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A Data Journey Through Dataset-Centric 
Population Genomics

James Griesemer

Abstract  I describe a data journey drawn from a case study of research in human 
population genomics. The case is framed in dialogue with a project on what has 
been called the “re-situation” of scientific knowledge (Morgan 2014). The kind of 
journey described elicits a missing concept—“dataset-centric” biology—in the con-
versation around the emergence of “big data” and data-centric biology (Leonelli 
2016) and its contrast, “traditional” or “small data” biology. I distinguish datapoint-
centric from dataset-centric practices. The case study is about the development, use, 
and amendment of data sets in one lab’s pursuit of human genome diversity studies. 
I offer a model of data journeys to interpret the case. The model is comprised of 
three kinds of components: scientific data structures, data representations, and data 
journey narratives. The case study illustrates two visualizations that frame the data-
set journey.

1 � Traveling Findings and Data Journeys in Human 
Population Genomics

In this chapter, I make a case for a “middle ground” landscape of data set-centric 
biology as an important setting for data journeys in twenty-first century science, 
adding “middle sized” facts to the big and the small (Howlett and Morgan 2011, 
Leonelli 2016). Communities of specialists in fields practicing dataset-centric biol-
ogy are organized around data sets rather than dissociable, individually retrievable 
data points, even though the dissociability of the latter is key to the data journeys of 
dataset-centric biology. For dataset-centric biology, if datapoints are disaggregated 
from their context in a dataset, datapoints may lose value or meaning as datasets add 
value and change meaning. Scientific focus on datasets prods dataset-centric sci-
ences down toward a “craft” scale of operation rather than up to an “industrial” 
scale: in dataset-centric biology, datapoints are not interchangeable parts, nor inde-
pendently valuable “widgets” in a datapoint-as-product economy of science. At 
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craft scale, datapoints are more like individualized parts of whole dataset products 
and less like anonymized members of possibly arbitrary or merely conventional sets.

In a broad sense, the data journeys in human population genomics of interest in 
this chapter begin with tissue specimen collection, proceed to extraction of DNA 
from specimens, and eventually result in sequencing, production of digital sequence 
records, and archiving of the records. My focus here, however, is on the journey 
after digital data is produced: how these records are collected into datasets that can 
travel (or not), just as Leonelli (2016) has documented how genomics datapoints 
can travel. These journeys must of course be planned, including developing proto-
cols for subject sampling and specimen collection, but here I focus on journeys of 
datapoints and datasets derived from DNA already extracted and archived. After 
tissue collection and curation, extracted DNA specimens are allowed to circulate in 
a limited fashion to qualified research labs. The labs then conduct or arrange 
sequencing so as to use the digital data in a range of biomedical and ancestry stud-
ies. Once the data gets into digital form, the datasets can have a life of their own. 
This “workflow” can be summarized by distinguishing: (1) a “field” setting in which 
a study design is put into action to produce “data,” (2) a lab setting in which speci-
mens or data are put in motion to produce findings and reports, and (3) a community 
setting in which findings are put into circulation in various social worlds that become 
evaluated as “facts” or sent back into scientific workflows to be reworked, reinter-
preted, reevaluated (Fig. 1). My case study focuses on the latter: the use of genomic 
DNA data to infer ancestry relations among human populations.

The case is part of a project on what has been called the “re-situation” of scien-
tific knowledge (Morgan 2014). The kind of journey described elicits a missing 
concept—“dataset-centric” biology—in the conversation around the emergence of 
“big data” and data-centric biology (Leonelli 2016) and its contrast, “traditional” or 
“small data” biology. I distinguish datapoint-centric from dataset-centric practices. 
The case study is about the development, use, and amendment of datasets in one 
lab’s pursuit of human genome diversity studies.

The data journey I re-trace here begins with sequence data analyzed in a paper by 
Noah Rosenberg et al. (2002) in Science magazine: “Genetic Structure of Human 
Populations.” This paper reports “big findings,” that is, findings about worldwide 
ancestry relationships derived from analysis of a substantial collection of datapoints 
in a dataset using advanced analytical methods and theoretical models. The paper 
also reports (or refers to) “small findings,” e.g. findings of particular sequences 
detected in particular DNA samples. Some of the small findings are presented sim-
ply by citation of the datasets used in the analysis leading to the big findings, based 
on sequencing cell line panel DNA collected for the Human Genome Diversity 
Project (HGDP).

Data for the HGDP that supplied the Rosenberg lab came from 1064 lympho-
blastoid cell lines (LCLs) cultured from blood samples collected from people of 
different localities or regions around the world by a variety of laboratories interested 
in participating in the shared effort (Cann et al. 2002). These collection efforts were 
heterogeneous. Specimens were eventually deposited and archived at the Center for 
the Study of Human Polymorphism (CEPH), in Paris, which provides samples of 
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Fig. 1  Diagram illustrating the kind of work flow from a study design, to field work (stage 1) 
producing specimens or raw data, which is then assembled into datasets, analyzed and interpreted 
as yielding findings in the lab (stage 2), that are then circulated via talks, publications and online 
media in various social worlds (stage 3) that evaluate findings, elevating some of them to the status 
of facts and returning others for reconsideration, reinterpretation, and reevaluation. Many points in 
such processes feed into future study designs or the modifications of ongoing studies

extracted DNA to qualified researchers. These users of HGDP-CEPH specimens 
then generated data by sequencing the DNA (or in some cases RNA) or by arrang-
ing for third parties to do the sequencing.1 Attention to data in the HGDP, like data 
in the Human Genome Project (HGP) more broadly, reflects emerging sensibilities 
of data-centric biology. DNA sequences—“digital” data derived from DNA sam-
ples—are the main form of data used to reconstruct ancestry in population genom-
ics. Over the course of the 1990s and 2000s, this data—the data points—became 
increasingly archived in online databases of the kinds Leonelli (2016) describes.

That said, the kind of data journey of the sequence data in the HGDP data sets, is 
quite different, in mode of travel, in the organization and standardization of data 
practices, and in the institutionalization of the data packaging practices that govern 
the work. It is a data set journey—of datapoints between datasets and datasets 
within and among projects—as much or more than a journey of datapoints into and 
out of a centralized database.

