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Abstract. It is generally very difficult to optimize the routing policies
in optical networks with dynamic traffic. Most widely-used routing poli-
cies, e.g., shortest path routing and least congested path (LCP) routing,
are heuristic policies. Although the LCP is often regarded as the best-
performing adaptive routing policy, we are often eager to know whether
there exist better routing policies that surpass these heuristics in perfor-
mance. In this paper, we propose a framework of reinforcement learning
(RL) based routing scheme, that learns routing decisions during the inter-
actions with the environment. With a proposed self-learning method, the
RL agent can improve its routing policy continuously. Simulations on
a ring-topology metro optical network demonstrate that, the proposed
scheme outperforms the LCP routing policy.
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1 Introduction

Routing of optical networks has been under research for more than two decades
[4,9,17]. There are basically three approaches: fixed routing, fixed-alternative
routing [6,14], and adaptive routing [3,11]. For the fixed routing, one pre-
determined route is always chosen for a given source-destination pair. If the
route is unavailable, the call request is blocked. For the fixed-alternative rout-
ing, there is an ordered list of fixed candidate routes for each source-destination
pair. Upon call request, each route is tried following the order until a route is
found available; if no route is available, the request is blocked. For the adaptive
routing, the path is chosen dynamically depending on the network status upon
the request arrival. Among all routing policies, adaptive routing generally gives
the best performance [17].
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Most well-known adaptive routing policies are heuristic policies. For example,
the adaptive shortest-cost-path routing tries to minimize the resources used for
each connection upon its arrival, aiming to hold more simultaneous connections.
The least congest path (LCP) routing balances the load over the network, so as
to avoid bottlenecks. Among the adaptive routing policies, the LCP routing is
generally regarded to have the best performance [11]. These heuristic adaptive
routing policies can be regarded as to capture some features of the network
status and then intuitively exploit the features to achieve good performance. For
instance, the LCP policy considers the feature of load on each available path and
select the least congested path. As known, besides the load, there are many other
features that may affect the network performance, e.g., the number of hops, the
link availability, the traffic in service, the topology, etc. From this perspective, A
good adaptive policy needs to include enough features and properly exploit them,
while on the other hand, in a realistic situation, the variations of network status
are often too many to be summarized. These variations come from the change of
spectrum availability of each link, the change of remaining holding time of each
call, etc. Even if we only consider a simplified version of network status with only
the spectrum availability and source-destination pairs, a huge number of network
status still exit. Consider the following example. For a five-node bi-directional
ring-topology network, with five wavelengths on each link, and only four source-
destination pairs (1-2, 2-1, 1-3, 3-1), there are over four billion simplified network
status. Therefore, making good adaptive routing policies is challenging, which is
a major reason that heuristic algorithms were popular over the past decades.

Recently, Google successfully applied reinforcement learning in playing Atari
games and achieved above-human-level performance [12]. The RL-based agent
can derive efficient representations of the environment, and use these to gener-
alize past experience to new situations. This gives us a possible way to over-
come the difficulty of feature extraction for adaptive routing. In [2,8,10,13], the
authors apply reinforcement learning to the routing of optical networks. These
methods allow the RL-based agent to learn a routing policy during the interac-
tion with the network environment. In a more recent work [5], a Deep Q-Network
(DQN) algorithm is used to capture the features inspired by [12] and obtain some
performance improvement compared to the shortest path routing policy. While
we still have the following open question: whether there are better routing poli-
cies than the existing ones, and how can we find the best routing policies. This
paper tries to answer these questions.

