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Abstract. Physical topologies are evolving from elementary survivable
rings into complex mesh networks. Nevertheless, no topology model is
known to provide an economic, systematic, and flexible interconnec-
tion paradigm for ensuring that those meshes bear resilience features.
This paper argues that intrinsic resilience can be brought by twin graph
topologies, as they satisfy equal length disjoint path property with min-
imal number of physical links. An exhaustive investigation is performed
across twin graph families composing networks from 4 to 17 nodes,
whereas diverse real-world topologies and ring networks are used as
benchmarks. First, we illustrate the growing process, and discuss the
topology diversity of twin graphs. We analyze the impact of single cable
cuts between neighbouring nodes, then we stress topologies with 2, 3,
and 4 simultaneous cable cuts. Improved resiliency is seen for neighbor
nodes and also reduction of cut sets able to disconnect the twin topolo-
gies in comparison with real-world networks. Finally, we present as a use
case the redesign of CESNET into a resilient network.

Keywords: Network physical topology design · Optical backbone
networks · Resilience · Twin graphs

1 Introduction

The provisioning of uninterrupted connectivity services is an indispensable fea-
ture of optical backbones. Considerable amounts of tangible and intangible
losses, i.e., legal and reputation damages, can result from mere cable cuts as high
aggregates of traffic are nowadays transported over a fiber strand [1]. Therefore,
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in order to properly serve new demands from an information-dependent society,
networks must be designed using architectures not only with intrinsic abilities
to survive, but they also must be resilient in face of a reasonable set of fault
events.

Survivability is defined in [2,3] as the ability of networks to fulfill their mission
in a timely manner in the presence of attacks, failures or accidents. Raising the
bar for network architects, resilience is defined in [4] as the capability of a network
to minimize link or node failures effects, by assuming the sustainability of the
provided services. For instance, a 16-node ring network survives to any single
node or link failure, but this network is not resilient. When any link fails in this
network, the distance between the corresponding neighbor nodes increases from
1 to 15 hops, and a 2-hop path must be replaced by a 14-hop path after any
node failure. Therefore, considerable side effects can be felt on higher network
layers and, as a result, implications to the service delivered to end users.

Modern optical backbones encompass complex multilayer mechanisms. Wave-
length division multiplexing (WDM) transparently provides end-to-end inter-
connects over the physical topology. The coarse bandwidth granularity and rigid
spectrum allocation of WDM have motivated recent developments in elastic net-
works and flexible transmission technologies. They aim at better grooming and
transmitting heterogeneous traffic demands [5]. Indeed, these new spectral and
bit-rate manageable solutions provide extra degrees of freedom (i.e., elastic and
tuneable transponders) in accommodating extra demands arising from restoring
impacted traffic demands, over sub and super-wavelength services, for improving
the overall network resilience [6].

Nevertheless, re-grooming, re-routing or just switching traffic demands
around faulty elements, with the least impact on both working and pro-
tected/restored demands, still is a huge challenge for backbone network archi-
tects. The intrinsic complexity of this multilayer problem turns exact opti-
mization approaches unlikely to be solved in polynomial time. But there is a
fundamental aspect that has been overlooked when trying to improve network
resiliency. Regardless of the overlay grooming and transmission technologies, the
outcomes of traffic engineering optimization tools will always be constrained by
the connectivity diversity of the underlay graph at physical layer.

Nowadays, survivability is a necessary but not a sufficient condition. It is no
longer acceptable to design networks for just providing means of service con-
tinuity. For instance, there is the challenge for designing optical backbones for
supporting the emerging services from the 5th Generation (5G) mobile commu-
nications network. The Ultra-reliable and low-latency communications (URLLC)
assume that there will be latency-bound and highly dependable underlayer con-
nectivity across distributed datacenters [7]. Thus, optical backbones, operating
under either normal or faulty conditions, should meet stringent requirements far
beyond mere survivability metrics.

Unfortunately, the topological design of backbones is a complex task in its
own right; and that is why the literature already addresses them using heuris-
tic, rule-of-thumb based, and demographic methods, e.g., [8–10]. Lately, graph
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theory has joined forces in this front. By abstracting physical aspects and
demand parameters, graph theory focus simply on identifying potentially good
templates for network topologies, rather than chasing them in extremely
large multidimensional search spaces from multi-parameter models. Previous
works already investigated Harary graphs tacking survivability in optical back-
bones [11], twin graphs in datacenter networks [12], and graph invariant opti-
mization for optical backhaul networks [13].