1 E.g. the Mammalian Genotyping Service of the Marshfield Clinic Research Institute (Marshfield 
Clinic Research Institute 2014).
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One of the big findings reported concerns relationships between clusters of simi-
lar genetic sequence markers and continent-scale geographic distribution of humans. 
The finding is big enough to be reported in the abstract of the paper (Rosenberg 
et al. 2002, 2381):

… without using prior information about the origins of individuals, we identified six main 
genetic clusters, five of which correspond to major geographic regions, and subclusters that 
often correspond to individual populations.

The 2002 publication was a landmark and its findings, methods, and conceptual 
presuppositions widely debated (Horton 2003). The model-based clustering algo-
rithm implemented in analytical software the authors and their collaborators built, 
program STRUCTURE (Pritchard et al. 2000), assumes a pre-defined number of 
clusters and then allocates datapoints to clusters based on patterns of genetic simi-
larity. The methodology is to allocate sample individuals to clusters by similarity 
across a collection of loci—sequences that are either shared or not shared between 
individual samples. The particular clusters to which individuals are assigned emerge 
in the clustering process and can then be compared to the “pre-defined” population 
labels from which the samples came.2 The “big fact” of continental geographic pat-
terns of human ancestral groups in circulation since the eighteenth century was 
affirmed by Rosenberg et al. (2002) in a novel way: based on genotype sequence 
distributions without reference to the pre-defined population labels. The paper is 
easy to read, contra the authors’ intentions, as endorsing a presupposed biological 
concept of race by conflating a geographic interpretation of genetic classification 
with race on the grounds that the pre-defined populations (either from the sampling 
design or in the analysis) somehow biased the results.3 The analysis is subtle and 
interpretation tricky.

The analysis leading to the big finding was also contested for its theoretical pre-
suppositions (e.g. by Serre and Pääbo 2004) and defended (e.g. Rosenberg et al. 
2005). Some challenges to the results questioned the sampling methodology that 
produced the HGDP-CEPH cell lines. Others challenged that the analysis was 
flawed mainly due to theoretical presuppositions regarding whether human genetic 
variation can be assumed to be organized in more or less discrete “clusters,” perhaps 
with some admixture, or rather in more or less continuous “clines,” perhaps with 
some clumping and isolation. There has been discussion of the analytical methodol-
ogy as well, including examination of the models and algorithms used by 
STRUCTURE, alternative cluster algorithms, and alternative multivariate statistical 
approaches (see Sect. 4 below).

2 Part of the methodological controversy about this research concerns the sampling methods used 
to collect samples in the first place and part with whether and how DNA donors “self-identify” 
with population labels assigned as “meta-data” to the DNA sequence data. Our larger project will 
address the latter topic in detail (Griesemer and Barragán 2019).
3 See Wills 2017 for an analysis of “rhetorical appropriations” of the article; see Wade 2014 for a 
journalist’s reading of the paper as supporting a concept of race as “clusters of variation.”
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It is not my purpose to characterize how well this big “fact” of continental differ-
ences (variously as a story of race, ethnicity, or genetic variation) has traveled 
through the centuries or spread among disciplines or societies, nor to assess the 
critical charges by post-colonialist thinkers, even while I fully agree that issues of 
race and ethnicity are far more important in the grand schemes of human cultures 
and societies than is reconstruction of the data journeys of the datapoints, their 
uptake in datasets, or interpretations of narratives of facts related to the journeys of 
the constructed datasets. Nevertheless, my interest here is to understand scientific 
practices involved in using the kinds of data that fuel the work of producing big 
findings, rather than the findings themselves.

2 � Scientific Data Structures

In contrast to the big findings—the stuff of “results” and “discussion” sections of 
published scientific papers—key small findings mentioned or referred to in 
Rosenberg et al. (2002) concern the genotypes at the particular loci of the particular 
sample subjects used to assemble the genome diversity dataset for the analysis. 
These small findings are, in effect, “asserted” by reference, via the computer files in 
which the data are represented and recorded, to “scientific data structures.” These 
data structures are displayed in the files and described in “materials and methods” 
sections, figures, tables, information supplementary to main publications, and soft-
ware manuals. The data structures and files link sample subject identifiers to 
sequence data, e.g. diversitydata.stru, which is described in another file, 
diversityreadme.txt.4

The representation of genotypes in the diversitydata.stru file is clear but indirect, 
involving pointers (labels) to sequence data records stored in centralized databases 
such as GenBank. GenBank labels for DNA sequences appear as names of loci in 
the data file.5

Genotypes for each sample individual are coded in labels for the two alleles at 
each locus represented in the file: 377 loci in this dataset × 2 alleles for each diploid 
sample individual, with two rows in the data table for each sample subject, one row 
for each of the paired chromosomes. The allele at the first sequenced locus for 
sample individual 995, for example, from “Karitiana Brazil AMERICA,” (Pop ID 
82) is an allele coded as “120” (Fig. 2).

Allele encodings report “genotypes (measured in base pairs)” (Rosenberg et al. 
2002), that is, by integer labels: “Each allele at a given locus should be coded by a 
unique integer” (Pritchard et al. 2010, p. 6). “120” encodes a unique allele at locus 

4 Rosenberg maintains downloadable copies of the exact data used in the original paper at the 
Rosenberg Lab website (Rosenberg Lab 2018).
5 Another downloadable file, diversityreadme.txt, contains “meta-data” information about how 
diversitydata.stru is organized. The reference to “the structure program” is to the software, called 
“STRUCTURE,” authored by some of the authors of Rosenberg et al. (2002).
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Fig. 2  Screen shot of records in a dataset visualization in program STRUCTURE, after I cleaned 
(pruned) out meta-data from the file downloaded from the Rosenberg Lab’s dataset web page, so 
the software could read the data file. STRUCTURE is a free software package described by 
Prichard et  al. (2000) and downloadable at http://web.stanford.edu/group/pritchardlab/structure.
html. The dataset used by Rosenberg et al. (2002) is downloadable from the Rosenberg Lab “Data 
sets” webpage: https://rosenberglab.stanford.edu/datasets.html

D12S1638. Sample subject 995 happens to have the same allele, “120,” on both 
chromosomes and is thus homozygous for that locus.