In this paper, we propose a RL-based self-learning method. It is based on
the following observation: suppose we already have one routing policy, if we can
change this policy with just one better action under one specific circumstance,
we should have a better policy. With our proposed method, the RL agent changes
its current policy according to the competition result of the current policy and
a reference policy. In this way, the RL agent should be able to learn for a policy
that is no worse than the reference policy. Then, the reference policy is period-
ically updated with the learnt policy. By repeating the above learning process
iteratively, the RL agent can improve its policy continuously.
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2 RL for Optical Network Routing

In this section, we first model the optical network routing problem into an RL
problem with self-learning (Subsects. 2.1 and 2.2). Then, we introduce how to
apply DQN algorithm to the routing problem in Subsect. 2.3. Due to space
limitation, the basic knowledge of RL will not be covered in this paper, and
readers are strongly recommended to refer [16] for better understanding of this
paper.

2.1 Mathematical Representation of State and Action

We consider the RL state only at the time when a new connection request arrives.
That means at time t, t + 1, t + 2, . . ., there is one and only one connection
request arriving, and there is no connection request arrivals in the time periods
between.

The state at time t, denoted by St is composed of two parts: the network
state St

net and the arrival traffic state St
tra. St =

[
St

net, St
tra

]
.

The network state St
net, representing the resource occupation state at time

t, is defined as,

St
net =

⎡

⎢
⎢
⎢
⎢
⎣

b11(t), · · · , b1w(t), · · · , b1W (t)
· · ·

b11(t), · · · , blw(t), · · · , blW (t)
· · ·

bL1(t), · · · , bLw(t), · · · , bLW (t)

⎤

⎥
⎥
⎥
⎥
⎦

, (1)

where,

blw(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if wavelength w of link l is
available at time t

−1, if wavelength w of link l is
unavailable at time t.

(2)

From Eqs. (1) and (2), network state St
net is an L×W matrix, with element

blw(t) denoting the availability of wavelength w on link l. W is the total number
of wavelengths and L is the total number of links.

The arrival traffic state at time t (i.e., upon new traffic arrival) is St
tra, which

is defined as Eq. (3). K is the total number of paths for the newly arrived traffic
under study.

St
tra =

⎡

⎢
⎢
⎢
⎢
⎣

b′
11(t), · · · , b′

1k(t), · · · , b′
1K(t)

· · ·
b′
11(t), · · · , b′

lk(t), · · · , b′
lK(t)

· · ·
b′
L1(t), · · · , b′

Lk(t), · · · , b′
LK(t)

⎤

⎥
⎥
⎥
⎥
⎦

, (3)
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where,

b′
lk(t) =

{
1, if link l is not included by path k

−1, if link l is included by path k.
(4)

St
net is an L × W matrix, and St

tra is an L × K matrix. St is to connect the
two matrix along the rows, and therefore an L × (W + K) matrix.

The action of the routing problem is to choose one path from the K paths
under study. Therefore, action At ∈ {1, 2, . . . ,K}.

2.2 Reward

The choice of reward is essential for RL, since the objective of RL is to max-
imize the expected cumulative reward. Well-designed reward setting should be
in consistent with the objective of the routing, i.e., to minimize the call block-
ing probabilities. As for the routing problem, the evaluation of a routing policy
is not determined by one routing decision, but by a sequence of routing deci-
sions. Therefore, the reward should reflect the performance of an action within
a sequence. Although we have feed-back from future rewards by discounting,
this kind of reward cannot fit well with the objective to minimize the blocking
probabilities.

Fig. 1. The illustration of self learning.

In this paper, the reward is set based on the concept of self-learning, which is
inspired by the method of “self-play” used by Alpha Zero [15]. The reward is set
by a comparison of the network running a learning routing policy with a reference
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network running a reference routing policy, as illustrated in Fig. 1. It includes
three parts: the main network, the reference network and the comparator.

The main network is the optical network adopting the learning routing poli-
cies, with ε-greedy approach used to balance the exploration and exploitation.
When an arrival is blocked, the network state is recorded and the traffic till
the next block is also recorded.

The reference network is a virtual optical network for comparison. It is con-
figured following the recorded network state from the main network, and
the recorded traffic is injected to this network. A reference routing policy is
adopted. The performance of the saved network can be evaluated by simula-
tions from the initial network state and traffic injected with the given policy.

