
Chapter 8

Schrödinger Operators on
Bounded Domains

For the multi-dimensional Schrödinger operator −Δ+ V with a bounded real po-
tential V on a bounded domain Ω ⊂ Rn with a C2-smooth boundary a boundary
triplet and a Weyl function will be constructed. The self-adjoint realizations of
−Δ + V in L2(Ω) and their spectral properties will be investigated. One of the
main difficulties here is to provide trace mappings on the domain of the maxi-
mal realization, in such a way that the second Green identity remains valid in an
appropriate form. It is necessary to introduce and study Sobolev spaces on the
domain Ω and its boundary ∂Ω, which will be done in Section 8.2; in this context
also the rigged Hilbert spaces from Section 8.1 arise as Sobolev spaces and their
duals. The minimal and maximal operators, and the Dirichlet and Neumann trace
maps on the maximal domain will be discussed in Section 8.3, and in Section 8.4
a boundary triplet and Weyl function for the maximal operator associated with
−Δ + V is provided. The self-adjoint realizations, their spectral properties, and
some natural boundary conditions are also discussed in Section 8.4. The class of
semibounded self-adjoint realizations of −Δ + V in L2(Ω) and the correspond-
ing semibounded forms are studied in Section 8.5. For this purpose a boundary
pair which is compatible with the boundary triplet in Section 8.4 is provided.
Orthogonal couplings of Schrödinger operators are treated in Section 8.6 for the
model problem in which Rn decomposes into a bounded C2-domain Ω+ and an
unbounded component Ω− = Rn \ Ω+. Finally, in Section 8.7 the more general
setting of Schrödinger operators on bounded Lipschitz domains is briefly discussed.

8.1 Rigged Hilbert spaces

In this preparatory section the notion of rigged Hilbert spaces or Gelfand triples
is briefly recalled. For this, let G and H be Hilbert spaces and assume that G
is densely and continuously embedded in H, that is, one has G ⊂ H and the
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embedding operator ι : G ↪→ H is continuous with dense range and ker ι = {0}.
In the following the dual space H′ is identified with H, but the dual space G′ of
antilinear continuous functionals is not identified with G. Instead, the isometric
isomorphism

I : G′ → G, g′ �→ Ig′, where (Ig′, g)G = g′(g), g ∈ G, (8.1.1)

is written explicitly whenever used. In fact, in this section the continuous (antilin-
ear) functionals on G will be identified via the scalar product in H. In the following
usually the notation

〈g′, g〉G′×G := g′(g) (8.1.2)

is employed for the (antilinear) dual pairing in (8.1.1), and when no confusion can
arise the index is suppressed, that is, one writes 〈g′, g〉 = g′(g) for (8.1.2).

In the above setting the dual operator of the embedding operator ι : G ↪→ H
is given by

ι′ : H ↪→ G′, (ι′h)(g) = (h, ιg)H, g ∈ G, (8.1.3)

and in terms of the pairing 〈·, ·〉 this means

〈ι′h, g〉 = (h, ιg)H, h ∈ H, g ∈ G. (8.1.4)

Since the scalar product (·, ·)H is antilinear in the second argument one has
〈ι′h, λg〉 = λ〈ι′h, g〉 for λ ∈ C, and hence ι′h is indeed antilinear. Observe that
the dual operator ι′ in (8.1.3) is continuous since ι is continuous. Moreover, from
the identity ker ι′ = (ran ι)⊥H it follows that ι′ is injective, and the range of ι′ is
dense in G′ since ker ι′′ = (ran ι′)⊥G′ and ι = ι′′ as G is reflexive. Thus,

G
ι
↪→ H

ι′
↪→ G′ with ran ι ⊂ H dense and ran ι′ ⊂ G′ dense,

and since G can be viewed as a subspace of H, and H can be viewed as a subspace
of G′, instead of (8.1.4) also the notation

〈h, g〉 = (h, g)H, h ∈ H, g ∈ G, (8.1.5)

will be used. The present situation will appear naturally in the context of Sobolev
spaces later in this chapter. First the terminology will be fixed in the next defini-
tion.

Definition 8.1.1. Let G and H be Hilbert spaces such that G is densely and con-
tinuously embedded in H. Then the triple {G,H,G′} is a called a Gelfand triple
or a rigged Hilbert space.