A different data file, diversityloci.txt, associates GenBank sequence identifiers 
such as D12S1638 with Marshfield Screening Set labels (AFMB002VD5) linking 
the sequence to the tissue sample from which it was sequenced. This link represents 
and visualizes an early part of an “omics”-like datapoint journey from samples to 
sequences in the workflow of population genomicists. In turn, the GenBank identi-
fier points to a record in NCBI’s Nucleotide Database, “a collection of sequences 
from several sources, including GenBank, RefSeq, TPA and PDB,” (NCBI 2019). 
reflecting a datapoint journey from a HGP reference sequence contributed to this 
centralized, online-accessible database. The GenBank sequence label D12S1638 is 
itself a reference to an actual sequence of 233 nucleotides, reported at the NCBI 
web site.6

These several files, maintained at the Rosenberg lab website as “the data” (and 
meta-data), correspond to a simple relational data structure that points in one direc-
tion to the tissue sample sources in the Marshfield Screening set of CEPH-curated 
cell lines and points in the other direction to the DNA sequences generated from 
those cell lines that are eventually encoded in datasets in the Rosenberg lab (and 
potentially uploadable to GenBank’s NCBI Nucleotide Sequence Database).

For the text-based cluster analysis methods implemented in program 
STRUCTURE, which are used to analyze the dataset in Rosenberg et al. (2002), and 
for the project of studying allele polymorphisms in these sequences, all that matters 
is that the text used to label the sequences, e.g. “120,” be unique.7 Whether the 

6 The complete reference sequence for locus D12S1638 can be retrieved from a NCBI Nucleotide 
Sequence Database Fasta search report https://www.ncbi.nlm.nih.gov/nuccore/
Z53031.1?report=fasta. Accessed 5 June, 2018.
7 The mathematical method at the heart of the software’s algorithm, latent Dirichlet allocation, is 
also used for topic modeling in digital humanities (see Blei and Lafferty 2009). There are journeys 
of models and software within and among fields to be tracked alongside the data journeys described 
here.
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software actually compares sequence “data” or rather encodings of genotypic dif-
ferences in text labels for these similarities or differences is irrelevant to the form of 
analysis and findings presented in the publication, although quite relevant to how 
we might interpret their datapoint journeys and what other uses or “re-situations” 
might be made of the datapoints and datasets.

The software, program STRUCTURE, is also downloadable from the laboratory 
of Jonathan Pritchard, one of its authors, now at Stanford University (Pritchard Lab 
2019). The downloadability of the data set, which visualizes a scientific data struc-
ture, and analytical software from a local but accessible website, i.e. a lab web site 
rather than a community- or government-maintained online database, is a feature of 
the kind of dataset-centric practice I suggest is now widespread in contemporary 
biology. This dataset archiving practice occupies a middle ground between the non- 
or poorly-circulating datasets of hypothesis-centric traditional practices and the 
highly accessible datapoints archived in centralized databases of the datapoint-
centric sciences. It is notable that while web links for this kind of local hosting of 
datasets and software tend to break as researchers move from one research organiza-
tion (typically, a university) to another, links to the datasets, software, and refer-
ences do mostly get reestablished and are relatively speaking “findable” (by internet 
search) if not by archiving in stable, centrally located internet resources of a federal 
government (e.g., NCBI, CEPH) or major NGO (e.g., Coriell, Marshfield, Simons).

3 � Dataset Journey Representations: Two Visualizations

Datapoint and dataset structure representations for the Rosenberg et al. (2002) paper 
were already introduced in Fig. 2. What I am not talking about is the widely noted 
and discussed figures in Rosenberg et al. (2002, Figures 1 and 2) and other publica-
tions using program STRUCTURE (and in its early versions, the separate visualiza-
tion software, DISTRUCT). These are visualizations of the output of the dataset 
analysis which are interpreted to produce “big findings.”

The description of this dataset in the supplemental information to the paper 
already narrates a dataset journey by relating the dataset constructed and analyzed 
for the publication from its source material in DNA extracted from one of the 
Marshfield screening sets of tissue samples used as sources of DNA. I describe that 
narrative in the next section. Here, I describe two data visualizations that are central 
to dataset journey narratives.

Figure 2 displayed a fragment of the Rosenberg et al. (2002) dataset in the form 
it takes when the dataset file is opened with the Apple MacOS graphical interface 
implementation of program STRUCTURE, version 2.3.4, after I did some “clean-
ing” or “pruning” of the “raw” data file. There was a data journey even from the 
“raw-raw” data—that is, the downloadable data file as archived on the Rosenberg 
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lab’s dataset web page.8 The “raw-raw” data file contains redundant “meta-data,” 
i.e. data that is not used by program STRUCTURE for data analysis, but which 
makes the data file more human-readable without following cross-references to 
other data files, as described above. This meta-data about “pre-defined” populations 
embedded in the dataset is also used to interpret what genotype similarity clusters 
mean so as to formulate big findings.

Indeed, this meta-data added to the data file is redundant because it is also linked 
by a data field in each data record to the “population code,” e.g. “82” standing for 
“Karitiana Brazil AMERICA,” which also appears in a separate “meta-data” file 
called diversitycodes.txt.9 This meta-data must be removed from the data file in 
order for STRUCTURE to read it.

So far, I have considered datapoint and dataset representations in data tables 
(stored in computer data files). I turn now to visualized representations of datapoint 
and dataset journeys. These journey visualizations are not narratives themselves, i.e. 
stories of the travels of points and sets through and to various sets, publications and 
research projects. Rather, visualizations of scientific data structure representations 
can facilitate data journeys as “chronicles” promoting certain sorts of dataset “travel 
narratives” in a research community. These visualizations “chart the territory” or 
“map the waters” in which dataset “ships” can travel from research project to 
research project.

Thus far, I have mentioned the journeys of samples to specimens to datapoints in 
dataset assembly, visualized by the kinds of data files discussed above. Next, I 
describe two kinds of visualizations of data set journeys linking different datasets 
into sequences or chronologies.

3.1 � Example: Lab Web Page Dataset Journey Visualization

Rosenberg’s lab “diversity” web page links to a “Data sets” web page with a link 
titled: “HGDP-CEPH human genome diversity cell line panel” (Rosenberg Lab 
2018). The main “Data sets” page shows that the Rosenberg lab maintains data sets 
mostly on humans, but includes non-humans (chickens) and also links to datasets 
“hosted by collaborating labs.”10

This diversity web page provides links to many of the maintained datasets for 
human data. It also visualizes a kind of data journey itself. The web page does this 
as a structured framework of boxes/panels—a vertical, textual “triptych”—in the 

8 I discovered the raw data file was not in a format program STRUCTURE could process directly 
by trial and error, as have many other naïve users. For evidence, see the Google Groups FAQ: 
https://groups.google.com/forum/#!forum/structure-software. Accessed 13 August, 2019.
9 Additional figures can be viewed in an expanded version of this chapter at: http://philsci-archive.
pitt.edu. For diversitycodes.txt see Rosenberg Lab (2018).
10 Chicken breeds with known population structure are used to test “the utility of genetic cluster 
analysis in ascertaining population structure,” see Rosenberg et al. 2001.
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web page. Each panel includes a descriptive title, summary dataset description, ref-
erences to sources, and links to downloadable dataset files. The panels start with the 
HGDP 2002 dataset from Rosenberg et al. (2002) at the bottom of the page (reading 
up to the top of the page to follow the journey chronologically) or start with the most 
recently archived dataset of exome data from 2013 (reading down the page from top 
to bottom to retrace the lineage of current work back to source datasets). The trip-
tych is headed (at the top) by a summary of the “lineage” of datasets from 2013 back 
to 2002: “[2013] [2011] [2009] [2008] [2006] [2005] [2002].”

