour QCD, i.e. �(3)

MS
= 341(12)MeV, which can

be matched to the �-parameter in the five-flavour theory using perturbation theory,
giving �

(5)
MS

= 215(10)(3)MeV. Finally, this is translated into the result for the
strong coupling [349]:

αMS
s (M2

Z) = 0.11852(84). (5.253)

The quoted error is 30% smaller than that of the 2016 PDG estimate of αs =
0.1181(11) [244]. The latter includes lattice results from Refs. [331, 335, 350–354].

Kaon Weak Matrix Elements The kaon B-parameter BK is now known with
an overall accuracy of 1.3% [336, 355–359]. Moreover, the calculations of matrix
elements relevant for K0 − K̄0 mixing have been extended to include operators that
arise in extensions of the Standard Model [355, 358–363].

Lattice QCD results for kaon leptonic decay constants (more precisely: the
ratio fK+/fπ+ ) and the form factor f+(0) describing semi-leptonic K → π�ν�
decays have now reached a level of precision that enables a competitive and model-
independent determination of Vus (see Sect. 5.7.1 of the original review article).
Moreover, it is possible to test the unitarity of the first row in the CKM matrix, i.e.
the relation

|Vud |2 + |Vus |2 + |Vub|2 = 1, (5.254)

by combining experimental information with lattice results for f+(0) and fK+/fπ+ .
Neglecting the contribution from |Vub|2 ≈ 1.7 · 10−5, one finds that |Vud |2 + |Vus |2
can be determined with a total precision at the percent level, by combining the
FLAG estimates23 for f+(0) and fK+/fπ+ with the experimentally accessible
combinations |Vus |f+(0) = 0.2165(4) and |Vus/Vud |fK+/fπ+ = 0.2760(4)
[244, 364]. In QCD with dynamical light, strange and charm quarks (Nf = 2+1+1)
the result is |Vud |2 + |Vus |2 = 0.9797(74), which signals a slight tension of
2.7 standard deviations with the Standard Model. The precision of the unitarity test
can be sharpened considerably by replacing |Vud | with the value extracted from
neutron β-decay, i.e. |Vud | = 0.97417(21) [365]. It is then sufficient to provide
one additional constraint from lattice QCD, either in the form of f+(0) or the
ratio fK+/fπ+ . Inserting the lattice result for f+(0) yields |Vud |2 + |Vus |2 =
0.99884(53), which again differs from unitarity by about 2σ . Using instead the

23See the web update at http://flag.unibe.ch/.

http://flag.unibe.ch/
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lattice result for fK+/fπ+ implies |Vud |2 + |Vus |2 = 0.99986(46). Thus, first-row
unitarity can be probed with permil-level precision [247].

Heavy-Light Decay Constants and Form Factors The treatment of heavy quarks
on the lattice presents additional significant challenges: since the mass of the charm
quark is close to typical values of the inverse lattice spacing, which acts as the
ultraviolet cutoff, lattice results are prone to suffering from large discretisation
errors. Moreover, the mass of the bottom quark exceeds currently accessible values
of a−1, and specially designed methods are required for a consistent treatment. This
has been discussed extensively in Sect. 5.7.2 of the original review.

The overall precision of lattice estimates for weak hadronic matrix elements
involving charm and bottom quarks has vastly improved over the past decade. As
shown in Table 2 of FLAG 2016 [247], the leptonic decay constants of the B and Bs

mesons are now known at the level of 2%, while ratios such as fBs /fB have been
determined with even better accuracy [347, 366–373]. Since the 2016 edition of the
FLAG report, new results obtained with Nf = 2+1+1 flavours of dynamical quarks
[343, 374, 375] have pushed the overall precision to the sub-percent level, which is
an impressive achievement. Also the estimates of the individual B-parameters B̂B

and B̂Bs , their ratios and combinations with the leptonic decay constants are now
known with overall errors at the percent level [347, 370, 376, 377].

Results for form factors describing semi-leptonic decays of hadrons containing
b-quarks, such as B → (D,D∗)�ν, or even �b → p�ν have reached a
level of precision that is sufficient for competitive determinations of the CKM
matrix elements Vcb and Vub from exclusive processes. An extensive discussion
is presented in the web update of the FLAG report.