Assume now that {G,H,G′} is a Gelfand triple. Since the embedding operator
ι : G ↪→ H is continuous, one has ‖g‖H ≤ C‖g‖G for all g ∈ G with the constant
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C = ‖ι‖ > 0. Moreover, as G is a Hilbert space it follows from Lemma 5.1.9 that
the symmetric form

t[g1, g2] := (g1, g2)G, dom t = G,

is densely defined and closed in H with a positive lower bound. Hence, by the
first representation theorem (Theorem 5.1.18) there exists a unique self-adjoint
operator T with the same positive lower bound in H, such that domT ⊂ dom t
and

(g1, g2)G = t[g1, g2] = (Tg1, g2)H, g1 ∈ domT, g2 ∈ G.

Moreover, if R := T
1
2 , then the second representation theorem (Theorem 5.1.23)

implies domR = dom t and

(g1, g2)G = t[g1, g2] = (Rg1, Rg2)H, g1, g2 ∈ domR = G. (8.1.6)

Note that R is a uniformly positive self-adjoint operator in H.

In the next lemma some more properties of the Gelfand triple {G,H,G′} and
the operator R are collected.

Lemma 8.1.2. Let {G,H,G′} be a Gelfand triple, let I : G′ → G be the isometric
isomorphism in (8.1.1), and let R be the uniformly positive self-adjoint operator
in H such that (8.1.6) holds. Then the following statements hold:

(i) The Hilbert space G′ coincides with the completion of H equipped with the
inner product (R−1·, R−1·)H.

(ii) The operators ι+ = R : G → H and ι− = R I : G′ → H are isometric
isomorphisms such that

(ι−g′, ι+g)H = 〈g′, g〉, g ∈ G, g′ ∈ G′. (8.1.7)

(iii) For all h ∈ H one has ι−h = R−1h.

(iv) For all h ∈ H and g ∈ G one has ι+ι−h = h and ι−ι+g = g.

(v) The operator R−2 can be extended by continuity to an isometric operator

R̃−2 : G′ → G which coincides with the isometric isomorphism I : G′ → G.

Proof. (i) Consider an element g′ ∈ G′ and assume, in addition, that g′ ∈ H. Then
one has

‖g′‖G′ = sup
g∈G\{0}

|g′(g)|
‖g‖G = sup

g∈G\{0}

|〈g′, g〉|
‖g‖G = sup

g∈G\{0}

|(g′, g)H|
‖g‖G ,

where (8.1.2) was used in the second equality, and g′ ∈ H and (8.1.5) were used
in the last step. Since R is uniformly positive, one has R−1 ∈ B(H), and using
(8.1.6) one obtains

‖g′‖G′ = sup
g∈G\{0}

|(R−1g′, Rg)H|
‖Rg‖H = sup

h∈H\{0}

|(R−1g′, h)H|
‖h‖H = ‖R−1g′‖H.
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Therefore, ‖g′‖G′ = ‖R−1g′‖H for all g′ ∈ H ⊂ G′ and as H is dense in G′ with
respect to the norm ‖ · ‖G′ , one concludes that G′ coincides with the completion
of H with respect to the norm ‖R−1 · ‖H.
(ii) Observe that by the definition of ι+ and (8.1.6) one has

‖ι+g‖H = ‖Rg‖H = ‖g‖G, g ∈ G = dom ι+ = domR,

and hence ι+ : G → H is isometric. Moreover, since R is bijective, it follows that
ι+ is an isometric isomorphism. Similarly, for g′ ∈ G′ one has

‖ι−g′‖H = ‖R Ig′‖H = ‖Ig′‖G = ‖g′‖G′ ,

where in the last step it was used that I : G′ → G is an isometric isomorphism. In
order to check the identity (8.1.7), let g′ ∈ G′ and g ∈ G. Then (8.1.6) and (8.1.1)
imply

(ι−g′, ι+g)H = (R Ig′, Rg)H = (Ig′, g)G = 〈g′, g〉. (8.1.8)

(iii) Let g′ ∈ H ⊂ G′ and g ∈ G. By (8.1.5), one has

〈g′, g〉 = (g′, g)H = (R−1g′, Rg)H = (R−1g′, ι+g)H

and comparing this with (8.1.8) it follows that R−1g′ = ι−g′ for all g′ ∈ H.