Each panel title indicates the character of the dataset as a modification from 
HGDP 2002, e.g. “HGDP+other 2013 microsatellites”, indicating that 645 autoso-
mal microsatellite loci were added to the original 377 of the HGDP 2002 study in 
the study published by Pemberton et al. (2013). The web page overall visualizes the 
journey of the HGDP 2002 datapoints in the 2002 dataset in summary form as each 
new dataset (or version) is assembled from previous ones, sometimes noting varia-
tion from other, related or similar datasets referenced in the literature.11

3.2 � Example: Excel Spreadsheet Dataset Journey Visualization

In 2006, Rosenberg published a paper attempting to frame the story of a dataset 
journey in terms of a different kind of visualization than the vertical triptych in his 
Lab’s “Data sets” webpage. Interestingly, because this was also a project concern-
ing the HGDP 2002 dataset, the 2006 project also appears as a place in the dataset 
journey in that triptych visualization, titled “HGDP 2006 relatives” (Rosenberg 
Lab 2018).

Rosenberg (2006) seeks to put some order into the proliferation of datasets serv-
ing human population genomics ancestry reconstructions by offering a naming con-
vention for datasets and an assessment of which of the datasets that his lab assembled 
are appropriate for what kinds of work, based on their characteristics as datasets.

Rosenberg’s dataset visualization is in the form of an Excel Spreadsheet (Fig. 3) 
that offers a different kind of triptych than the one previously discussed.

The spreadsheet lists individual HGDP sample donors by sample number (e.g., 
sample donor 995 discussed above). The population codes and “meta-data” of pop-
ulation names, sample locations (usually nation-states) and large scale regions fol-
low. Meta-data information on the sex of the donor is also included. Then, a series 
of columns are used to indicate whether each donor’s sample (in the form of DNA 
sequence datapoints) is included in datasets that figured in the research projects 
marked by publications cited in the column headings.

Wherever a “1” appears in the rows of these columns, the individual’s DNA 
sequence data is included among the records of the dataset used in that column’s 
publication. By scanning across the columns from left to right, one can see when a 

11 See additional figures in the expanded version of this chapter at: http://philsci-archive.pitt.edu
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Fig. 3  Screen shot of a fragment of the Rosenberg (2006) spreadsheet “SampleInformation.xls”. 
The figure displays a “triptych” or rather 10-ptych (columns G-P) of points of embarkment/disem-
barkment of datapoints originating in the HGDP-CEPH LCL cell line panel and ending in dataset 
H952, which has dropped all data (and records) that include close (1st or 2nd degree) relatives. The 
spreadsheet is downloadable from Rosenberg Lab (2018). It is not included as supplemental infor-
mation to the published paper. https://rosenberglab.stanford.edu/data/rosenberg2006ahg/
SampleInformation.xls. Accessed 26 August 2019

particular datapoint embarked or disembarked the research program (sequence of 
research projects) in the Rosenberg Lab. The stops along the journey are from the 
HGDP-CEPH sample set, to the dataset analyzed in Rosenberg et al. (2002) to the 
dataset analyzed in Rosenberg et al. (2005), to the dataset called H971 to the dataset 
called H952.

4 � Data Journey Narratives: Datapoints and Datasets

A data journey narrative appears in a particular research publication to tell the story 
of the dataset that arrived at the research project reported in the publication and is 
analyzed there. Such narratives have the form of stories about “how the dataset got 
to its destination,” after a perhaps circuitous route through other research projects, 
labs, programs, or specialties.

Dataset journey narratives support a form of narrative explanation (Currie 2018). 
However, because they are narratives of dataset journeys, the target of explanation 
is not some phenomenon in nature, but rather an explanation of the use of a particu-
lar dataset in a particular research project.

The aim is to explain how and why a particular dataset “arrived” at this particular 
destination, given a particular research project. Dataset journey narratives are 
needed to persuade an audience to accept the dataset as appropriate for data analysis 
and thus to accept the results as findings worthy of circulation.

J. Griesemer
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4.1 � Dataset Assembly Narrative

Rosenberg et al. (2002) describe a dataset derived from 1056 individuals from 52 
“pre-defined” populations, sequenced at 377 autosomal microsatellite loci. The 
1056 individual DNA samples are a different set than the samples delivered to the 
lab from CEPH because not all of those samples could be used for Rosenberg et al.’s 
purposes. As they write (Rosenberg et al. 2002 supplemental, 1):

The data set that we analyzed differs from the HGDP-CEPH Human Genome Diversity Cell 
Line Panel of 1064 individuals in its inclusion of Japanese individual #1026, whose cell line 
could not be produced owing to technical problems, and its exclusions of She #1331, who 
was not genotyped, and 8 individuals whose populations had samples of size 1 or 2 (#993, 
#994, #1028, #1030, #1031, #1033, #1034, #1035). Individual #1410, who is not included 
in the Cell Line Panel, was genotyped, but as the only representative of his population, was 
not analyzed. The loci studied, from Marshfield Screening Set #10 (http://research.marsh-
fieldclinic.org/ genetics/sets/combo.html), include a mixture of 377 polymorphic di-, tri-, 
and tetra-nucleotide repeat loci spread across all 22 autosomes (2, 19), with 3.8% missing 
data. Genotyping was performed by the Mammalian Genotyping Service (19).

This kind of attention to precisely what dataset is being assembled for a particular 
investigation is central to the kind of data journey of interest here. Consideration is 
given to why individual datapoints may or may not embark on the journey. The goal 
is to use as much of the HGDP-CEPH world-wide sample tissue collection as pos-
sible to reflect as much of the world-wide genetic diversity sampled and to provide 
the most robust inferences of ancestry relations possible, given the available data 
and background knowledge at the time.

