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Elisabetta Russo2 , Claudio Silvestri2 , Marta Simeoni2 ,

Amilcar Soares1 , and Stan Matwin1,3

1 Institute for Big Data Analytics, Dalhousie University, Halifax, Canada
{pedram.adibi,amilcar.soares,stan}@dal.ca

2 Dipartimento di Scienze Ambientali, Informatica e Statistica,
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Abstract. In this paper we explore a unique, high-value spatio-temporal
dataset that results from the fusion of three data sources: trajectories
from fishing vessels (obtained from terrestrial Automatic Identification
System, or AIS, data feed), the corresponding fish catch reports (i.e.,
the quantity and type of fish caught), and relevant environmental data.
The result of that fusion is a set of semantic trajectories describing the
fishing activities in Northern Adriatic Sea over two years. We present
early results from an exploratory analysis of these semantic trajectories,
as well as from initial predictive modeling using Machine Learning. Our
goal is to predict the Catch Per Unit Effort (CPUE), an indicator of
the fishing resources exploitation useful for fisheries management. Our
predictive results are preliminary in both the temporal data horizon that
we are able to explore and in the limited set of learning techniques that
are employed on this task. We discuss several approaches that we plan to
apply in the near future to learn from such data, evidence, and knowledge
that will be useful for fisheries management. It is likely that other centers
of intense fishing activities are in possession of similar data and could
use the methods similar to the ones proposed here in their local context.
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1 Introduction

In this paper, we present early results from an ongoing international research
project in which mobility data researchers and fishery ecologists collaborate
closely. In our project, we explore a unique, high-value dataset that results
from the fusion of three data sources: trajectories from fishing vessels, the cor-
responding fish catch reports (i.e., the quantity and type of fish caught), and
relevant environmental data. The goal of this project is to predict the future
Catch Per Unit Effort (CPUE) from the past data. CPUE is an indicator of fish-
ing resources exploitation that allows for assessing the pressure of these activities
at the ecosystem level. Intuitively, a decrease of CPUE indicates a situation of
over-exploitation, a steady CPUE value points out a sustainable exploitation of
the fishery resources and an increase of its value corresponds to a healthy and
growing population. CPUE is therefore a key indicator for fisheries management
since it could help to define the sustainability of the fishing activities in the area
of interest: an accurate forecast of CPUE could help decision makers to obtain
a sustainable fishing business by adapting the fisheries management plans on
the basis of the forecast results. Here we discuss and present early results from
the use of Machine Learning techniques to predict the CPUE in the Northern
Adriatic Sea.

We believe this research demonstrates the opportunities provided by mobility
data analysis to gain insights and evidence that can guide fisheries management
decisions. Such decisions will have significant environmental and economic con-
sequences at the regional, national, and eventually global level. Our results are
preliminary, both in the temporal data horizon that we are able to explore,
and in the broader set of techniques that could be employed on this task. It is
likely that other centers of intense fishing activities are in possession of similar
data and could use the methods similar to the ones proposed here in their local
context.

The Northern Adriatic Sea area, on which our work is based, needs tools and
models that can assist fisheries management at the macro scale. This area, known
for its very high productivity, is recognized to be one of the most exploited area of
the Mediterranean Sea, causing an over-exploitation of the fish resources. In this
context, the development of effective fishery management plans is needed to make
fishing activities sustainable and ensure a productive and healthy ecosystem.
Currently, different management measures are used in the Northern Adriatic
Sea (e.g., the permanent ban of trawling activities within 3 nm of the coast,
the seasonal biological rest period for trawlers). In this context, forecasting the
fishing activities and their catches in space and time represents a step forward
to assess the efficiency of these measures and develop new ones.

Recently, several works report the use of mobility-tracking technologies, such
as Automatic Identification System (AIS) to monitor fishing activities. In its
inception, AIS was primarily designed as a navigational aid to avoid vessel col-
lisions, but nowadays it has become - often due to its open nature - the primary
source of data about fishing-related activities. In our setting, we have access to
terrestrial AIS data, i.e., AIS data sent by ships and received by ground stations
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on the Italian coast of Northern Adriatic. Vessels transmit their position at a
variable rate, from 2 s up to two minutes. We use AIS data to reconstruct, in
time and space, the fishing trajectories. The latter have been enriched with the
available environmental data, such as daily surface temperature, chlorophyll-a,
and wave height. A further valuable piece of information available for this work
is the landing reports of the Chioggia’s fishing market, which is the primary
market of the Northern Adriatic basin.