The comparator compares the two networks with its two components: sequence
comparator and action comparator:
1. Sequence comparator compares the sequence of actions, by considering

which sequence incurs a blocking state earlier. There are three kinds of
comparison outputs: “better”, “same”, and “worse”. If the main network
incurs blocking earlier than the reference network, we regard the sequence
of actions from the learning routing policy performs worse than the ref-
erence, then the comparator outputs “worse”. Similarly, if the main net-
work incurs blocking at the same time with the reference network, the
comparator outputs “same”. Finally, if the main network incurs blocking
later than the reference network, the comparator outputs “better”.

2. Action comparator compares each action in the sequence. The sequence
comparator gives a general impression of the performance of the actions
within a sequence, while not every action is better than (worse than/same
with) the actions in the reference policy. Therefore, we should compare
them one by one. The action comparator considers each state-action pairs
from the reference network. It compares the same state but with action
from the learning policy. It outputs two results: same action or different
action.

Finally, based on the comparison results, the reward can be set, as given
by Table 1. An intuitive explanation on this kind of setting is as follow. (1) If
action comparator outputs “same” or the sequence comparator outputs “same”,
the actions of the main network and that of the reference network tend to have
little difference in affecting the performance, therefore, a relatively small and
positive reward 0.1 is given. (2) If actions of the two networks are different,
and the sequence in the main network performs better, the action of the main
network is potentially a key action to lead to a better sequence, therefore, a
relatively big and positive reward 1.0 is given. (3) If actions of the two networks
are different, and the sequence in the main network performs worse, this action
is potentially a key action to lead to a worse sequence, therefore, a relatively big
but negative reward −1.0 is given. (4) If blocking occurs, give a very big negative
reward −10. Since the rewards are set by comparisons, policies better than the
reference policy can be obtained, when maximizing the cumulative reward.
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Table 1. The setting of reward

Sequence comparison Action comparison Reward

Accept Better than ref = 1.0

�= 0.1

Same with ref = 0.1

�= 0.1

Worse than ref = 0.1

�= −1.0

Block NA NA −10.0

= means same actions, �= means different actions.

Another question is how to choose the reference policy. It can be a well-
known policy, e.g., shorted path routing or least congest path routing, or it can
be the learning policy as well. When the reference policy is some known policy,
the learner is learning a policy no worse than the known policy. If the reference
policy is the learning policy itself, then it becomes “self-learning”. In this case,
the reference policy is the learnt policy with greedy action, and in the main
network, the ε-greedy policy can be used to explore the state space. After some
time, the reference policy can be updated with the newly learnt policy. In this
way, the RL-agent improves itself continuously.

2.3 Learning with Deep Q-Network

Due to the curse of dimensionality, we use a neural network (NN) shown by
Fig. 2 as the Q-value function approximator. The input of the neural network
is the state at each time step, St, and the output is the predicted action-value
(Q-value) for each individual action for the input state. In this way, the Q-values
of all actions is computed with a single forward pass at the same time for a given
state.

Fig. 2. The NN for Q-value approximation (dropout ignored).
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The neural network with weights Θ is used as the Q-network. Denote
Q(s, a;Θ) as the parameterized Q-value for state s and action a. Denote
Q(s′, a′;Θ) as the parameterized Q-value for the next state s′ and the next
action a′. The NN can be trained by adjusting Θi at iteration i to reduce the
mean-squared error in the Bellman equation, where the optimal target value is
given by:

Target: y = r + γ max
a′

Q(s′, a′;Θ),

r is the instantaneous reward, γ is the discount factor, γ < 1. (5)

Then, the loss function at each iteration i is given by the mean-squared error
of between the Q-network and the Q-learning targets,

Li(Θi) = E
s,a,r,s′

[
(yi − Q(s, a;Θi))

2
]

= E
s,a,r,s′

[(
r + γ max

a′
Q(s′, a′;Θ−

i ) − Q(s, a;Θi)
)2

]
.