Datasets assembled for specific projects seek to answer questions or test hypoth-
eses. In the case of Rosenberg et al. (2002), the question is whether STRUCTURE 
can reveal population diversity through study of genetic diversity data without 
appeal to “self-identified” population membership of sample donors. The datapoints 
and dataset are described, their provenance and relations to previously assembled 
datasets are also described, and the reasoning behind the beginnings and endings of 
journeys of particular datapoints (or specimens, in the early stages of these data 
journeys) is given.

The reasons the data journey takes particular twists and turns are a mix of kinds, 
starting from the usual kinds of “cleaning” of “raw” data familiar from other con-
texts and discussed above. “Japanese individual #1026” was included in the 
Rosenberg study even though the extracted DNA was not derived from the CEPH 
cell line diversity panel due to technical problems with the CEPH cell line. Other 
tissue samples were not sequenced and hence could not supply data. Samples that 
were included in the Rosenberg study collectively have 3.8% missing data, i.e. 
sequences missing for particular loci within the 377 loci sequenced for each indi-
vidual. Missing data reduces the resolution and precision of the analysis, but not so 
much that the whole data record for those individuals must be excluded from the 
analysis. Some data, in other words, fails to be generated from specimens while 
other data is dropped when the records in which they are coded are eliminated from 
consideration for various reasons. These are typical kinds of “missing data.”

A Data Journey Through Dataset-Centric Population Genomics
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Fig. 4  Workflow diagram following the format of Fig. 1, illustrating specific elements of the data-
set assembly and use of data in the Rosenberg et al. 2002 study

Of more interest is when researchers drop DNA sequences in the transition from 
specimens to data because samples don’t meet theoretical requirements of their 
“model-driven” analysis tools. Population genetics theory (and statistical sampling 
theory) says inferences will be poor for populations represented by only one or two 
specimens (i.e. sample size n = 1 or 2), so they are not included in the dataset, 
although they are included in the HGDP-CEPH donor blood tissue specimens, lym-
phoblastoid cell lines, and DNA sample “screening sets.”12 This kind of hiatus or 
end to a datapoint and sub-dataset journey is the tip of an iceberg of ways in which 
data may be “cleaned” or “pruned” in the processing steps leading from material 
samples to “raw raw” data to “raw” data to “cooked” or processed data.13 Figure 4 
illustrates a workflow for dataset assembly in the work of the Rosenberg Lab fol-
lowing the outline of Fig. 1.

12 Different investigators and labs set different local sample size thresholds based on varying theo-
retical requirements for their specific research purposes, so whether a given datapoint can continue 
on a dataset journey depends on the lab and the project.
13 The cleaning metaphor supports a useful contrast between “raw” and “cooked” data, even if 
Bowker (2005, p. 184) is right that “Raw data is both an oxymoron and a bad idea; to the contrary, 
data should be cooked with care.”
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4.2 � Dataset Journey Narrative

Of still more interest are beginnings and endings of the journeys of data points that 
result from further analyses inspired by working with the data set. These further 
practices support stories of data journeys of datapoints from dataset to dataset and 
journeys of datasets from research project to research project. They are dataset jour-
neys: a voyage of the Beagle rather than Darwin’s voyage or FitzRoy’s voyage; 
voyages of the starship Enterprise rather than Kirk’s voyage or Spock’s voyage.

Samples are gathered together; information is collected from samples and assem-
bled into a dataset; the data journey begins with a scientific study of the dataset. 
Small and big findings arise and emerge from this traditional kind of scientific work. 
In addition, medium-sized facts arise about the dataset itself, where a medium-sized 
fact is a relational fact over the group of datapoints, or a fact derived from the set, 
but not extending or applying beyond the sample specimens that led to the group of 
datapoints. Medium-sized facts contrast with Leonelli’s (2016) small facts or find-
ings corresponding to individual datapoints and with big facts or findings derived 
from the analysis of the whole dataset in the light of a theory, question or hypothesis.

Because of the technical nature of the work of comparing genetic sequences, 
results of model-driven analysis in hypothesis-centric research often reveal salient 
features of the dataset, e.g. features that identify particular datapoints or small 
groups of datapoints as exceptional.14 These are “medium-sized” facts or findings 
about the dataset itself, and thus about the sample set or sample sub-sets. These 
medium-sized facts can drive dataset journeys less visible than the big fact journeys 
in which scientists use data and whose reports grab the headlines when the science 
is perceived to have important scientific implications, societal impact or is other-
wise controversial.

One of these less visible data journeys concerns individual 995 from the Karitiana 
in Brazil. The challenge in her journey was due to her traveling companion, indi-
vidual 996. Individual/datapoint 995 from the Karitiana remained on the dataset 
journey from 2002 to 2006 at least, but when it was inferred that individual 996 was 
probably 995’s sister (due to the level of genetic similarity), one of them had to get 
off the ship (dataset). Rosenberg (2006) introduced the convention to drop which-
ever among pairs of such datapoints had arbitrarily been given the higher-numbered 
label, so Ms. 996’s journey ended while Ms. 995’s continued. In other cases, whole 
families had to exit the journey for analogous reasons. This is not how the data jour-
neys would go if socio-cultural anthropologists rather than geneticists were arrang-
ing the journeys, given the fundamentally different orientation of the two disciplines 
to family-level data. For anthropologists, families represent important units in the 
organization of cultures, but in the context of population-level genomics, they 

14 Compare Tempini, this volume a, b, on analogous discoveries of middle-sized facts about envi-
ronmental public health datasets, and Hoeppe, this volume, on discovery of “artifacts” in radio 
telescope datasets.
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represent complications to sampling assumptions needed to apply theory to data and 
thus are to be avoided.

The character of the journeys of the datapoints in the Rosenberg et al. (2002) 
dataset does not become apparent until one looks at some of the destinations to 
which the dataset traveled. Here, I focus more on dataset journeys within the prac-
tices of the Rosenberg Lab and its collaborations and less on data journeys out into 
the wider specialty and beyond where others can download Rosenberg et al.’s data 
and software and try to repeat the analysis reported in the publication or construct 
new datasets from old. My goal in this chapter is modest: to formulate the idea of 
dataset-centric biology, display some of its narrative forms and visualizations, and 
underscore its potential value for understanding the organization of contemporary 
sciences, using an illustrative case, not to establish its generality or reach.