The two main research questions that guide this work are: (i) How can we
improve our knowledge of the spatio-temporal aspects of the fishing activities
in the Northern Adriatic Sea?; and (ii) How can we predict the CPUE for next
year?

Data fusion, management, and Machine Learning techniques from the mobil-
ity data analysis are applicable to provide evidence-based answers to these ques-
tions. In this paper, we focus on the use of semantic trajectories of fishing vessels
and predictive modeling using spatio-temporal Machine Learning techniques,
and we address mainly the last of the above questions.

The contributions of this work are the proposal of a framework that: (i)
integrates the heterogeneous data sources; (ii) extracts knowledge from the inte-
grated data using semantic trajectory modeling; and (iii) applies Machine Learn-
ing (e.g., Random Forest) to learn from those semantic trajectories a model for
forecasting the CPUE.

This paper is structured as follows: Sect. 2 describes the related work in
the literature concerning semantic trajectories and fishing activities forecast.
Section 3 illustrates the architecture of the developed system and describes in
details the data sources, how the raw data have been fused and incorporated
in a semantic model, and the model developed for prediction analysis. Section 4
reports the predictive model results and Sect. 5 draws some concluding remarks
and illustrates possible future developments.

2 Related Works

In this section, we discuss related works regarding (i) sea data fusion and seman-
tic trajectories, which is the concept used for enriching complex objects like fish-
ing ships with relevant information; and (ii) fishing activities forecast, which is
the final goal of our predictive model.

2.1 Data Fusion of Sea Data and Semantic Trajectories

Combining the AIS, trading transactions, and environmental variables from the
vessels into a single representation is challenging. Several strategies were pro-
posed to deal with the fusion of heterogeneous ocean data properly. For exam-
ple, the paper [18] shows a platform in the maritime vessel traffic domain for
discovering real-time traffic alerts by querying and reasoning across numerous
streams (e.g., AIS, weather, ice, etc.). The authors use semantic web technologies
to integrate heterogeneous data sources. In [6], the authors propose a model for
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integration and analysis of data for vessel movement in a real-time maritime sit-
uation awareness system, also using semantic web techniques and tools. Unlike
the previous methods, we model our trajectory data with a semantic model.
By considering data sources such as AIS, environmental variables, and landing
reports, the trajectory of every fishing vessel becomes a complex object with
several data dimensions that are contextual to the movement.

Several semantic models for trajectory data have been proposed, such as the
stops and moves [17], CONSTANT [2], and recently MASTER [13]. This last
model is more flexible and expressive since it allows for enriching trajectories
with complex objects and it provides not only a conceptual model but also a
logical schema in the Resource Description Framework (RDF) and a triplestore
based on NoSQL databases for maintaining RDF data.

By following the MASTER semantic model, the trajectory of fishing vessels
can be represented as a multiple aspect trajectory. The AIS data constitute the
sequence of spatio-temporal points. Moreover, the MASTER model introduces
the concept of aspect which consists of “a real-world fact that is relevant for the
trajectory data analysis” [13]. It distinguishes between volatile aspects—which
are usually associated with the trajectory points, since they vary during the
object movement—and long term aspects—which do not change during an entire
trajectory, and hence they are related to the whole trajectory. For instance, for
vessel trajectories, the speed is a volatile aspect, whereas the fishing gear type
is a long term aspect.