The contribution of this paper is to propose to the network community an
interconnection paradigm that is able to systematically tackle resiliency (and
survivability as a consequence) when designing or evolving backbone networks.
Grounded on graph theory, our solution exploits a particular 2-geodetically con-
nected (2-GC) graph family called twin graphs. A key point is that such graphs
are already optimal in providing 2-GC with the least number of links. They
can also be adapted over the classical ring-based legacy solutions, which were
originally designed only having survivability in mind. Thus, backbones designed
under this new paradigm can gracefully evolve networks from survivable rings
into intrinsically resilient meshes.

The remainder of the paper is organized as follows. Section 2 discusses the
evolution of backbone networks toward resilient and affordable architectures in
face of growing demands from dependable services. We then present in Sect. 3
a formal definition of twin graphs, and a constructive method to generate
them [14]. In order to demonstrate the practical relevance of twin graphs, we
perform comparisons with a set of real-world backbone topologies (and rings)
with the same number of nodes in Sect. 4. Finally, Sect. 5 brings a use case for
direct comparison of a geographically mapped twin topology with a real-world
topology. Section 6 presents our concluding remarks and future works.

2 Why Rings Are No Longer Good Enough for Our
Networks?

Survivability in ring topologies is due to their 2-connectivity property, whereas
resilience refers to 2-geodetically connectivity that rings are unable to provide.
The difference is that any 2-geodetically connected topology intrinsically pro-
vides at least two node disjoint (working and backup) paths of minimal length
(i.e., geodesics) connecting each node pair of the network, whereas a 2-connected
topology provides at least two node disjoint paths connecting each node pair of
the network, no matter their lengths. Thus, besides the survivability assured by
the simple existence of backup paths, backbone networks should ensure the exis-
tence of backup paths not much longer than the working ones in order to provide
service resilience either through protection or restoration strategies. Protection
refers to techniques in which backup paths are defined prior to the occurrence of
any failure, whereas in restoration techniques the backup paths are only defined
when failures occur.

On the other hand, ring topology is a prototype traditionally used to address
the survivability issue with the least number of extra links. The transition from
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survivable to resilient topologies should take this legacy architecture into account
and upgrade it as inexpensively as possible. Service providers cannot afford to
abundantly deploy spare resources for protecting network elements in face of
their ever diminishing revenues.

2.1 Evolving Rings into Meshes

Ring topologies have scalability limitation. Big rings, i.e., many nodes spread
across large geographical areas, are not economically nor technically viable. For
instance, SONET/SDH and Resilient Ethernet Protocol limit their rings to 16
nodes [15]. Currently, interconnected rings is still believed to be the appropri-
ate architectural arrangement for larger networks. Hierarchical structures com-
posing collector and core rings can be built [1]. But note that a single node
failure can isolate parts of the network. Therefore, the dual-homed ring is the
most appropriate approach to follow when building interconnected rings, in
spite of its higher deployment cost. Standardization bodies also support the
multi-ring/ladder network prototype as a way of building a mesh through inter-
connected rings, e.g., [15]. Note that such an arrangement also makes network
topologies to gradually depart from the simple and cost effective ring-based app-
roach, demanding also more complex and less effective protection schemes [16].

As a result, network architects are already arguing against a rigid (dual-
homed) ring hierarchy and advocating for a flexible mesh hierarchy [17]. Note
that there is still an evident inclination in those modern proposals of following
classic rules of thumb, such as building meshes with concentric and intercon-
nected rings [1], to ensure survivability. There are initiatives such as the use
of bounded rings in [18], which provides an integer linear program model to
design such a topology; and some heuristic algorithms are also presented in [19–
21]. Unfortunately, so far no systematic and scalable topology model has been
proposed to grow survivable ring networks into resilient meshes.

2.2 How Can Graph Theory Help?

We argue in this paper that the principle of network resilience has been neglected
at network topology design phase. Usually resilience has been left to be resolved
by protection and restoration techniques, after a survivable network topology
has been put in place.

It is usually assumed that survivability and resiliency are different instances
of the network design problem; or at least a far too complicated problem to be
solved at once. Not only inefficient solutions are being proposed for protecting
traffic, but also complex and slow mechanisms for traffic restoration can be the
result of an underlying constrained physical topology. Note that a consistent
study of graph properties can address resiliency (and survivability as a conse-
quence) and also unlock features to be used by overlay networks embedded in
this physical topology.