In 2005, Rosenberg et al. (2005) published a defense of their methods and find-
ings in the 2002 paper. They “expanded their earlier dataset” from “377 to 993 
markers” so they could evaluate critical responses (e.g. Serre and Pääbo 2004) that 
human populations are ordered in clines, not clusters. Since this was mostly an 
expansion, with new datapoints joining the journey, including datapoints of kinds 
other than microsatellite data, I will not further discuss this paper. I note simply that 
in 2005 a bunch of new travelers joined on, so we can think of datasets as both 
structures serving as vehicles for the travel of datapoints and as destinations: data-
points travel from dataset to dataset, getting on or getting off different ships at vari-
ous “stops.”

A different paper, by Ramachandran et al. in 2005, is more interesting for present 
purposes. Certain features of some of the datapoints in the 2002 study were noted, 
causing some of them to be dropped and others to be added for this study. The 
account of the dataset structure in the “Materials and Methods” section (p. 15942) 
is instructive. In this quotation, note that reference (11) is to Rosenberg et al. (2002).

Data. The data set that we analyzed consists of 1,027 individuals from the HGDP-CEPH 
Human Genome Diversity Cell Line Panel (10). Several individuals from the collection of 
1,056 individuals studied by Rosenberg et al. (11) were excluded from the present analysis. 
These included the following: (i) no. 1026, who was studied by Rosenberg et al. (11) but 
who was not in the HGDP-CEPH panel; (ii) nos. 770 and 980, who were identified by 
Rosenberg et al. (11) as likely labeling errors; (iii) nos. 589, 652, 659, 826, 979, 981, 1022, 
1025, 1087, 1092, 1154, and 1235, each of whom was identified by Mountain and 
Ramakrishnan (12) as a duplicate sample of another individual included in the panel; (iv) 
nos. 111 and 220, who were identified by Mountain and Ramakrishnan (12) as duplicates 
of each other but whose population labels differed; and (v) 21 individuals from the Surui 
population, an extreme outlier in a variety of previous analyses (11, 13, 14). Individuals not 
studied by Rosenberg et al. (11) but analyzed here included the following: (i) no. 1331, 
whose genotypes had been unavailable at the time of the Rosenberg et al. (11) study; (ii) 
nos. 993, 994, 1028, 1030, 1031, 1033, 1034, and 1035, who were previously excluded as 
members of populations with small sample sizes but who were grouped for the present 
analysis into Southwestern Bantu (individuals no. 1028, 1031, and 1035) and Southeastern 
Bantu (individuals no. 993, 994, 1030, 1033, and 1034) populations. Thus, the present data 
set includes two additional populations along with all populations studied by Rosenberg 
et al. (11) except Surui for a total of 53 populations.
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In addition to the kinds of data “cleaning” mentioned previously, this paper dropped 
a whole population, the 21 individuals sampled from the Surui in Brazil, who live 
near the Karitiana by the way, as an “extreme outlier.” 21 individual data points 
were dropped from the journey because of a characteristic of that population as a 
whole—bad traveling companions one might say. This points to the dataset as itself 
a “fact” or finding produced by the analyses cited. I describe such facts as “medium” 
sized because they form the basis for the analyses leading to big facts, but are facts 
about the datasets themselves, analogous to the way the small facts of interest here 
are facts about individual sample subjects.

Equally interesting is the continuation on the dataset journey of datapoints 1028, 
1031, 1034 and 993, 994, 1030, 1033, and 1034 who didn’t make the earlier seg-
ment of the journey from HGDP-CEPH sample set to the dataset of Rosenberg et al. 
(2002), but who were allowed to get back into the research program and the overall 
dataset journey at a different research project and publication “stop” due to the 
small sample size threshold set by Rosenberg’s project. Ramachandran et  al. re-
grouped them into Southwestern and Southeastern Bantu, in effect defining new 
populations by means of a statistical procedure and adding population labels (“meta-
data”) in the lab rather than as a result of “self-reporting” or “data collection” in the 
field. In effect, they were interpreted as coming from different places than their 
original “relevance labels” (place of origin) designated, so they in effect, got new 
“visas” to travel by Ramachandran et al. (see Leonelli 2011 and 2016 on relevance 
and reliability labels).15

These and other papers appearing between 2002 and 2005 prompted Rosenberg 
to publish the 2006 paper described above (Sect. 4.2). It visualizes datapoint jour-
neys to and among datasets in a spreadsheet format. Although this paper can be read 
as part of the other visualization of dataset journeys in the Rosenberg lab (on the 
datasets web page), this paper can alternatively be read as a new kind of publication 
in this specialty: a data “curator” paper, signaling a kind of work analogous to that 
of the specialized data curators in the bio-ontology projects Leonelli (2016) dis-
cusses. Instead of tracking changes to datasets within the “materials & methods” or 
“supplementary” sections of publications of a research project, Rosenberg (2006) is 
a publication aimed at tracking datasets and, more importantly, proposing standards 
for naming and using these datasets. This implies a new level of attention to the 

15 M’charek 2005 writes about the “passports” DNA samples needed to pass from one part of the 
forensics lab she studied to another. I use the related metaphor of “visa.” The difference of meta-
phors is that the passport is a license to travel. The visa is a license to travel in a specific place for 
a specific period of time. To continue the metaphor, DNA sequences or their tissue samples get 
“passports” when they are enrolled as samples in the CEPH bio-repository. To get a visa to be 
included in a particular dataset, the “receiving” country—research group in this case—has to 
approve. Approval can turn on questions of “desirability” (un-sequence-able tissue samples are 
undesirable; duplicates are undesirable) or for “theoretical” reasons (sample size too small). 
Barragán, on the other hand, writes about dataset curating practices in terms of data noise and data 
silencing as life scientists confront genomic datasets with archaeological, ethnographic, ethnohis-
torical and linguistic datasets about pre-Columbian and contemporary indigenous groups in north-
ern South America (Barragán 2016, 2017).
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ways in which data visualizations (and narratives) set data in motion and contribute 
to data travel among research projects.

The curation of HGDP-derived datasets in Rosenberg (2006) is not for the sake 
of online database management and curation of sequence datapoints, accessible in 
the way the “omics” databases are. Rather, it attempts to curate, by documenting in 
a publication, both the dataset that was initially assembled for the 2002 study and 
the journeys of the datapoints among datasets as a widening circle of researchers 
used and tinkered with the 2002 dataset to produce new datasets. Differently put, 
researchers such as Rosenberg (and perhaps those involved in the HGDP more 
broadly) seem to be taking a new and active interest in conceptualizing and repre-
senting the “middle-ground” dataset landscape in which many of their data-centric 
practices are enacted.