2.2 Fishing Activities Forecast

The literature on fishing activities forecast is vast and can be analyzed in sev-
eral ways. From the fishing management perspective, works like [16] propose
a seasonal forecast system that combines environmental and fish habitat data
(collected by fish tagging) to predict tuna distribution. In [15], the authors,
integrate satellite data and statistical models output to investigate the relation-
ship between sea surface temperature and chlorophyll-a concentration, and also
define simple methods to forecast potential fishing grounds. The work of [9]
tries to forecast 1-month catches considering only the anchovy catches in pre-
vious months as inputs. Similarly, to [15,16], we use environmental data (e.g.,
chlorophyll-a and sea surface temperature). Also similarly to [9] we use fish catch
information to predict future catches. Unlike all of them, we use wave height as
an environmental variable in our model.

From a perspective that considers the geolocation technology used to
track ships, some works use Vessel Monitoring System (VMS) [12,19], satel-
lite images [15] or AIS [10,20,22]. Most of these works focus on training models
to forecast when a vessel is performing a fishing activity or not. Different types
of fishing ships (e.g., long-liners, purse-seiners, etc.) have different types of move-
ment patterns. Predicting these patterns depends on the training data given to
the machine learning model [19,20], or the domain specialist ability to create
rules that reflect these patterns [14]. In this work, we use domain knowledge
from specialists to determine the activity of vessels (e.g., fishing or not) on their
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Fig. 1. An overview of all the steps of the framework for predicting fishing catches.

trajectory segments. Based on the knowledge of ranges of fishing speed for differ-
ent types of fishing gears (e.g., trawlers, long-liners, etc.), we encode the specific
rules to detect vessel activities. By exploiting this information, we can compute
in a very accurate way the area swept by vessels while fishing, thus allowing for a
more realistic estimate of fishing effort and CPUE. To the best of our knowledge,
no work in the literature uses a combination of AIS, fishing catch reports, and
environmental variables to forecast CPUE.

3 A Framework for Predicting CPUE

In this section, we present the bird’s eyes view of the architecture of the system
we have developed. We then discuss the individual data sources—AIS data, catch
data (landing reports), environmental data—(Sect. 3.1), and the spatio-temporal
mapping of data as well as the fusion of the individual sources (Sect. 3.2). The
section is rounded up with a brief discussion of the Machine learning method we
have selected to build the prediction model (Sect. 3.3). Schematics of the system
is shown in Fig. 1.
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3.1 Data Sources

Automatic Identification System (AIS). AIS raw data, provided by the
Italian Coast Guard, were obtained for the trawl fishing vessels operating in the
Northern Adriatic Sea from January 2015 until December 2016. A total of 70
(2015) and 77 (2016) trawlers, with a length overall above 15 m and belonging
to the Chioggia navy, were taken into consideration in this study: in particular,
small and large bottom otter trawl (SOTB and LOTB), Rapido, one specific kind
of beam trawl (RAP), and midwater pair trawl (PTM). The identification of the
vessels was performed by matching the data present in the AIS (MMSI code,
vessel name and the call sign) with the ones of the European Fleet Register,
which supplies specific information on the vessels (i.e., primary and secondary
gear, length overall, gross tonnage, etc.). All the data given by the AIS (i.e.,
data position, speed, time, MMSI) were used to identify the fishing tracks and
analyze the fishing activities (fishing, not fishing).

Daily Landing Reports. Landing dataset was obtained from the Chioggia’s
Fish Market, whose harbor hosts one of the main fishery fleets of the Adriatic
Sea. This dataset consists of daily landings (catch amounts in kilogram) for
104 commercial species caught during the biennium 2015–2016 in the Northern
Adriatic Sea. The records pertain to 82 fishing vessels, and a total of 17921
fishing trips over the two years.

A graph of total monthly landings for the two years with the contribution
of the five most harvested species is shown in Fig. 2. Seasonality of the data is
evident by visual comparison of the annual trends. The graph shows zero landing
in August for both years, which reflects the fishing ban. It is also visible from
the graph that 2015 landing amounts were higher than 2016 for almost all the
months.

Fig. 2. Chioggia’s total monthly landing and species contribution in 2015–16

Environmental Data. We considered the following environmental information
in order to enrich the trajectories of the fishing vessels:
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– Sea Surface Temperature (in kelvin) [7]
– Sea Daily Chlorophyll-a Concentration (in mg/m3) [7]
– Spectral significant wave height (in meters) [7]

The sea surface temperature and the chlorophyll-a influence the species dis-
tribution, while the wave height affects the fishermen behavior. Hence, adding
such semantic information could be relevant for a more accurate prediction of
the CPUE indicator. Moreover, the utilization of the sea surface temperature
can be helpful to evaluate the effect of climate changes on fishing activities, a
hot topic to be considered.