But to be practical, this topology design coming from graph theory must
prove to be geographically viable. Network architects should be also able to
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expand their network in a pay-as-you grow style, without being constrained
by modular, “exotic”, or inflexible node interconnection architectures. It is also
highly desirable that these graphs could resemble (or be compatible) with legacy
solutions, such as multi-ring topologies. This may ease its adaptation to existing
operator’s control and management frameworks.

3 Background: Twin Graphs

Twin graphs are particular 2-connected graphs that have at least 2 node-disjoint
geodesics between every two non-adjacent nodes, and require for that the mini-
mum number of links [22]. In graph theory literature, they are called minimum-
size 2-geodetically-connected graphs. Each twin graph has order n ≥ 4 nodes
and size m = 2n − 4 links [22].

Twin graphs are recursively defined as follows [22]: (i) the cycle of order 4
(C4) is a twin graph; (ii) if G is a twin graph of order n and (u, v) is a twin pair
in G (i.e., a pair of nodes that have the same node neighbors), then the addition
of a new node v′ by using two new links uv′ and vv′ produces a twin graph G′ of
order n + 1. Thus, in order to grow a twin graph G, only two steps are needed:

1. Identify a twin pair (u, v) in G;
2. Build G′, where V (G′) = V (G) ∪ {v′} and E(G′) = E(G) ∪ {uv′, vv′}.

Notice that this scaling up process can also be used to add to a twin graph
more than one node at the time. Indeed, one can add a new node in each of the
twin pairs of interest in order to build larger twin graphs. Moreover, there are
other graph operations, such as the merging process proposed in [14], that can
be used to build larger twin graphs.

When recursively generating a twin graph from the C4, whenever a node is
added, it creates new cycles of order 4, thus all nodes and links of each twin
graph belong to cycles of order 4 (see Fig. 1 in Sect. 4).

In summary, twin graphs can be easily generated by a recursive method,
which consists of adding nodes by means of twin pairs. One can always grow a
twin graph by adding a node to a twin pair, and in general it can be done in
several ways, since twin pairs are not unique [22].

4 Results

In this Section practical issues are objectively investigated before suggesting twin
topologies to network architects. Although it is not an exhaustive list of practical
points to be considered, we expect to provide preliminary and yet solid results
supporting twin graphs as a reference model for optical backbone topological
design. Cable cuts caused by construction work is the more frequent disruption
to optical backbones [23]. Therefore, this paper only focus on link failure analysis
when testing resiliency and survivability.
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4.1 Scalability and Flexibility

To illustrate the twin topologies scalability discussed in Sect. 3, Fig. 1 presents
the growing process (from n to n + 1) for all (non-isomorphic) twin topologies
from 4 up to 7 nodes. Let �n denote a twin topology on n nodes. Starting from
the C4 = �4 (first row, first column), by adding an extra node, only one twin
topology �5 can be built (second row, first column). Now starting from the �5

(first row, second column), two different twin topologies �1
6 and �2

6 can be built
(second row, second column). They, in turn, can generate only two different twin
topologies �1

7 and �2
7 (second row, third column) on 7 nodes. Finally, starting

from �1
7 and �2

7 (first row, fourth column), one can generate four different twin
topologies on 8 nodes (second row, fourth column).

Fig. 1. Growing twin topologies from the C4. Blank nodes and dashed lines represent
all possible (non-isomorphic) ways for growing twin topologies of order 4 ≤ n ≤ 7 (on
the top) by means of twin pairs, which are highlighted in colors, in order to build new
twin topologies of order n + 1 (on the bottom). (Color figure online)

4.2 Topology Diversity

An optical backbone is a complex physical system and a graph is merely a
very simplified abstraction meant just to represent node adjacency. Physical
distance, link capacity and other aspects are not represented. Perhaps a given
graph is not feasible due to geographical obstacles, so topology diversity provides
designers options to pick and choose from a set of equivalent and yet different
solutions. The importance of topology diversity and graph weighting will be
latter illustrated in an use case.

Expanding results previously illustrated in Fig. 1 beyond n = 7, Table 1
brings the number of twin topologies with n ≤ 17 nodes. As expected, the
number of twin topologies increases with n, since all twin topologies of order
n + 1 can be generated from a twin topology of order n.

For each n there is a twin topology of diameter 2, namely, the complete
bipartite graph K2,n−2 [22]. This particular instance is also known as dual hub
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Table 1. Number of twin topologies with n ≤ 17 nodes.

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# 1 1 2 2 4 5 9 13 23 35 63 102 182 310

architecture [24]. Besides this, for each n ≤ 17, we have found at least one twin
topology for each diameter in the range from 2 to �n/2�.