5 � A Model of Dataset Journeys and Conclusions

I don’t pretend to have done more than scratch the surface of a case study of dataset-
centric human population genomics. What I hope to have illustrated is that there is 
a “middle ground” data landscape between the traditional hypothesis-driven use of 
data as familiarly described by philosophies of “scientific method” and the new 
ground of data-centric science described so well by Leonelli. I have gestured at 
ways in which individual datapoints in datasets, at least in human population 
genomic diversity studies, make data journeys that are of neither of Leonelli’s two 
kinds, but which resemble them in some respects and to some degree and differ in 
other respects. Perhaps other question-driven scientific specialties are also influ-
enced by what is newly afforded in the rapidly changing landscape of computational 
and online digital methods, so there may be many forms of dataset-centric scientific 
practices waiting to be described. Morgan’s study (this volume) of two kinds of data 
journeys in economics regarding national income accounts and indicator series also 
concern humans and population data, though with a very different subject matter 
and principles for dataset formation and use than the biological genomics studies 
considered here.

In this chapter, I have characterized data journeys in terms of a model comprised 
of three kinds of components: data structures, data visualizations and data journey 
narratives. The details of specific scientific practices involved in producing and 
using these components do matter, if we are to understand these data journeys in 
middle-ground landscapes of datasets and how they might inform big findings and 
facts. This is particularly true of genomic ancestry projects like HGDP and biomedi-
cal projects like personalized genomic medicine. A further result of this case study 
is important for present purposes to signal a connection of dataset-centric biology to 
characteristic features of emerging data-centric “omics” research practices: the 
emergence of a “bioinformatics” practice alongside the basic, craft research process 
of asking and answering questions, posing and testing hypotheses.
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A distinct and notable line of investigation emerged in population genomics in 
roughly the time frame 2002–2006 around detection of close relationships among 
individuals with sequence data in genetic datasets of this kind, both for ancestry and 
biomedical studies (e.g. Boehnke and Cox 1997; Epstein et al. 2000). This litera-
ture, reviewing both datasets and software and modeling approaches, flourished to 
the point that there are now review articles “benchmarking” different relatedness 
inference methods (e.g. Porras-Hurtado et al. 2013; Ramstetter et al. 2017). This is 
evidence of a “standards” specialization emerging within dataset-centric population 
genomics analogous to the kind of “infrastructure” supporting a bioinformatics spe-
cialization that Leonelli (2011, 2016) discusses for data-centric “omics” biology 
(see also Tempini 2017, this volume a, b).

Moreover, Rosenberg’s efforts in (2006) are, I suggest, aimed at supporting a 
narrative that steers the dataset journeys of particular datapoints. This is not quite 
like the curation that goes on in the world of “omics,” because the target is datasets 
that are purpose-built and question-driven. The corresponding findings reported in 
this emerging dataset curation literature are medium-sized, regarding these datasets 
themselves. The normative directions derive from the standards concerning what 
sorts of findings or “big” facts can or should be derived from datasets of particular 
kinds or with particular characteristics.16

The data journey discussed here is not quite like the ones Leonelli describes, nor 
like many of those detailed in Howlett and Morgan (2011) on traveling facts. The 
journey of the dataset is driven in part by the conventional publication system in 
which peer-reviewed publications of findings using these datasets (together with 
ancillary visualizations in web pages, spreadsheets and supplementary material) 
draw attention to the datasets themselves and provoke scrutiny of the datapoints. 
This scrutiny may extend, moreover, to science studies analysts tracing dataset and 
datapoint journeys in terms of the components of a model in which data structures, 
data visualizations and data journey narratives mobilize datapoints in dataset jour-
neys. These journeys may encourage re-use of the dataset or construction of related 
or alternative datasets, adding and dropping datapoints, thus driving the data 
journey(s) forward. A different story will be needed for the drivers of “sample sets” 
such as blood donor samples, cell lines, and extracted DNA sample sets because the 
differences in materiality matter. The contingency of such sample sets being avail-
able to feed the production of datasets is critical to dataset journeys.17

Dataset journeys, classification schemes and data visualizations designed to 
maintain and manage them in contemporary biology are driven by a hybrid system 
of formal, institutionalized, community-sanctioned publishing and quasi-“samizdat” 
or “self-publishing” systems of personal, individual, laboratory, and university-
sponsored websites for distributing datasets and software as well as publications. 
Unsurprisingly, there is also an emerging effort to institutionalize these kinds of 

16 On the links between data, classification systems and standards, see Bowker and Star (1999).
17 It remains to be seen whether the model described here applies to sample journeys as well as to 
data journeys. Thanks to Carlos Andrés Barragán for emphasizing this point.
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publication as well, in data journals and dataset archiving services. There is, never-
theless, less standardization of data formats in dataset curation and publication as 
displayed in this case study, even if there is substantial standardization of some of 
the data content of datapoints due to the rise of data-centric biology and centralized, 
shared databases for datapoints.18

The lower degree of standardization is no doubt partly due to the fact that nearly 
every population geneticist running a lab today is (or is becoming) a coder who 
writes their own software in their own way, typically built to read and analyze data 
formatted anachronistically for their own lab’s purposes. It is a relatively manage-
able problem for others to gain access to such data and tools: if the software and the 
dataset can be downloaded and the provenance and versioning meta-data for the 
software is curated along with the dataset, one can (with effort) get the original 
software to analyze the original dataset. Nevertheless, it is a problem. And it entails 
different kinds of practices and workflows than biological research had required 
before the data and software coding revolutions of the last few decades.19

It means that data journeys may require software journeys: particular software 
versions (and perhaps operating systems or whole virtual machine execution envi-
ronments) may have to chaperone datasets in order for scientific analyses to be 
repeated and re-evaluated. Indeed, software versioning is a form of software journey 
in this middle-ground landscape between the small landscapes of datapoints and 
small facts on the one hand, and the big landscapes of research findings and big 
facts on the other.20