3.2 Data Fusion and Semantic Modeling

Activity Labeling and Trip Detection from AIS Data. Trajectories have
been reconstructed by linear interpolation of the raw AIS data. While performing
the reconstruction, all implausible points have been discarded. In particular, all
the movements that were not physically feasible concerning a maximum possible
boat speed were removed.

A trajectory is therefore defined as a sequence of segments, and it is enriched
with the following data: MMSI (boat identifier), departure time of the trip (exit
from harbour area), departure port, position of the segment with respect to the
ports areas, average speed, activity of the boat within the segment and fishing
gear (this can be obtained through the MMSI).

The activity attribute is an integer value distinguishing among the following
situations: (0): in port ; (1): exiting from; (2): entering to port ; (3): fishing ; (4):
navigation. The in port, exiting from port and entering to port situations can be
deduced from the position of the extremes of the segment w.r.t. the port area. In
case none of the previous situations occurs, the fishing or navigation activities
are established on the basis of the average speed of the boat. More precisely, if
the average speed is in the range of the fishing speed of the equipped gear, the
boat is assumed to be in a fishing phase; otherwise, it is assumed to be in a
navigation phase.

This trajectory can be modeled as a multiple aspect trajectory, following
MASTER model [13]. Indeed, as minimum granularity to attach semantic infor-
mation, we do not consider a single spatio-temporal point, but we annotate
segments since we want to highlight the presence of homogeneous trajectory
portions, which are the appropriate granularity level for our analyses. Hence the
pieces of information we listed above can be classified as

– long-term aspects: MMSI, departure time of the trip, departure port and the
gear used for fishing because they do not change during the entire trajectory;

– volatile aspects: average speed and activity of the boat since they frequently
vary during the object movement and they can be associated with a segment.

By using the MASTER model we are able to represent different aspects of our
trajectories in a uniform and simple way. Moreover, this representation allows
us to perform complex queries merging together spatial, temporal and semantic
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features. In the rest of the paper, we denote with T the resulting set of multiple
aspect trajectories.

The Spatial Grid. Some of the concepts described later in this section (i.e.,
fishing effort and CPUE) are defined over an area. In order to calculate those
values, the area under study is partitioned into a square grid with 5 × 5 km cell
size. Fishing effort and CPUE are then calculated over the individual grid cells.
In addition, the grid is used in the calculation of weighted catch distribution
(described later), and as the data format for prediction modeling (Sect. 3.3).

Calculation of Fishing Effort over Grid Cells. After reconstructing the
trajectories, we proceed with the computation of the fishing effort, an essential
indicator for monitoring the fishing pressure on an area of interest over time.
As mentioned above, we partition the Northern Adriatic Sea into a regular grid.
The fishing effort for a cell during a fixed period of time is defined as the ratio
between the area of the cell “swept” by vessels while fishing during the given
time period and the total area of the cell itself. The swept area depends on the
employed gear which can be recovered from a specific dataset where each vessel,
identified by its MMSI, is associated with its gear.

In the following we will denote by c a generic cell in the area of interest, by
p a time period (could be day, month, etc.) and by g a gear (small and large
bottom otter trawl, Rapido and midwater pair trawl).

Definition 1. Let c be a cell, p a time period and g a gear. The fishing effort
wrt the gear g in the cell c during the time period p is defined as follows:

fe(c, p, g) =
(Σtr∈T,gear(tr)=glen(tr, c, p)) ∗ gear width(g)

area(c)
(1)

where

– T is the set of multiple aspect trajectories;
– len(tr, c, p) returns the sum of the lengths of the fishing segments of trajectory

tr falling in cell c during time period p;
– gear width(g) is the width of the net of gear g;
– area(c) is the total area of the cell c.