Another important feature of twin topologies is that, given the network order,
the number of possible topologies is bounded. For instance, for n = 17 there
are 310 twin topologies to be investigated. This diversity also helps solving the
physical topology design problem by finding topologies with a good trade-off
between diameter and maximum degree depending on the specificity interconnect
problems, e.g., [12].

4.3 Neighbor Nodes Resiliency to Link Failures

Every twin topology survives single link failures, as well as every 2-connected
topology. However, a cut between neighbouring nodes in any topology always
comes with a negative impact on routing. In this particular case, a working path
of length one would necessarily be replaced by a longer backup path. We propose
the link removal impact, denoted as Δh, to measure the extent of that impact on
routing, by summing up the differences in length of backup and working paths
for each pair of nodes. More formally, the link removal impact is written as:

Δh =
n−1∑

u=1

n∑

v=u+1

(hb
uv − hw

uv), (1)

where hb
uv and hw

uv are, respectively, the length of the backup and working paths,
in number of hops, from node u to node v.

Results of the link removal impact can be seen in Fig. 2 for all twin topologies
with 4 ≤ n ≤ 17 nodes, rings with up to 20 nodes, and real-world optical
backbone topologies (reported on [25]) of order up to 20. It is noteworthy the
fact that in Fig. 2 all twin topologies with a given number of nodes have the
same link removal impact. Moreover, compared to the rings and the real-world
networks under study, the twin topologies present the lowest link removal impact.
Thus, among these sets of networks, the twin topologies are the most resilient
regarding cuts between neighbouring nodes.

It is important, however, to remind that any pair of non-adjacent nodes in
a twin graph will have at least one backup path exactly with the same number
of hops as the working path since twins are 2-GC topologies. So the removal of
links, other than neighboring ones, in twin nodes has absolutely no impact on
routing in terms of hop count.
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Fig. 2. Impact of all possible cuts between neigbouring nodes, for twin graphs with
up to 17 nodes, rings with up to 20 nodes, and real-world optical backbone topologies
(reported on [25]) of order up to 20.

4.4 Suvivability to Multiple Link Failures

Any twin topology will survive a single failure but its 2-GC feature can not
guarantee that it will survive multiple failures. Following the procedure described
in [11], we computed the relative number of link cut sets of sizes 2, 3 and 4 for
the three sets of topologies. That procedure allow us to analyze twin topologies
stressed with multiple failures.

The number of link cut sets of size i, denoted as Si, gives the number of ways
a network becomes disconnected after removing i links. When normalizing Si

with respect to the total number of sets of i links, we get the relative number of
cut sets of size i, which is denoted as Si(%). We can formally present it as:

Si (%) =
Si(
m
i

)100, (2)

where
(
m
i

)
it the combination of m links taken i at a time without repetition.

Figure 3 shows Si (%) for i = 2, 3 and 4. For instance, when S2 (%) = 25%
it means that a quarter of all possible simultaneous failures in two links will
disconnect the network. Thus, the higher this number, the more likely is the
network to be disconnected.

Results in Fig. 3 show, as expected, that ring topologies become disconnected
after removing 2 or more links. The larger is the cut set, the better twin-graph
families perform in comparison to the group of real-world topologies. There is
a clear and consistent trend: A lower probability of disconnecting the network
when larger cut sets are considered for twin graph topologies in comparison to
real-world topologies. This is highlighted by S4 (%) in Fig. 3(c) when n ≥ 9.
Results for real-world networks is highly topology depended and therefore are
scattered in contrast with twin topologies outcomes clustered in a narrow range
despite their topology diversity seen in Table 1. This result shows that the
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Fig. 3. Relative number of cut sets of sizes (a) 2, (b) 3, and (c) 4 versus the number
of nodes, for ring topologies, twin topologies, and real-world backbone topologies.

overall vulnerability to simultaneous failure events can be significantly reduced
by designing physical topologies with twin topologies.

4.5 Number of Additional Links to Provide Intrinsic Resilience

We must test if twin topologies produce networks that would be compatible with
current optical backbone networks. For that, we present in Fig. 4 the number of
links versus the number of nodes for all twin topologies, rings and real-world
backbones under study. Evidently, the ring topology provides the lower bound
and it can be seen that twin topologies in general require few more links than
real-world optical backbones.