One more comparison of dataset-centric biology with the bioinformatics dimen-
sions of datapoint-centric biology will display some similarities and highlight dif-
ferences. Rosenberg also engages in dataset packaging practices which parallel 
Leonelli’s (2011, 2016) labeling story. Relevance labels, which signal the value of 
datapoints for particular kinds of journeys and analyses, are included in the dataset 
(or linked to it) by coding what are called “pre-defined” populations as part of the 
data records. These are names like Karitiana, for the name of the people/place of a 
certain culturally specific, geographically localized group of people; like Brazil, for 
the name of the nation-state in which the Karitiana are (largely) thought to reside at 
present; and like AMERICA, for the name of the “region” or “continent” of which 
the relevant nation-state is considered part (see Barragán 2016). As we saw, these 
“pre-defined” populations played no role in the cluster based inference of ancestry 

18 See Tempini, this volume a, b, for a case where infrastructures are built to systematize, institu-
tionalize and standardize the sourcing, hosting, manipulation and generation of datasets. See also 
Tempini (2017). Morgan’s two cases (this volume)—national income accounts and UN indicators 
of national “health”—also suggest different subject matters and principles may require or lead to 
different respects and degrees of both standards and infrastructure.
19 A recent trend in bioinformatics is to solve this problem by making the entire “execution environ-
ment” of a whole computational “scientific workflow” the basic unit to be prepared for data jour-
neys. Rather than just data, or software or both, this workflow-centric biology involves creating 
whole execution environments of data, software and computer operating system as the “basic 
units” (Meng and Thain 2017).
20 Thanks to Jason Oakes for pressing this point.

J. Griesemer



163

relations in Rosenberg et al. (2002) directly, though they surely did play a role in 
attracting the attention of those who conducted the initial sampling effort because 
the collectors were interested in sampling human genetic diversity, especially 
among small groups that might soon disappear. It is no accident that the HGDP-
CEPH samples are not (all) drawn from nation-state capital cities, for example, nor 
from a conventional grid of equally spaced sample locations defined by the geom-
etry of the Earth (constrained by availability of time, money, skill, and interest of 
collectors in sampling at a particular geographic “scale”). The HGDP-CEPH sam-
ple panel was made after several years of inconclusive internal battle over what 
would be an appropriate sampling protocol for the HGDP (see NAS 1997, for exam-
ple), but it is not the focus of interest and concern here.

Leonelli’s “reliability” labeling practices are also included in Rosenberg’s data-
set curation practices, though the latter do not appear in “evidence codes” stored in 
an online accessible “bio-ontology” or “database.” Rather, they appear in the 
“Materials and Methods” sections of “ordinary” scientific papers or coded in 
archived, downloadable “data” (i.e. meta-data) files devoted to answering a research 
question or testing a model-driven hypothesis. Cross-referencing a DNA sequence 
dataset via joining ID field, “Pop ID,” is perhaps assurance of both reliability and 
readability of the data file.

It is common to describe the sources and methods used to generate a dataset in 
any scientific paper worthy of the name. In the case of human population genomics 
diversity papers, this extends to discussion of individual datapoints and, increas-
ingly, to a methods literature of papers like Rosenberg (2006) devoted to curation of 
datasets apart from the research papers devoted to reporting the “big”-fact findings 
of question-driven research projects. Interestingly, unlike the methods sections of 
ordinary “omics” papers from molecular biology labs, precious little, if any, space 
in the Materials and Methods sections is devoted to reporting on the protocols and 
technologies used to actually generate the sequence data. This may seem surprising, 
but the data curation tasks for these dataset-centric research programs are less con-
cerned with reporting on sequence data reliability than on sequence dataset reli-
ability for the question at hand.21

In the illustrative case of dataset-centric research discussed here, there are two 
aspects of the case that may require recalibrating the concept for use beyond my 
case study of a human population genomics data journey. First, the research is in the 
population sciences. Population sciences by their nature deal with collections of 
“individuals” (members of populations). There is a sense of compositionality of the 
relevant data that is integral to this kind of research. The very idea of a population 
is that it be composed of members (or parts, depending on one’s metaphysics). 
Surely attention in such contexts is focused on datasets since collections of data-
points tend to be used to represent data about populations, e.g. through statistical 
reasoning that treats the collected data as a sample from a population whose 

21 Studies of ancient human DNA are something of an exception, since the quality of sequence data 
deriving from ancient, even fossil, specimens is a special problem. See e.g. Veeramah and Hammer 
(2014) for a relatively recent overview of whole genome sequence data.
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unknown properties are subjects of theoretical inquiry, or through some other mode 
of aggregation, extrapolation or inference from information about members to a set 
or population. Inquiry may even focus on properties of individuals qua members of 
a population, in a form of research known in some fields as “downward causation,” 
whereby properties of the group cause (or determine) properties of the members. So 
perhaps the notion that the case discussed here illustrates dataset-centric biology 
may not generalize beyond population sciences.

A second kind of particularity of the case study is the way it focuses on humans. 
Data in human biology can be difficult to collect for familiar reasons of ethical or 
legal restraint or constraint, difficulty of access, expense, entanglement with politi-
cal, social or cultural differences between researchers, sponsors and potential “sub-
jects,” and for many other reasons (Barragán 2012). The constraints may be quite 
different than for social science data collection about humans (e.g. Morgan, this 
volume). Biological datasets collected from human subjects thus tend to be more 
“precious” to researchers than data collected from non-humans (though not always 
of course—natural history is often pursued in out of the way places that can be hard, 
expensive, or unpleasant to get to and work in). Human genome diversity data on 
members of the Karitiana in South America, for example, are critical for the story of 
human diversity in ways that make these people much more than mere “sample 
subjects” (see Barragán 2016).

The virtues of “model organisms” include features that tend to make data collec-
tion easy, cheap, and fast, and the data, in consequence, relatively disposable. As the 
unit cost of DNA sequencing falls with advances in technology, on top of scaling 
and standardizing effects of commercialization, researchers may find it easier to 
collect new fruit fly specimens, extract new DNA samples, and generate new collec-
tions of sequence data for their project-specific uses, than to rely on data already 
generated by other labs (that may have used doubtful or out-of-date methods, or 
with questionable expertise, or based on samples less specifically suited to a differ-
ent project’s questions and purposes).

I conclude by noting that the case study analysis and model of datapoint and 
dataset journeys sketched here indicates not only that new modes of data-centric 
science are emerging, but that old ones are transforming—particularly around the 
packaging, vehicles, conveyances, and infrastructure that gets organized or reorga-
nized to put research subjects, specimen samples, extracted materials, and data 
points and sets into motion on new kinds of journeys to new kinds of destinations.
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