(iv) By the definition of ι+ and (iii) it is clear that ι+ι−h = RR−1h = h. Similarly,
ι−ι+g = ι−Rg = R−1Rg = g for g ∈ G by (iii).

(v) For h ∈ H one has ‖R−2h‖G = ‖R−1h‖H = ‖h‖G′ by (8.1.6) and (i), and since
H is dense in G′, it follows that R−2 admits an extension to an isometric operator
R̃−2 : G′ → G. Moreover, for h ∈ H it follows from the definition of ι− in (ii) and
(iii) that

R Ih = ι−h = R−1h, and hence Ih = R−2h.

Thus I and the restriction R−2 of R̃−2 coincide on the dense subspace H ⊂ G′.
This implies I = R̃−2. �

Now a different point of view is taken on Gelfand triples. In the next lemma it
is shown that the powers Rs for s ≥ 0 of a uniformly positive self-adjoint operator
R in H give rise to Gelfand triples with certain compatibility properties.

Lemma 8.1.3. Let H be a Hilbert space and let R be a uniformly positive self-adjoint
operator R in H. Let s ≥ 0 and equip Gs := domRs with the inner product

(h, k)Gs
:= (Rsh,Rsk)H, h, k ∈ domRs. (8.1.9)

Then Gt ⊂ Gs for all t ≥ s ≥ 0 and the following statements hold:

(i) {Gs,H,G
′
s} is a Gelfand triple and the assertions in Lemma 8.1.2 hold with

R, G, and G′ replaced by Rs, Gs, and G′
s, respectively.
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(ii) If ι+ : G1 → H and ι− : G′
1 → H denote the isometric isomorphisms corre-

sponding to the Gelfand triple {G1,H,G
′
1} such that

(ι−g′, ι+g)H = 〈g′, g〉G′
1×G1

, g′ ∈ G′
1, g ∈ G1,

then their restrictions

ι+ = R : Gs+1 → Gs and ι− = R−1 : Gs → Gs+1, s ≥ 0, (8.1.10)

are isometric isomorphisms such that ι+ι−g = g for g ∈ Gs and ι−ι+l = l
for l ∈ Gs+1.

Proof. (i) For s ≥ 0 the self-adjoint operator Rs is uniformly positive in H and
hence Gs = domRs equipped with the inner product (8.1.9) is a Hilbert space
which is dense in H. Moreover, from R−s ∈ B(H) and (8.1.9) one obtains that

‖g‖H = ‖R−sRsg‖H ≤ ‖R−s‖‖Rsg‖H = ‖R−s‖‖g‖Gs
, g ∈ Gs,

which shows that the embedding Gs ↪→ H is continuous. Therefore, if G′
s denotes

the dual of Gs, then {Gs,H,G
′
s} is a Gelfand triple. Comparing (8.1.9) with (8.1.6)

shows that the operator Rs plays the same role as the representing operator of
the inner product in (8.1.6). Hence, the assertions of Lemma 8.1.2 are valid with
R, G, and G′ replaced by Rs, Gs, and G′

s, respectively.

(ii) Let s ≥ 0 and consider l ∈ Gs+1 = domRs+1. It follows from (8.1.9) that

‖Rl‖Gs = ‖RsRl‖H = ‖Rs+1l‖H = ‖l‖Gs+1

and hence ι+ = R : Gs+1 → Gs is isometric. In order to verify that this mapping
is onto let k ∈ Gs. Then k ∈ H, and as R is bijective, there exists l ∈ domR
such that Rl = k. Therefore, l = R−1k and as k ∈ Gs = domRs one concludes
l ∈ domRs+1 = Gs+1. This shows that ι+ = R : Gs+1 → Gs is an isometric
isomorphism for s ≥ 0. A similar reasoning shows that ι− = R−1 : Gs → Gs+1

is an isometric isomorphism for s ≥ 0. The remaining assertions ι+ι−g = g for
g ∈ Gs and ι−ι+l = l for l ∈ Gs+1 follow immediately from (8.1.10). �

8.2 Sobolev spaces, C2-domains, and trace operators

In this section Sobolev spaces on Rn, open subsets Ω ⊂ Rn, and on the boundaries
∂Ω of C2-domains are defined and some of their features are briefly recalled.
Furthermore, the mapping properties of the Dirichlet and Neumann trace map on
a C2-domain Ω are recalled and the first Green identity is established.