It is worth noting that we can obtain the total fishing effort in a cell c during
a time period p by summing up the fishing effort for each gear. Indeed, for our
analyses in Sect. 4 we will use the fishing effort for a particular gear, i.e., Rapido.

Thanks to the reconstruction and the semantic enrichment of trajectories we
can compute the lengths of the fishing segments falling in each cell. This allows
a more accurate and realistic estimate of the swept area and therefore of the
fishing effort.
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Assigning Landing Reports to Trips. The landing dataset provided by
the Chioggia’s fish market contains information about each trading transaction,
including the landing date, MMSI of the seller, the species, and the quantity of
fish. We have to associate each fish market transaction with a trajectory of the
vessel having the specified MMSI. To accomplish this task, for each transaction,
we select the vessel trip with the most recent arrival in the port (before 4 PM of
the landing date). Such a trip has to respect some constraints: it has to last at
least 1 h, and have a minimum length of 2 km, from which, at least 100 m have
to be classified as fishing. Arrivals after 4 PM are associated with transactions
occurring the next day. Assignment of the quantity (weight) of the fish to a
vessel is called a catch.

Catches Distribution over Trips. The association of fish catches with tra-
jectories allows us to add a further volatile aspect to our multiple aspect trajec-
tories. In fact, we can distribute the fish associated with a trajectory along with
its fishing segments. In particular, we can employ two different techniques:

– uniform distribution, or
– weighted distribution.

In the first case, for each trading transaction, the amount of fish is uniformly
distributed along with the fishing segments of the corresponding trip. Each fish-
ing segment of the trajectory is associated with a portion of the total amount of
fish, proportional to its length.

Of course, the assumption of uniform catch distribution is a simplification of
reality. As an improvement, a weighted distribution of catches is also considered.
The idea behind this approach is that the areas where more vessels are fishing,
during a given time period, are more likely to have higher catch rates. A prelim-
inary method based on this idea is implemented as follows. First, the number
of distinct vessels that were detected fishing in each grid cell in a time period
is computed. Then the amounts of catch over each segment, derived using the
uniform distribution, is weighted by the vessel counts in the cell containing the
segment. The weights are normalized by the sum of vessel counts in cells that
cover all the fishing segments in a trip, so they add up to 1.

Based on this piece of information, we can compute the quantity of fish
caught in each cell during a period of time by boats having a particular gear g.

Definition 2. Let c be a cell, p a time period and g a gear, the fish catch wrt
to the gear g in cell c during the time period p is defined as follows:

catch(c, p, g) = Σtr∈T,gear(tr)=gquantity(tr, c, p) (2)

where

– T is the set of multiple aspect trajectories;
– quantity(tr, c, p) returns the sum of the fish quantities in kilograms associated

with the fishing segments of trajectory tr falling in cell c during period p.
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Catch Per Unit Effort (CPUE). Catch per unit effort (CPUE) is an indica-
tor of the species abundance in the assessment of fishery resources. This index
represents a valid method to evaluate the population trends where, a decrease
of CPUE indicates a situation of over-exploitation, a steady CPUE value points
out sustainable exploitation of the fishery resources, and an increase of its value
corresponds to a healthy and growing population.

Definition 3. Let c be a cell, p a time period and g a gear, the catch-per-unit-
effort (CPUE) wrt to the gear g in cell c during the time period p is defined as
follows:

cpue(c, p, g) =
catch(c, p, g)

fe(c, p, g)
(3)

CPUE is, therefore, a key indicator for fisheries management since it gives
information on the sustainability of the fishing activities in the area of interest.
As a consequence, an accurate forecast of CPUE could help decision makers to
maintain a sustainable fishing business by adapting the fisheries management
plans based on its forecasted values.

3.3 Predictive Modeling

The objective of the modeling procedure described in this section is the predic-
tion of average monthly CPUE values for individual grid cells. First, we describe
the modeling data, which consists of daily values for the model attributes
(or variables) per grid cell. Then, we follow with a brief background on the cho-
sen machine learning method—Random Forest (RF). Finally, we explain how
we adjust the temporal granularity to obtain the desired monthly output from
the model, which is built using the daily model attributes.