5.9.4 Nucleon Matrix Elements

The understanding of the internal structure of the nucleon in terms of the funda-
mental interactions between its constituents, the quarks and gluons, has become a
major activity within the field of lattice QCD. Structural information is encoded
in quantities such as form factors, structure functions and (generalized) parton
distribution functions (PDFs). An open problem in this context is the decomposition
of the proton’s spin in terms of the spins of quarks and gluons, as well as their
angular momentum [378, 379]. Another important issue is the so-called “proton
radius puzzle” [380], which arises due to the observed discrepancy between the
proton radius extracted from the Lamb shift in muonic hydrogen [381, 382]
compared to the more traditional determinations from electron-proton scattering
[383] or the Lamb shift in electronic hydrogen [384]. Accurate knowledge of the
electromagnetic form factors of the proton are indispensable in order to resolve—or
corroborate—this puzzle.

The determination of quantities such as nucleon form factors in lattice QCD pro-
ceeds by calculating the corresponding hadronic matrix elements between nucleon
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initial and final states. A strong motivation for computing such quantities is provided
by the fact that fundamental interactions are often probed in scattering experiments
involving nuclear targets. For instance, probing the neutrino sector requires accurate
knowledge of the scattering cross sections of neutrinos with nuclear targets. Similar
considerations apply to the search for dark matter candidates. Therefore, precise
determinations of the corresponding nucleon matrix elements are indispensable for
exploring the limits of the SM.

The past decade has seen a huge rise in the number of publications describing
lattice calculations of nucleon matrix elements. Quantities that have been studied
include

• the electromagnetic form factors of the nucleon, GE(Q
2) and GM(Q2), which

give access to the electric and magnetic charge radii of the nucleon and its
magnetic moment [385–397];

• the iso-vector axial charge of the nucleon, gA, which is a measure of the strength
of weak interaction in neutron β-decay [386, 387, 389, 392, 397–414], as well as
the scalar and tensor charges, gS and gT [386, 393, 404–406, 411, 412, 414–419];

• axial and induced pseudoscalar form factors of the nucleon [397, 407, 409, 420,
421], as well as the strange electromagnetic and axial form factors [421–426,
529] which probe the quark sea inside the nucleon;

• the pion-nucleon σ -term σπN [412, 427–438] and the strange content of the
nucleon σs [412, 429–431, 435–444]. These σ -terms are proportional to nucleon
matrix element of the flavour-diagonal scalar density, qq , which parameterizes
the rate of change in the nucleon mass due to a non-zero value of the correspond-
ing quark mass.

Recent reviews, presented at the annual conference on lattice field theory, can be
found in Refs. [445–447]. Some results on nucleon form factors and other matrix
elements are reviewed in section 3.2.5 of [448], and a dedicated chapter has been
prepared for the 2019 edition of the FLAG report. In addition, there has been a
community effort in the form of a white paper [449] in which lattice results are used
to reduce the overall uncertainties in polarized and unpolarized proton PDFs and
their moments.

The relevant nucleon hadronic matrix elements are extracted from suitable
three-point correlation functions of quark bilinears between interpolating operators
representing the initial and final-state nucleons. Examples of the corresponding
diagrams, with the initial-state nucleon placed at Euclidean time t = 0 (the source),
the final-state nucleon at time ts (the sink) and the operator insertion at time t ,
are shown in Fig. 5.24. In addition to the quark-connected diagram, in which the
operator is inserted on a valence quark line, there are also quark-disconnected
diagrams in which the operator probes the quark sea. The latter class of diagrams
must be computed to determine, for instance, iso-scalar quantities, the strangeness
form factors and the σ -terms.

Precise determinations of nucleon matrix elements with controlled statistical and
systematic errors are particularly challenging. This is a consequence of the fact that
the noise-to-signal ratio in three-point correlation functions corresponding to the
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Fig. 5.24 Quark-connected (left) and disconnected (right) diagrams representing the interaction
of the vector current with the nucleon

diagrams in Fig. 5.24 grows exponentially with a rate proportional to exp{(mN −
3
2mπ)ts}, where mN and mπ denote the nucleon and pion masses, respectively,
and ts is the source-sink separation. Techniques designed to enhance the statistical
signal at affordable numerical cost have been developed and applied, including
the truncated solver method [450] and “all-mode-averaging” [451]. Furthermore, a
technique to achieve an exponential error reduction via domain decomposition and
multi-level integration has been proposed and tested in [452, 453]. So far, it has not
been employed in actual calculations of nucleon matrix elements with dynamical
quarks.

Quark-disconnected diagrams of the type shown on the right of Fig. 5.24 are
intrinsically even noisier than their quark-connected counterparts and require special
techniques that balance statistical accuracy against numerical cost. Commonly
applied variance reduction techniques for quark-disconnected diagrams include
hierarchical probing [454, 455], the coherent source sequential propagator method
[389, 456] low-mode averaging [457, 458], the hopping parameter expansion [450,
459–461] and partitioning/dilution [275, 462]).