(6)

A gradient descent can be applied to minimize the loss function. Besides,
experience replay [12] is adopted, to randomly sample previous transitions, so
as to smooth the training sample distribution over past behaviors. Moreover,
several techniques are also used to facilitate the learning, including mini batch
gradient descent, dropout in NN, and Adam optimizer [7]. The DQN algorithm is
shown by Algorithm 1. The experience replay technique is shown. For simplicity,
the reward setting part is ignored. To get a full picture, Algorithm 1 and Fig. 1
need to be combined.

In the Algorithm 1, two steps are taken recursively: the sampling and the
training. During the sampling, samples of transitions are stored to the replay
memory. During the training, samples are randomly chosen from the replay
memory to train the neural network. Since the samples are chosen with reward
given by self-comparing, the samples are generally better than the current rout-
ing policy. Therefore, the routing policies becomes better and better. The learnt
policy is embedded in the trained Q-networks, arg maxa Q(s, a;Θ). The policy
in the reference network is updated periodically.

3 Simulations

A discrete event simulator written in Python is used to simulate the traffic and
the resource provision of the optical network. The DQN reinforcement learning
part is written based on TensorFlow [1].

3.1 Parameter Settings

Consider a five-node bidirectional-ring-topology metro network. The key nota-
tions are listed in Table 2 for convenience, and they are also explained in the con-
text. The total number of wavelength is five. The traffic pattern is non-uniform



474 Y.-C. Huang et al.

Algorithm 1. Reinforcement learning algorithm
1 #INITIALIZATION
2 Create and initialize the optical network
3 Create and initialize the neural network
4 Initialize replay memory D
5 while not stopping criterion do
6 while not policy update criterion do
7 #SAMPLING
8 while not sampling stopping criterion do
9 Upon traffic coming, store state to St

10 With probability ε select a random action At

11 Otherwise select At = arg max
A

Q(St, A; Θ)

12 Execute action At and wait until new traffic coming, get new state
St+1

13 Get reward rt+1

14 Store transition (St, At, rt+1, St+1) in D

15 end while
16 #TRAINING
17 while not training stopping criterion do
18 Sample a random minibatch of transitions (s, a, r, s′) from D
19 Set y = r + γ max

a′ Q(s′, a′; Θ)

20 Perform a gradient step on (y − Q(s, a; Θ))2 with respect to the
neural network parameters Θ

21 end while

22 end while
23 Policy is arg max

a
Q(s, a; Θ)

24 Update policy in the reference network

25 end while
26 Policy is arg max

a
Q(s, a; Θ)

with traffic matrix given as follows:

T = λ

⎡

⎢
⎢
⎢
⎢
⎣

0, 1, 1, 0, 0
1, 0, 0, 0, 0
1, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0

⎤

⎥
⎥
⎥
⎥
⎦

. (7)

This means, traffic only exists for source-destination pair (1, 2), (1, 3), (2, 1), and
(3, 1). The arrival processes are independent Poisson processes, with arrival rate
λ, and the service time distributions follow exponential distributions with aver-
age service time μ. In this bidirectional ring topology, routing can be done clock-
wise or anti-clockwise. Therefore, for each accepted request, only two actions can
be chosen: routing clockwise or anti-clockwise. For wavelength assignment, the
first-fit strategy is used.
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Table 2. Key parameters