For s ≥ 0 the scale of L2-based Sobolev spaces Hs(Rn) is defined with the
help of the (classical) Fourier transform F ∈ B(L2(Rn)) by

Hs(Rn) :=
{
f ∈ L2(Rn) : (1 + | · |2)s/2Ff ∈ L2(Rn)

}
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and Hs(Rn) is equipped with the natural norm

‖f‖Hs(Rn) :=
∥∥(1 + | · |2)s/2Ff∥∥

L2(Rn)
, f ∈ Hs(Rn),

and corresponding scalar product

(f, g)Hs(Rn) :=
(
(1 + | · |2)s/2Ff, (1 + | · |2)s/2Fg)

L2(Rn)
, f, g ∈ Hs(Rn).

Then the space Hs(Rn) is a separable Hilbert space for every s ≥ 0 and one has
H0(Rn) = L2(Rn). It is also useful to note that the space C∞

0 (Rn) is dense in
Hs(Rn) for all s ≥ 0. Since the Fourier transform is a unitary operator in L2(Rn),
it is clear that

R = F−1(1 + | · |2)1/2F
is a uniformly positive self-adjoint operator in L2(Rn) such that domR = H1(Rn).
Furthermore, for each s ≥ 0 one has

Rs = F−1(1 + | · |2)s/2F
and hence Rs for s ≥ 0 is also a uniformly positive self-adjoint operator in L2(Rn)
such that domRs = Hs(Rn). Note that the scalar product in Hs(Rn) satisfies

(f, g)Hs(Rn) = (Rsf,Rsg)L2(Rn), f, g ∈ Hs(Rn),

for all s ≥ 0. In particular, R plays the same role as the operator R in (8.1.6)
and Rs plays the same role as the operator Rs in (8.1.9). Hence, Rs, s ≥ 0,
gives rise to a Gelfand triple {Hs(Rn), L2(Rn), H−s(Rn)}, whereH−s(Rn) denotes
the dual space consisting of continuous antilinear functionals on Hs(Rn). From
Lemma 8.1.3 it is now clear that the restrictions R : Hs+1(Rn) → Hs(Rn) and
R−1 : Hs(Rn) → Hs+1(Rn) are isometric isomorphisms for s ≥ 0.

For a nonempty open subset Ω ⊂ Rn and s ≥ 0 define

Hs(Ω) :=
{
f ∈ L2(Ω) : there exists g ∈ Hs(Rn) such that f = g|Ω

}
and endow this space with the norm

‖f‖Hs(Ω) := inf
g∈Hs(Rn)

f=g|Ω

‖g‖Hs(Rn), f ∈ Hs(Ω). (8.2.1)

The space Hs(Ω) is a separable Hilbert space; the corresponding scalar product
will be denoted by (·, ·)Hs(Ω). For s ≥ 0 the space C∞(Ω) := {ϕ|Ω : ϕ ∈ C∞

0 (Rn)}
is dense in Hs(Ω). The closure of C∞

0 (Ω) in Hs(Ω) is a closed subspace of Hs(Ω);
it is denoted by

Hs
0(Ω) := C∞

0 (Ω)
‖·‖Hs(Ω)

. (8.2.2)

In order to define Sobolev spaces on the boundary ∂Ω of some domain Ω ⊂ Rn

assume first that φ : Rn−1 → R is a C2-function. The vectors in Rn−1 will be
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denoted by x′ = (x1, . . . , xn−1)
� ∈ Rn−1 and the notation (x′, xn)

� is used for
(x1, . . . , xn)

� ∈ Rn. Then the domain

Ωφ :=
{
(x′, xn)

� ∈ Rn : xn < φ(x′)
}

(8.2.3)

is called a C2-hypograph and its boundary is given by

∂Ωφ =
{
(x′, φ(x′))� ∈ Rn : x′ ∈ Rn−1

}
.