Despite these improvements, typical values of the source-sink separation ts for
which the signal has not yet disappeared into the noise are limited to ts � 1.5 fm.
Since the correlation function is dominated by the ground state for t, (ts − t) →
∞, it is then not guaranteed that the matrix element of interest can be extracted
without incurring a bias from unsuppressed excited state contributions, as long as
one cannot probe the region ts > 1.5 fm. Hence, in addition to “standard” systematic
effects such as lattice artefacts or finite-volume effects, one must also ensure that
the asymptotic regime of nucleon correlation functions has been correctly isolated.
Indeed, controlling excited state effects has become perhaps the most important
issue in current lattice calculations of nucleon matrix elements. The commonly used
strategies include

• fits to three-point correlation functions or suitably defined ratios of correlators
including sub-leading contributions from excited states [393, 394];

• calculations of three-point correlators summed over the operator insertion time t

[463–467]. Contributions from excited states can be shown to be parametrically
more strongly suppressed than in the standard case [468];
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• increasing the projection of nucleon interpolators onto the ground state [404,
469], as well as the construction of an operator basis for the variational method,
which allows for the projection onto the approximate ground state [456, 469,
470].

The first two approaches proceed by fitting data obtained in a finite interval of
source-sink separations ts to a function that describes the approach to the asymptotic
behaviour. To be able to resolve the sub-leading contributions from excited states in
such a fit obviously requires sufficiently precise input data.

Another challenge for lattice calculations of nucleon matrix elements is the
accurate description of the pion mass dependence. Although simulations at or near
the physical pion mass are now routinely performed, the result at the physical
point is often obtained via an extrapolation in the pion mass. The fit ansatz for
the pion mass dependence is usually derived from chiral effective theory. However,
the convergence properties of baryonic chiral perturbation theory are not as well
understood as in the mesonic sector, and it is still unclear whether the predicted
functional form provides a good description in the pion mass range over which it is
applied. It is thus mandatory to gather sufficiently precise results at small enough
pion mass, in order to control the systematic uncertainty associated with the chiral
extrapolation.

Instead of performing a detailed survey of a variety of nucleon observables, we
single out one particular quantity—the iso-vector axial charge of the nucleon, gA,
which is perhaps the most widely studied of nucleon matrix elements in lattice QCD
and serves to illustrate the current state of the art. The axial charge describes the
coupling of the W boson to the nucleon. In Minkowski space notation it is defined
by

〈
p(k, s′)

∣∣ uγ μγ5d |n(k, s)〉 = gA up(k, s
′) γ μγ5 un(k, s), (5.255)

where un(k, s) and up(k, s
′) denote the Dirac spinors of the neutron and proton

with four-momentum k and spins s and s′, respectively. The axial charge has
been measured experimentally in neutron β-decay, and the current world average
quoted in the PDG is gA = 1.2724 ± 0.0023 [471]. Provided that the experimental
sensitivity is sufficient, it may be possible to probe for scalar and tensor interactions
that are generated by loop effects or arise due to new forces in extensions of the SM.
The definitions of the associated scalar and tensor charges, gS and gT are derived
from Eq. (5.255) by replacing the axial current uγ μγ5d by the scalar density ud and
the tensor current uσμνd , respectively.

The calculation of gA is facilitated by the fact that it is derived from a forward
matrix element without any momentum transfer and, secondly, since the contri-
butions from quark-disconnected diagrams cancel in the iso-vector combination,
for mass-degenerate up and down quarks. Coupled with the fact that a precise
experimental value is known, the iso-vector axial charge is a benchmark quantity
for lattice calculations of nucleon matrix elements. Obviously, the ability of state-
of-the-art lattice calculations to reproduce the experimental result will enhance the
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Fig. 5.25 Compilation of recent results for the isovector axial charge. The vertical red band
indicates the PDG average [471]. Lattice results are labelled by PNDME 18 [411], CalLat 18
[410], PNDME 16 [406], Mainz/CLS 19 [414], PACS 18 [397], χQCD 18 [413], JLQCD 18 [412],
LHPC 12 [392], LHPC 10 [389], Mainz/CLS 17 [409], ETMC 17 [407], ETMC 15 [405], RQCD 14
[404], QCDSF 13 [403] and Mainz/CLS 12 [402]

credibility of lattice predictions for the unmeasured charges gS and gT . Figure 5.25
shows a compilation of recent results for gA, obtained in lattice QCD with Nf =
2, 2+1 and 2+1+1 flavours of dynamical quarks. While most estimates agree with
the experimental result within errors, it is clear that the overall precision of current
lattice calculations does not match that of the experiments. To state this observation
more precisely, we note that the typical total error of current lattice results is at the
level of 1–3% while experiment is an order of magnitude more precise. It should
also be mentioned that, more often than not, lattice results tend to be slightly lower
that the PDG average. Whether this is due to a remnant bias from excited state
contributions or indeed to any other systematic effect, must be investigated in future
calculations able to realize larger source-sink separations.