Modeling Data. Modeling data maps the data onto a spatio-temporal grid,
producing records (or instances) each of which corresponds to a date, and a
spatial grid cell (grid described in Sect. 3.2). Each record is comprised of the
response attribute—CPUE—and a set of predictive attributes, all pertaining to
the same date and grid cell. The predictive attributes are as follows.

– Environmental attributes (described in Sect. 3.1): daily chlorophyll-a concen-
tration, daily sea surface temperature, and daily spectral wave height; each
attribute re-sampled over the grid cells.

– Temporal attributes that preserve seasonality: month of year (1–12), day of
year (1–365), week of year (1–53), seasons (four quarters starting in January).

– Spatial attributes: latitude and longitude of the grid cell centres.

CPUE is calculated using fishing effort, which in turn, depends on the type
of fishing gear. Among the four fishing gears described in Sect. 3.1, Rapido has
the largest share in the dataset with 48% of the records. For this reason, we have
limited our presentation in this paper to the model trained and tested on data
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for the vessels with the Rapido gear. Also, in this study, CPUE is calculated
based on the total catch amounts for all species in the landing dataset.

As described in Sect. 3.2, CPUE is defined on grid cells with some fishing
activity in a given period. Consequently, for a given day, the dataset only includes
the fished grid cells. It follows that the size of the modeling dataset is obtained
by

∑
d |C|d where |C|d is the number of fished cells on date d. Size of the dataset

for Rapido vessels amounts to 51262 records over the two year period.

Machine Learning Method. The task of prediction modeling of CPUE
presents a regression problem. RF [5] was chosen as the regression method due to
the following considerations. It does not require any assumption about the dis-
tribution of the model attributes. It can take numeric and categorical attributes,
and it does not require scaling of the attributes. Moreover, RF does not result in
instability of output values when presented with predictive attributes with values
outside the range of the training data. Besides RFs, we have experimented with
several other regression methods, e.g. linear regression with LASSO and with
the Support Vector Machines. RF, however, outperformed the other methods.

RF is an ensemble learning method based on decision trees, introduced by
Breiman. Ensemble leaning methods can improve accuracy, and reduce bias and
variance by combining outputs of many base learners [8]. In the case of regres-
sion RF, numerous regression decision trees are trained, and the model output
is obtained by averaging the outputs of the individual trees. RF uses bootstrap
aggregating (Bagging) to construct individual trees that are trained indepen-
dent of each other. Bagging is an ensemble learning method that trains its base
learners on bootstrap samples—samples that are randomly drawn with replace-
ment from a dataset of same size [4]. RF introduces further randomization in the
construction of the trees by taking a random subset of the predictive attributes
at each node, and selecting one from the random subset to split on.

Adjusting Temporal Granularity. Even though the prediction of average
monthly CPUE is the main interest of this study, the predictive environmental
attributes (e.g. wave height and water surface temperature) affect the fishing
activity on a daily basis. Therefore, aggregating such attributes on a monthly
basis prior to modeling would result in losing the information pertaining to the
daily cause and effects of those attributes. To preserve that information, first
the RF regression method is performed using the daily training data consisting
of the 2015 dataset, which produces daily predictions for individual grid cells for
the year 2016. Then, monthly predictions for each cell is calculated by averaging
the daily predictions for the respective cell over the month. Averaging is used
to aggregate the predicted CPUE values, as opposed to summation, because
predicted CPUE values are ratios and do not produce a meaningful sum.

The resulting average monthly predictions for individual cells are considered
to be the model output. Evaluation of the model is then done against similarly
calculated monthly CPUE averages per grid cell, using the actual 2016 data.
Equation (4) shows the calculation of actual and predicted average CPUE for a
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given cell c over a given period p (e.g. month)1, respectively denoted by yc,p and
ŷc,p,

yc,p =
1

|Dc,p|
∑

d∈Dc,p

cpue(c, d) and ŷc,p =
1

|Dc,p|
∑

d∈Dc,p

ĉpue(c, d) (4)

where Dc,p indicates the set of all days d in period p for which cell c has a CPUE
value. cpue(c, d) and ĉpue(c, d) are respectively the actual and predicted daily
CPUE values for cell c on day d.