For a measurable function h : ∂Ωφ → C the surface integral on ∂Ωφ is defined as∫
∂Ωφ

h dσ :=

∫
Rn−1

h(x′, φ(x′))
√
1 + |∇φ(x′)|2 dx′. (8.2.4)

If 1B denotes the characteristic function of a Borel set B ⊂ ∂Ωφ, then the surface
integral in (8.2.4) induces a surface measure

σ(B) =

∫
∂Ωφ

1B dσ. (8.2.5)

This surface measure also gives rise to the usual L2-space on ∂Ωφ, which will be
denoted by L2(∂Ωφ). Furthermore, for s ∈ [0, 2] define the Sobolev space of order
s on ∂Ωφ by

Hs(∂Ωφ) :=
{
h ∈ L2(∂Ωφ) : x

′ �→ h(x′, φ(x′)) ∈ Hs(Rn−1)
}

and equip Hs(∂Ωφ) with the corresponding Hilbert space scalar product

(h, k)Hs(∂Ωφ) :=
(
h(·, φ(·)), k(·, φ(·)))

Hs(Rn−1)
, h, k ∈ Hs(∂Ωφ). (8.2.6)

Note that the operator Vφ : Hs(∂Ωφ) → Hs(Rn−1) that maps h ∈ Hs(∂Ωφ) to
the function x′ �→ h(x′, φ(x′)) ∈ Hs(Rn−1) is an isometric isomorphism.

In the next step the notion of C2-hypograph is replaced by a bounded domain
with a C2-smooth boundary, that is, the boundary is locally the boundary of a
C2-hypograph.

Definition 8.2.1. A bounded nonempty open subset Ω ⊂ Rn is called a C2-domain
if there exist open sets U1, . . . , Ul ⊂ Rn and (possibly up to rotations of coordi-
nates) C2-hypographs Ω1, . . . ,Ωl ⊂ Rn such that

∂Ω ⊂
l⋃

j=1

Uj and Ω ∩ Uj = Ωj ∩ Uj , j = 1, . . . , l.

Let Ω ⊂ Rn be a bounded C2-domain as in Definition 8.2.1. Then the bound-
ary ∂Ω ⊂ Rn is compact and there exists a partition of unity subordinate to the
open cover {Uj} of ∂Ω, that is, there exist functions ηj ∈ C∞

0 (Rn), j = 1, . . . , l,
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with supp ηj ⊂ Uj such that 0 ≤ ηj(x) ≤ 1 for all x ∈ Rn and
∑l

j=1 ηj(x) = 1 for
all x ∈ ∂Ω. For a measurable function h : ∂Ω → C the surface integral on ∂Ω is
defined as∫

∂Ω

h dσ :=
l∑

j=1

∫
Rn−1

ηj(x
′, φj(x

′))h(x′, φj(x
′))

√
1 + |∇φj(x′)|2 dx′,

where the C2-functions φj : Rn−1 → R define the C2-hypographs Ωj as in (8.2.3)
and the possible rotation of coordinates is suppressed. This surface integral induces
a surface measure and the notion of an L2-space L2(∂Ω) in the same way as in
(8.2.4) and (8.2.5). In the present setting the Sobolev space Hs(∂Ω) for s ∈ [0, 2]
is now defined by

Hs(∂Ω) :=
{
h ∈ L2(∂Ω) : ηjh ∈ Hs(∂Ωj), j = 1, . . . , l

}
and is equipped with the corresponding Hilbert space scalar product

(h, k)Hs(∂Ω) =
l∑

j=1

(ηjh, ηjk)Hs(∂Ωj), h, k ∈ Hs(∂Ω). (8.2.7)

It follows from the construction that Hs(∂Ω) is densely and continuously embed-
ded in L2(∂Ω) for s ∈ [0, 2]. Furthermore, since ∂Ω is a compact subset of Rn, the
embedding

Ht(∂Ω) ↪→ Hs(∂Ω), 0 ≤ s < t ≤ 2, (8.2.8)

is compact; see, e.g., [774, Theorem 7.10].