The tendency to underestimate gA in early lattice calculations of gA has been
attributed to unsuppressed excited state effects. In this context it is interesting to
note that recent analyses of the contributions from Nπ states to nucleon matrix
elements based on chiral effective theory [472, 473] suggest that the asymptotic
(physical) value of gA is approached from above. The different conclusions drawn
from numerical and analytic studies can only be reconciled if one succeeds in
simulating significantly larger source-sink separations at affordable cost.
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Given that lattice QCD calculations reproduce the experimental value of bench-
mark quantities such as the axial charge at the level of a few percent, it is interesting
to look at quantities that have not been measured so far. Results for the (iso-vector)
scalar and tensor charges have been reported in [386, 393, 404–406, 411, 412, 414–
419]. For both quantities one obtains gS, gT ≈ 1, and while the typical overall
uncertainty in gS is at the level of 10%, the tensor charge is determined with 3%
precision, similar to that of gA. The 2019 edition of the FLAG report contains
a detailed compilation and comparison of results for the axial, scalar and tensor
charges, as well as flavour-singlet charges and σ -terms. Calculations of these
quantities have matured to a level which allows for global averages to be determined.

Lattice calculations of nucleon matrix elements is a rich subject, and while a
comprehensive discussion of other quantities such as form factors and moments of
PDFs is beyond the scope of this short review, we refer the reader to recent reviews
[445–447], specific sections of [448] and the white paper on PDFs [449].

5.9.5 Hadronic Contributions to the Muon Anomalous
Magnetic Moment

The SM describes with great accuracy and precision the properties of the con-
stituents of the visible matter in the universe but leaves several profound questions
unanswered. For instance, it cannot account for the matter-antimatter asymmetry
and does not explain the vast hierarchy between the electroweak scale and the Planck
mass. Most prominently, the SM cannot account for the presence of dark matter in
the universe for which there is overwhelming observational evidence. Against this
backdrop, the exploration of the limits of the SM and the search for “new physics”
has become a major activity in particle physics. Traditionally, high-energy particle
colliders have had the highest discovery potential. However, despite the fact that
the LHC is the most powerful accelerator in the world, new particles that can, for
instance, explain the dark matter puzzle have not been observed in the expected
region. Therefore, additional search strategies must be pursued to detect evidence
for physics beyond the SM.

Observables that can be measured with very high precision and for which
similarly accurate theoretical predictions exist at the same time, play an increasingly
important rôle for exploring the limits of the SM. One such quantity is the
anomalous magnetic moment of the muon, aμ ≡ 1

2 (gμ − 2), where gμ denotes
the muon’s gyromagnetic ratio. There has been a persistent tension of about 3.5
standard deviations between the measured value and the SM prediction [244]:

a
exp
μ − aSM

μ = (266 ± 76) · 10−11. (5.256)

As described in detail in the extensive reviews in Refs. [474] and [475], the SM
estimate of the anomalous magnetic moment receives contributions from QED, the
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weak and the strong interactions, i.e.

aSM
μ = aQED

μ + aweak
μ + a

strong
μ . (5.257)

While QED effects account for about 99.994% of the absolute value of aSM
μ , its

total uncertainty is completely dominated by the contribution from a
strong
μ . Since the

latter is mostly due to hadronic effects that are intrinsically non-perturbative, it is
clear that special attention must be paid to their reliable evaluation.