4 Experiments and Results

Two models are built and evaluated in this experiment: one for CPUE values
calculated using the uniform catch distribution, and one for the weighted distri-
bution. The distinction between the two distributions is described in Sect. 3.2.
The models are trained on year 2015 (training data), then prediction and evalu-
ation are done for year 2016 (test data) of the two year dataset. The reason for
splitting the data by year for training and testing is the highly seasonal nature
of the data set, as described in Sect. 3.1.

Baseline Model. The baseline, which is used as the benchmark to compare
with our RF model, is to simply use the last observed value as the forecast
(prediction)—known as näıve forecasting. This baseline is chosen rather than
results from other regression models, because it is a standard practice in fore-
cast modeling [11], and it provides a consistent baseline that is independent of
the choice of the regression model. In particular, for this experiment, the baseline
average monthly prediction of CPUE for a given cell in 2016 is the respective
average monthly CPUE for that cell from 2015. Equation (5) illustrates the base-
line prediction

ŷ∗
c,p = yc,p↓1 (5)

where yc,p↓1 is the actual value for cell c at the same period moved one year
backward. For instance, if p = June2016 then p ↓ 1 = June2015 .

Evaluation Metrics. The metrics used for evaluation are as follows.

– Mean Absolute Error (MAE) is calculated for each period p (i.e. month) as
the mean of absolute errors of the predicted average CPUE for all cells in
that period. MAE for period p is shown in Eq. (6)

MAEp =
1

|Cp|
∑

c∈Cp

|ŷc,p − yc,p| (6)

1 As pointed out in Sect. 3.3 we consider CPUE only for the gear Rapido. Hence,
instead of writing cpue(c, p,Rapido), we simply use cpue(c, p), omitting the gear
name.
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where Cp denotes the set of all cells with a CPUE value in period p; and
ŷc,p and yc,p are respectively predicted and actual CPUE values for cell c and
period p. MAE for the baseline prediction is calculated similarly and it is
denoted by MAE∗.

– Normalized Mean Absolute Error (nMAE) is calculated for each period as
the MAE for that period divided by the mean of the actual CPUE for that
period. nMAE for period p is shown in Eq. (7).

nMAEp =
MAEp

μp
; μp =

1
|Cp|

∑

c∈Cp

yc,p (7)

– Relative Absolute Error (RAE) is a measure of model performance relative to
the baseline model; it is calculated as the ratio of model MAE to the baseline
MAE∗ for a given period [1], as shown in Eq. (8).

RAEp =
MAEp

MAE∗
p

(8)

Model evaluation metrics for uniform and weighted catch distributions are
shown in Table 1. Since interpreting MAE requires information about the mag-
nitude of CPUE, mean of CPUE for each period is also included. Due to the
variation of CPUE means, MAEs for different periods cannot be directly com-
pared. nMAE allows for direct comparison of the model performance for differ-
ent periods, since it is normalized by the period mean. Similarly, RAE allows
for comparison of model performance against the baseline for different periods.
If RAE equals 1, the model is performing as well as the baseline for that period.
RAE of less than 1 indicates that the model performs better than the baseline,
and vice versa.

Fig. 3. CPUE over grid cells for January. Actual values for 2015 are the baseline for
Jan. 2016 (left). Actual values for Jan. 2016 (middle) are used in the evaluation of
values predicted by our model for Jan. 2016 (right).
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Results and Discussion. The RAE values in Table 1 are less than 1 for every
period, indicating that the RF model consistently performs better than the base-
line. RAE on the last row for both models show a 13% improvement compared
to baseline for the average results over all months. This naive model performance
is largely due to the limited temporal extent of the data as described below, and
also because the model is unaware of the spatial and temporal autocorrelation
in the data. Incorporating the autocorrelations into the model is a subject for
future work.