The literature shows that real-world optical backbones typically have average
degree (that is twice the number of links over the number of nodes) ranging from
2 to 4 [26]. For twin graphs, the average degree d is given by:

d =
2m

n
=

4n − 8
n

= 4 − 8
n

. (3)
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Fig. 4. Number of links required by twin graphs with up to 17 nodes, rings up to 20
nodes, and real-world optical backbone topologies (reported on [25]) of order up to 20.
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Thus, it is noteworthy to see that the average node degree is bounded to the
interval 2 ≤ d < 4 for twin topologies of any order. In other words, the number
of links of twin and real-world topologies with n nodes is between n and 2n.

We can conclude that, for a given n node topology, we can provide intrinsic
resiliency with almost the same number of links used by real-world topologies.
Thus, all the aforementioned advantages of twin topologies may come at a very
reasonable cost.

5 Use Case: A Resilient CESNET Redesign

In order to illustrate how our paradigm can be used in practice, we have chosen
to redesign the 12-node CESNET network shown in Fig. 5(a) to improve its
resilience. Out of the set of real-world networks, this is the one with the closest
average degree to a twin graph.

For mapping nodes from a twin topology to cities in their geographical posi-
tions, we have exhaustively analyzed twin topologies with 12 nodes looking for
the minimal total fiber length. The result of CESNET redesigned as a twin
expending the least accumulated fiber length is shown in Fig. 5(b). It is note-
worthy that 11 out of 19 links of the original network remain unchanged (solid
lines) in its Twin version.

Note that in this paper, we have initially chosen to consider only unweighted
links because we focus on topological features of twin graphs. However, there is no
constraint in considering, a posteriori, links weighted by geographical distances
between nodes to optimally map a twin graph to geographical positions. Note
that one may also use link capacities or any other link weighting parameter.

The total fiber length of the original CESNET topology and the corre-
sponding twin topology are about 1842 km, and 2137 km, respectively. This 16%
increase is somewhat expected since the original CESNET topology has 19 links,
whereas any twin topology with 12 nodes has 20 links. Nevertheless, the benefits
for resilience is clear as the link removal impact, Δh, which is originally at 106,
reduces to 40 (62% smaller) for our twin-graph-based redesign. In addition, a
significant improvement is achieved on the survivability to multiple link failures,
measured by the relative number of cut sets of sizes 2, 3, and 4 shown in Table 2.
For instance, 23.3% of all possible simultaneous failures in four links will discon-
nect the original CESNET topology, compared to only 15.3% for its twin version
shown in Fig. 5(b).

Table 2. Comparison of resilience and survivability for topologies shown in Fig. 5.

Δh S2(%) S3(%) S4(%)

Twin version 40 2.1 7.0 15.3

CESNET 106 3.5 11.2 23.3
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(a) (b)

Fig. 5. (a) The original CESNET topology; (b) A twin topology labelled according to
CESNET nodes in order to minimize the total fiber length. Solid lines represent links
that exist in both network versions. Dashed lines represent removed links in (a) and
added links in (b), respectively.

6 Concluding Remarks

We proposed the twin topology as a new reference model to design (or redesign)
physical topologies for next generation optical backbone networks. Twin graphs
have an average degree in agreement with the average degree of real-world optical
backbone topologies. Besides its intrinsic resilience given by their 2-GC, we found
out improved survivability to multiple failures, fine granularity for scalability,
and topology diversity for better matching graphs to the real problem.

We noticed also that the twin graph on n nodes minimizing the diameter,
i.e, the complete bipartite graph K2,n−2, corresponds to the solution presented
by [24] to the problem of designing physical topologies that ensure logical rings
of size n − 2 can be embedded in a survivable manner. Since solutions of this
problem must have at least 2n − 4 links ([24], Theorem 2.5), it is interesting to
investigate which twin graphs on n nodes also satisfy it.

Twin topologies solve, for κ = 4, the problem stated in [18], i.e., the problem
of finding a 2-connected network such that each link belongs to a cycle of length
at most κ. For future work, it is interesting to investigate topologies based on
cycles of different order (e.g., 3, 5, and 6) in the context of the design of optical
backbone networks.

The implications for this new topology design on WDM systems are yet
to be investigated. An exhaustive analysis over all 7-node networks have shown
that throughput and blocking ratio strongly depends on physical interconnection
topology [27]. These results suggest that wavelength requirements will be also
affected by physical interconnection topology. It is expected that intrinsic 2-GC
features of twin topologies can facilitate wavelength routing and therefore reduce
wavelength counting. Future work will also involve the impact of our underlay
twin topology on the multi-layer resilience mechanisms considering elastic and
flexible optical transmission technologies.
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