The most important quantum corrections to aSM
μ arising from strong interaction

physics are the leading hadronic vacuum polarization (HVP) and hadronic light-by-
light scattering (HLbL) contributions. The HVP contribution, ahvp

μ , which arises at
order α2 (where α is the fine structure constant), can be expressed in terms of a dis-
persion integral of the cross section ratio R(s) = σ(e+e− → hadrons)/σ (e+e− →
μ+μ−), multiplied by a known kernel function. At small values of the centre-of-
mass energy s, the dispersion integral is evaluated using experimental data for the
R-ratio R(s) as input [476–480]. For instance, the recent analysis of Ref. [479],
which is based on the available data for e+e− → hadrons, produced an estimate of
a

hvp
μ = (693.1 ± 3.4) · 10−10. While the total error is at the level of 0.5%, it is clear

that experimental uncertainties enter the SM prediction for aμ in this approach.
The HLbL contribution has been quantified mostly using hadronic models,

although efforts are under way to formulate and apply a dispersive or data-driven
framework to treat some of the dominant sub-processes [481–491]. The current SM
estimate aSM

μ is based on model calculations such as the “Glasgow consensus”, i.e.
ahlbl
μ = (105 ± 26) · 10−11 [492]. Other studies, which have produced consistent

results, can be found in Refs. [474, 478, 493].
Given the importance of aμ for testing the limits of the SM, it is crucial to verify

the current estimates of ahvp
μ and ahlbl

μ and possibly reduce their overall errors using
an ab initio approach such as lattice QCD. Given that two new experiments (E989 at
Fermilab and E34 at J-PARC) are set to improve the precision of the measurement of
aμ by a factor four, the importance of reliably estimating the hadronic contributions
has become even higher. In order to make an impact, lattice QCD must be able to
constrain a

hvp
μ with sub-percent accuracy, while an estimate of ahlbl

μ at the level
of 10% would already be a major step forward. Both tasks, however, present a
considerable challenge to lattice QCD. The current status of lattice calculations of
a

hvp
μ and ahlbl

μ was reviewed extensively in Ref. [494], which can be consulted for
details. Here we present merely an overview of the main issues and a guide to the
literature.

The hadronic vacuum polarization contribution, ahvp
μ , is accessible in lattice QCD

via different integral representations involving the correlator of the electromagnetic
current. The first possibility is to consider a convolution integral over Euclidean
momenta Q2 of the subtracted vacuum polarization function [500, 501]. The second
possibility is the so-called time-momentum representation defined in Ref. [502], in
which the product of the spatially summed vector correlator G(x0) and a kernel
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function is integrated over the Euclidean time x0. A variant of the time-momentum
representation uses the time moments of G(x0) [503]. Finally, there also exists
a Lorentz-covariant formulation in coordinate space [504] involving the point-to-
point vector correlator G(x, y).

In order to meet the precision goal of sub-percent uncertainty, it is mandatory to
have good control over the infrared regime which makes a sizeable contribution to
a

hvp
μ . In the formulation of Refs. [500, 501] this implies that momenta corresponding

to Q2 � m2
μ must be included, since this is where the convolution integral

receives its dominant contribution. Instead, in the time-momentum representation
or the Lorentz-covariant formulation one must constrain the long-distance regime
of the correlator sufficiently well. The statistical accuracy that one can attain
for a

hvp
μ is affected by the well-known noise problem encountered for the vector

correlator, i.e. the fact that the signal-to-noise ratio increases exponentially at large
distances.24 Another limiting factor for the overall precision of a

hvp
μ in lattice

QCD is the knowledge of the lattice scale [499, 505]. At first sight this may seem
surprising, given that a

hvp
μ is a dimensionless quantity. However, employing the

time-momentum representation, one easily sees that the lattice scale enters through
the combination (x0mμ)

2 in the kernel function. Similar arguments exist for the

other representations of a
hvp
μ . Furthermore, at the level of sub-percent precision, it

is necessary to include the contributions from quark-disconnected diagrams and the
effects from isospin breaking (see Sect. 5.9.2). All of this is explained in great detail
in Ref. [494].

First exploratory calculations of ahvp
μ in full QCD were published in 2008 [506],

and in the following years several studies appeared [497, 507–509], employing a
range of different discretisations of the quark action, which were mostly aimed
at investigating systematic effects. The most recent calculations are focussed on
reducing the overall uncertainties [495, 496, 498, 499, 510–515, 530]. A comparison
of recent estimates for ahvp

μ from lattice QCD to results obtained via the dispersive
approach is shown in Fig. 5.26. As of now, current calculations cannot match
the accuracy of the dispersive approach, but efforts are under way to reduce the
uncertainties to a level that makes the lattice approach competitive with data-driven
methods [494, 516].