Table 1. Model evaluation metrics for monthly CPUE

Month MAE CPUE mean nMAE RAE

(2016) RF baseline (actual) RF baseline

Uniform catch 1 2065.28 2473.68 2423.60 0.85 1.02 0.83

distribution 2 1758.83 2473.26 1728.77 1.02 1.43 0.71

3 812.98 881.96 983.87 0.83 0.90 0.92

4 622.05 663.76 732.72 0.85 0.91 0.94

5 862.11 948.41 936.90 0.92 1.01 0.91

6 675.91 886.13 815.72 0.83 1.09 0.76

7 2333.37 2377.42 2419.54 0.96 0.98 0.98

8† na na na na na na

9 3078.92 3168.13 3379.25 0.91 0.94 0.97

10 1430.51 1705.33 1733.98 0.82 0.98 0.84

11 2101.59 2295.61 2372.60 0.89 0.97 0.92

12 1113.45 1213.80 1237.16 0.90 0.98 0.92

All 1490.18 1707.45 1658.45 0.90 1.03 0.87

Weighted catch 1 1947.78 2188.87 2193.30 0.89 1.00 0.89

distribution 2 1474.28 1963.45 1593.04 0.93 1.23 0.75

3 658.65 740.02 782.88 0.84 0.95 0.89

4 441.24 486.75 529.31 0.83 0.92 0.91

5 580.32 643.32 641.55 0.90 1.00 0.90

6 436.84 637.21 542.09 0.81 1.18 0.69

7 1474.76 1491.21 1523.94 0.97 0.98 0.99

8† na na na na na na

9 2239.63 2336.55 2461.78 0.91 0.95 0.96

10 1124.27 1242.47 1312.44 0.86 0.95 0.90

11 1297.63 1660.43 1526.47 0.85 1.09 0.78

12 778.46 876.93 868.05 0.90 1.01 0.89

All 1116.69 1290.72 1254.27 0.89 1.03 0.87

† No data available due to the fishing ban.
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Figure 3 shows the baseline, actual, and predicted monthly CPUE for Jan-
uary. Presence of a grid cell on the map indicates that fishing activity occurred
at least once during the whole month, and vice versa. Comparing the actual
data for 2015 and 2016 in the figure, it is obvious that the fished area in January
of 2016 is much larger than 2015. Since the model only uses the 2015 data for
making predictions for 2016, it has no information about the areas that were
not fished in that period of 2015. This presents a limitation which is imposed on
the model due to the temporal restriction of the data. In other words, the model
performance can be improved by having data for a longer period of time.

5 Conclusion and Future Work

In this paper, we explored a spatio-temporal dataset resulting from the fusion of
the trajectories of the fishing vessels of the Northern Adriatic sea for 2015 and
2016, the landing report of the primary fish market of the area, and relevant envi-
ronmental data. The landing reports represent quite a unique semantic feature
to be associated with the fishing trajectory. Also, the utilization of environ-
mental attributes influencing the species distribution (sea surface temperature,
chlorophyll-a) and the fishermen behaviors (wave heights), represent an addi-
tional key element. Moreover, the utilization of the sea surface temperature can
be helpful to evaluate the effect of climate changes on the fishing activities, a
current and heavy issue needed to be addressed.

We applied to the dataset the Random Forest Machine Learning method,
with the goal of predicting the CPUE indicator that could be helpful to
improve the fisheries management plans for sustainable exploitation of the fishing
resources. The forecast results—surpassing the baseline prediction by approxi-
mately 13%—indicate the value of the use of Machine Learning for this task,
while clearly leaving a lot of room for improvement. Firstly, the task itself is
difficult, and clearly a number of variables not currently captured—both envi-
ronmental and latent (e.g., economic) factors, as well as fishermen behavior—
influence the capabilities of the prediction model. On the one hand, this is due
to the short temporal horizon of the landing and AIS data: two years, one for
training and the other one for testing, are not sufficient. We expect that with
access to 2017 data, the results will improve. On the other hand, other prediction
techniques, such as the use of lag variables [21], or an alternative approach using
modern time series prediction, should be exploited as we continue the project.

In data modeling, more sophisticated methods of catch distribution into grid
cells, such as habitat selection [3], need to be looked at. A combination of both
data modeling and machine learning extensions to this early research could also
help to overcome the difficulties deriving from the short time period.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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