Notation Meaning Value

Optical network N Number of nodes 5

L Number of links L = 2N = 10

W Number of wavelengths 5

K Number of routing paths 2

Traffic λ Arrival rate 0.4

μ Average service time 1.0

RL agent γ Discount rate 0.99

α Learning rate 1 × 10−5

ε Explore rate 0.1

B Number of hidden layers of the
Q-network

3

H Number of neurons for each hidden
layer
same number for each hidden layer

{32, 256, 1024}

P Dropout probability for NN 0.5

A five-layer forward feed fully-connected neural network is chosen as the
function approximator for the state-action value function. The neural network is
illustrated in Fig. 2. Recall that the state of the RL algorithm is a L × (W + K)
matrix. With total number of link L = 10, total number of wavelength W = 5,
and total number of paths K = 2, the state is a 10 × 7 matrix. This matrix is
reshaped to a 70×1 array and forms the input layer of the neural network. Then
it is followed by three hidden layers with number of nodes H1,H2,H3. The ReLU
activation function is chosen for all hidden layers. Besides, not shown in Fig. 2,
the dropout technique is introduced in the neural network to avoid overfitting,
with the dropout probability 0.5. Besides, the discount rate γ is 0.99, the explore
rate ε is 0.1, and the learning rate α is 1 × 10−5.

3.2 Learning for a Reference Policy

With the aim of outperforming the existing routing policies, we should check
first whether the RL-routing can learn to be a given policy, i.e., policy-fitting.
Therefore, we run a set of simulations to fit the RL-routing to be the best-
performed LCP routing. We compare the actions given by the Q-network and
those given by the LCP policy. If the actions are the same, then give reward 1,
otherwise, give reward −1. The simulation results are shown in Figs. 3 and 4.
In the two figures, the x-axis is the number of arrivals batches (1 arrival batch
includes 1000 arrivals), i.e., the results are collected every arrival batches (every
1000 arrivals). Figure 3 shows the blocking probabilities of LCP and three RL-
based policies with different number of nodes in the hidden layer of the Q-
networks. The accuracy shown by Fig. 4 representing the portion that the actions
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Fig. 3. Performance of RL-routing with LCP fitting.

Fig. 4. The accuracy of fitting LCP by RL routing.

from RL routing are the same with those from LCP policy. From Fig. 3, we can
see that the blocking probabilities become similar with LCP soon (after 2000
bathes) for all Q-networks. While from Fig. 4, it is revealed that only the case
with number of hidden layer nodes 1024 fits the LCP after 4000 batches. We
can make two points here: (1) To fit even a simple policy such as LCP, we need
a large enough neural network. (2) There are many different policies that give
similar performance with the LCP.

3.3 Self learning

Taking the RL-routing policy that is already fit to the LCP, we apply the self-
learning process to pursue better policies. The simulation results are shown in
Fig. 5. It is demonstrated by Fig. 5 that the RL-routing, incurs some degradation
at the beginning of the training, gradually it outperforms LCP and maintains
the advantage over LCP during the training. This demonstrate that, by the
self-learning method, indeed better routing policies can be learnt. We should
also notice that, the performance of the learnt policies incurs some variations.
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Fig. 5. Performance of RL-routing with self-learning.

These variations may come from the exploration and the variations of the refer-
ence policy to be compared.

4 Discussion

This is an early work for applying reinforcement learning to the optical network
resource allocation, there are some limitations that need to be investigated for
future research. One challenge is the scalability. For the simulated 5-node-5-
wavelength ring metro network, a five layer fully-connected neural network with
1024 nodes per hidden layer is already required. Some efforts need to be paid
to reduce the complexity of the neural networks as the size of the optical net-
work scales up. One potential approach is to use convolutional neural networks,
leveraging the locality of the network status. There are also plenty of open prob-
lems for future research, including the impact of traffic variations and network
topologies, and the spatial/spectral resource assignment.

5 Conclusion

This paper provides a new direction to optimize the routing of optical networks.
The proposed reinforcement learning algorithm is able to continuously improve
its routing policy with self learning method. Simulation on a ring-topology metro
network demonstrate that the learnt policy outperforms the least congest path
routing policy which was regarded the best routing policy. With the computation
power increasing rapidly, this RL method can be a scalable approach for dynamic
resource allocation and control for optical networks. It can also be combined with
software defined network to achieve an agile control plane.
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