In order to determine the hadronic light-by-light scattering contribution, it is
necessary to formulate the problem in such a way that ahlbl

μ is expressed in terms
of quantities that can be computed on the lattice with affordable effort. Several
different strategies have been proposed and are currently being pursued:

In a first method, the matrix element of the electromagnetic current between
explicit muon initial and final states is computed is QCD+QED [517]. In order to
isolate the desired light-by-light scattering contribution, one has to perform a non-
perturbative subtraction. While the method has produced estimates in the expected

24This is similar to, but less severe, than the noise problem encountered in nucleon correlation
functions discussed in Sect. 5.9.4 of this review.
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Fig. 5.26 Compilation of recent results for the hadronic vacuum polarisation contribution in
units of 10−10. The three panels represent calculations with different numbers of sea quarks.
Lattice results are labelled by ETMC 18 [515], BMW 17 [495], HPQCD 16 [496], ETMC 13
[497], Mainz/CLS 19 [530], RBC/UKQCD 18 [498], and Mainz/CLS 17 [499]. The phenomeno-
logical determinations based on the R-ratio are labelled as HLMNT 11 [477], DHMZ 11 [476],
Jegerlehner 17 [478] and KNT 18 [480]. The red vertical band denotes the estimate from dispersion
theory quoted in KNT 18 [480]

range, statistical errors are large, as a result of the cancellation between two large
numbers [518].

In another method proposed by the RBC/UKQCD Collaboration [519, 520],
the light-by-light scattering diagram is evaluated by inserting three explicit photon
propagators. The positions of the insertion of these propagators are then sampled
stochastically. In this way, results for the quark-connected and the leading quark-
disconnected contributions have been obtained, i.e.

(ahlbl
μ )conn = (116.0±9.6)·10−11, (ahlbl

μ )disc = (−62.5±8.0)·10−11. (5.258)

The sum of the two contributions gives ahlbl
μ = (53.5 ± 13.5) · 10−11 which

differs from the Glasgow consensus by a factor two. However, before jumping to
conclusions one must take into account that systematic effects have not yet been
fully quantified in these calculations.

The Mainz group has proposed a method in which the QED kernel function is
computed semi-analytically in infinite volume [521–524]. This has the advantage
that large finite-volume effects arising from the massless photon mode are absent.
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The method has yet to produce explicit estimates for ahlbl
μ . A variant was proposed

by RBC/UKQCD in Ref. [525]. Another project of the Mainz group has focussed on
the forward light-by-light scattering amplitude, which can be linked via the optical
theorem and dispersive sum rules to models of the cross section for the process
γ ∗γ ∗ → hadrons [526, 527]. The results provide an important test for model
estimates of ahlbl

μ .
Finally, lattice QCD calculations can also be used to directly test model estimates

of the expected dominant contribution to ahlbl
μ from the pion pole, which requires

knowledge of the transition form factor for π0 → γ ∗γ ∗. The calculation of Ref.
[528], which was performed in two-flavour QCD, gives

(ahlbl
μ )π

0 = (65.0 ± 8.3) · 10−11 (5.259)

which is in very good agreement with model estimates [491]. It will be interesting
to extend this calculation by including the corresponding contributions of the η and
η′ mesons.

This brief survey demonstrates that lattice QCD contributes in many different
and complementary ways to constrain the hadronic contributions to the muon g − 2
more precisely.

5.9.6 Concluding Remarks

In this short review we have charted the progress of lattice QCD calculations over
more than a decade, i.e. since the publication of the original review article. Back in
2007, lattice QCD was on the verge of providing estimates for hadronic observables
from first principles, which were of immediate phenomenological relevance. In the
meantime, lattice QCD has become an indispensable tool in particle and hadron
physics: In addition to to providing accurate estimates of SM parameters and input
quantities for analyses in flavour physics, lattice QCD is now also making inroads
into field such as nucleon structure and precision observables. This underlines the
important role of lattice calculations for exploring the limits of the SM and searches
for new physics.

Furthermore, studying hadronic interactions, i.e. the physics of resonances and
multi-hadron systems, has become a major activity in lattice QCD and also serves
as a basis for the understanding of light nuclei from first principles. Other important
applications of the lattice formulation that have not been covered in this article
are studies of matter under extreme conditions. Indeed, many features of the
QCD phase diagram and properties of the quark-gluon plasma that are otherwise
inaccessible can nowadays be obtained reliably from lattice calculations. Perhaps
the most significant development since Ken Wilson’s 1989 remark, quoted in the
introduction, is the fact that there is now a vigorous interaction between lattice QCD
and experiment.
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93. SPQcdR Collaboration, D. Bećirević, V. Lubicz and C. Tarantino, Phys. Lett. B558 (2003) 69,

hep-lat/0208003.
94. JLQCD Collaboration, S. Aoki et al., Phys. Rev. Lett. 82 (1999) 4392, hep-lat/9901019.
95. JLQCD Collaboration, T. Ishikawa et al., Phys. Rev. D78 (2008) 011502.
96. HPQCD Collaboration, Q. Mason, H.D. Trottier, R. Horgan, C.T.H. Davies and G.P. Lepage,

Phys. Rev. D73 (2006) 114501, hep-ph/0511160.
97. M. Göckeler et al., Phys. Rev. D73 (2006) 054508, hep-lat/0601004.
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138. D. Bećirević et al., Phys. Lett. B487 (2000) 74, hep-lat/0005013.
139. R.S. Van de Water and S.R. Sharpe, Phys. Rev. D73 (2006) 014003, hep-lat/0507012.
140. M. Guagnelli, J. Heitger, C. Pena, S. Sint and A. Vladikas, Nucl. Phys. B (Proc. Suppl.) 106

(2002) 320, hep-lat/0110097.
141. R. Frezzotti and G.C. Rossi, JHEP 10 (2004) 070, hep-lat/0407002.
142. A. Donini, V. Gimenez, G. Martinelli, M. Talevi and A. Vladikas, Eur. Phys. J. C10 (1999)

121, hep-lat/9902030.
143. ALPHA Collaboration, M. Guagnelli, J. Heitger, C. Pena, S. Sint and A. Vladikas, JHEP 03

(2006) 088, hep-lat/0505002.
144. RBC and UKQCD Collaborations, D.J. Antonio et al., Phys. Rev. Lett. 100 (2008) 032001,

hep-ph/0702042.
145. HPQCD and UKQCD Collaborations, E. Gamiz et al., Phys. Rev. D73 (2006) 114502, hep-

lat/0603023.
146. Y. Aoki et al., Phys. Rev. D72 (2005) 114505, hep-lat/0411006.
147. UKQCD Collaboration, J.M. Flynn, F. Mescia and A.S.B. Tariq, JHEP 11 (2004) 049, hep-

lat/0406013.
148. RBC Collaboration, T. Blum et al., Phys. Rev. D68 (2003) 114506, hep-lat/0110075.
149. CP-PACS Collaboration, A. Ali Khan et al., Phys. Rev. D64 (2001) 114506, hep-lat/0105020.
150. N. Garron, L. Giusti, C. Hoelbling, L. Lellouch and C. Rebbi, Phys. Rev. Lett. 92 (2004)

042001, hep-ph/0306295.
151. MILC Collaboration, T.A. DeGrand, Phys. Rev. D69 (2004) 014504, hep-lat/0309026.
152. ALPHA Collaboration, P. Dimopoulos et al., Nucl. Phys. B749 (2006) 69, hep-ph/0601002;

Nucl. Phys. B776 (2007) 258, hep-lat/0702017.
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157. D. Bećirević et al., Nucl. Phys. B705 (2005) 339, hep-ph/0403217.
158. H. Leutwyler and M. Roos, Z. Phys. C25 (1984) 91.
159. UKQCD Collaboration, P.A. Boyle, J.M. Flynn, A. Jüttner, C.T. Sachrajda and J.M. Zanotti,

JHEP 05 (2007) 016, hep-lat/0703005.
160. P.F. Bedaque, Phys. Lett. B593 (2004) 82, nucl-th/0402051.
161. G.M. de Divitiis, R. Petronzio and N. Tantalo, Phys. Lett. B595 (2004) 408, hep-lat/0405002.
162. C.T. Sachrajda and G. Villadoro, Phys. Lett. B609 (2005) 73, hep-lat/0411033.



5 QCD on the Lattice 253

163. UKQCD Collaboration, J.M. Flynn, A. Jüttner and C.T. Sachrajda, Phys. Lett. B632 (2006)
313, hep-lat/0506016.

164. F.J. Jiang and B.C. Tiburzi, Phys. Lett. B645 (2007) 314, hep-lat/0610103.
165. C. Dawson, T. Izubuchi, T. Kaneko, S. Sasaki and A. Soni, Phys. Rev. D74 (2006) 114502,

hep-ph/0607162.
166. UKQCD and RBC Collaborations, D.J. Antonio et al., (2007), hep-lat/0702026; UKQCD and

RBC Collaborations, P.A. Boyle et al., Phys. Rev. Lett. 100 (2008) 141601, arXiv:0710.5136
[hep-lat].

167. J. Bijnens and P. Talavera, Nucl. Phys. B669 (2003) 341, hep-ph/0303103.
168. M. Jamin, J.A. Oller and A. Pich, JHEP 02 (2004) 047, hep-ph/0401080.
169. V. Cirigliano et al., JHEP 04 (2005) 006, hep-ph/0503108.
170. W.J. Marciano, Phys. Rev. Lett. 93 (2004) 231803, hep-ph/0402299.
171. ALPHA Collaboration, J. Heitger, R. Sommer and H. Wittig, Nucl. Phys. B588 (2000) 377,

hep-lat/0006026.
172. JLQCD Collaboration, S. Aoki et al., Phys. Rev. D68 (2003) 054502, hep-lat/0212039.
173. MILC Collaboration, C. Aubin et al., Phys. Rev. D70 (2004) 114501, hep-lat/0407028.
174. S.R. Beane, P.F. Bedaque, K. Orginos and M.J. Savage, Phys. Rev. D75 (2007) 094501, hep-

lat/0606023.
175. RBC and UKQCD Collaborations, C. Allton et al., Phys. Rev. D76 (2007) 014504, hep-

lat/0701013.
176. HPQCD Collaboration, E. Follana, C.T.H. Davies, G.P. Lepage and J. Shigemitsu, Phys. Rev.

Lett. 100 (2008) 062002, arXiv:0706.1726 [hep-lat].
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194. D. Bećirević et al., Nucl. Phys. B618 (2001) 241, hep-lat/0002025.
195. UKQCD Collaboration, L. Lellouch and C.J.D. Lin, Phys. Rev. D64 (2001) 094501, hep-

ph/0011086.
196. UKQCD Collaboration, K.C. Bowler et al., Nucl. Phys. B619 (2001) 507, hep-lat/0007020.
197. G.M. de Divitiis, M. Guagnelli, F. Palombi, R. Petronzio and N. Tantalo, Nucl. Phys. B672

(2003) 372, hep-lat/0307005.



254 H. Wittig

198. M. Della Morte et al., JHEP 0802 (2008) 078, arXiv:0710.2201 [hep-lat].
199. D. Guazzini, R. Sommer and N. Tantalo, JHEP 0801 (2008) 076, arXiv:0710.2229 [hep-lat].
200. C.W. Bernard et al., Phys. Rev. Lett. 81 (1998) 4812, hep-ph/9806412.
201. A.X. El-Khadra, A.S. Kronfeld, P.B. Mackenzie, S.M. Ryan and J.N. Simone, Phys. Rev. D58

(1998) 014506, hep-ph/9711426.
202. JLQCD Collaboration, S. Aoki et al., Phys. Rev. Lett. 80 (1998) 5711.
203. CP-PACS Collaboration, A. Ali Khan et al., Phys. Rev. D64 (2001) 034505, hep-lat/0010009.
204. MILC Collaboration, C. Bernard et al., Phys. Rev. D66 (2002) 094501, hep-lat/0206016.
205. A. Ali Khan et al., Phys. Lett. B427 (1998) 132, hep-lat/9801038.
206. JLQCD Collaboration, K.I. Ishikawa et al., Phys. Rev. D61 (2000) 074501, hep-lat/9905036.
207. CP-PACS Collaboration, A. Ali Khan et al., Phys. Rev. D64 (2001) 054504, hep-lat/0103020.
208. S. Collins et al., Phys. Rev. D60 (1999) 074504, hep-lat/9901001.
209. JLQCD Collaboration, S. Aoki et al., Phys. Rev. Lett. 91 (2003) 212001, hep-ph/0307039.
210. M. Wingate, C.T.H. Davies, A. Gray, G.P. Lepage and J. Shigemitsu, Phys. Rev. Lett. 92

(2004) 162001, hep-ph/0311130.
211. D0 Collaboration, V.M. Abazov et al., Phys. Rev. Lett. 97 (2006) 021802, hep-ex/0603029.
212. CDF Collaboration, A. Abulencia et al., Phys. Rev. Lett. 97 (2006) 062003, hep-ex/0606027.
213. V. Gadiyak and O. Loktik, Phys. Rev. D72 (2005) 114504, hep-lat/0509075.
214. V. Gimenez and G. Martinelli, Phys. Lett. B398 (1997) 135, hep-lat/9610024.
215. V. Gimenez and J. Reyes, Nucl. Phys. B545 (1999) 576, hep-lat/9806023.
216. UKQCD Collaboration, A.K. Ewing et al., Phys. Rev. D54 (1996) 3526, hep-lat/9508030.
217. J.C. Christensen, T. Draper and C. McNeile, Phys. Rev. D56 (1997) 6993, hep-lat/9610026.
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