For later purposes it is convenient to use an equivalent characterization of
the spaces Hs(∂Ω) via interpolation; cf. [573, Theorem B.11]. More precisely, as in
(8.1.6) it follows that there exists a unique uniformly positive self-adjoint operator
Q in L2(∂Ω) such that

domQ = H2(∂Ω) and (h, k)H2(∂Ω) = (Qh,Qk)L2(∂Ω) (8.2.9)

for all h, k ∈ H2(∂Ω). It can be shown that the spaces Hs(∂Ω) coincide with the
domains domQs/2 for s ∈ [0, 2] and that (Qs/2·, Qs/2·)L2(∂Ω) defines a scalar prod-
uct and equivalent norm in Hs(∂Ω). The dual space of the antilinear continuous
functionals on Hs(∂Ω) is denoted by H−s(∂Ω), s ∈ [0, 2]. Then one obtains the
following statement from Lemma 8.1.2 and Lemma 8.1.3.

Corollary 8.2.2. Let Ω ⊂ Rn be a bounded C2-domain and let s ∈ [0, 2]. Then the
following statements hold:

(i) {Hs(∂Ω), L2(∂Ω), H−s(∂Ω)} is a Gelfand triple and the assertions in Lem-
ma 8.1.2 hold with R, G, and G′ replaced by Qs/2, Hs(∂Ω), and H−s(∂Ω),
respectively.
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(ii) If ι+ : H1/2(∂Ω) → L2(∂Ω) and ι− : H−1/2(∂Ω) → L2(∂Ω) denote the
isometric isomorphisms from Lemma 8.1.2 (ii) corresponding to the Gelfand
triple {H1/2(∂Ω), L2(∂Ω), H−1/2(∂Ω)} such that

(ι−ϕ, ι+ψ)L2(∂Ω) = 〈ϕ,ψ〉H−1/2(∂Ω)×H1/2(∂Ω)

holds for ϕ ∈ H−1/2(∂Ω) and ψ ∈ H1/2(∂Ω), then for s ∈ [0, 3/2] their
restrictions

ι+ = Q1/4 : Hs+1/2(∂Ω) → Hs(∂Ω)

and
ι− = Q−1/4 : Hs(∂Ω) → Hs+1/2(∂Ω)

are isometric isomorphisms such that ι+ι−φ = φ for φ ∈ Hs(∂Ω) and
ι−ι+χ = χ for χ ∈ Hs+1/2(∂Ω); here Q is the uniformly positive self-adjoint
operator in (8.2.9).

Assume now that Ω ⊂ Rn is a bounded C2-domain as in Definition 8.2.1.
The weak derivative of order |α| of an L2-function f is denoted by Dαf in the
following; as usual, here α ∈ Nn

0 stands for a multiindex and |α| = α1 + · · ·+ αn.
Then for k ∈ N0 one has

Hk(Ω) =
{
f ∈ L2(Ω) : Dαf ∈ L2(Ω) for all α ∈ Nn

0 with |α| ≤ k
}

and
‖f‖k :=

∑
|α|≤k

‖Dαf‖L2(Ω), f ∈ Hk(Ω), (8.2.10)

is equivalent to the norm on Hk(Ω) in (8.2.1); cf. [573, Theorem 3.30]. Recall also
that for k ∈ N there exists Ck > 0 such that the Poincaré inequality

‖f‖k ≤ Ck

∑
|α|=k

‖Dαf‖L2(Ω), f ∈ Hk
0 (Ω), (8.2.11)

is valid. In particular, for f ∈ C∞
0 (Ω) and k = 2, integration by parts and the

Schwarz theorem give∑
|α|=2

‖Dαf‖2L2(Ω) =
∑
|α|=2

(Dαf,Dαf)L2(Ω)

=

n∑
j,k=1

(∂j∂kf, ∂j∂kf)L2(Ω)

=
n∑

j,k=1

(∂2
j f, ∂

2
kf)L2(Ω)

= ‖Δf‖2L2(Ω),

and this equality extends to all f ∈ H2
0 (Ω) by (8.2.2). As a consequence one

obtains the following useful fact.
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Lemma 8.2.3. The mapping f �→ ‖Δf‖L2(Ω) is a norm on H2
0 (Ω) which is equiv-

alent to the norms ‖ · ‖2 and ‖ · ‖H2(Ω) in (8.2.10) and (8.2.1), respectively.

Let again Ω ⊂ Rn be a bounded C2-domain and denote the unit normal
vector field pointing outwards of ∂Ω by ν. The notion of trace operator or trace
map and some of their properties are discussed next. Recall first that the mapping

C∞(Ω) � f �→
{
f |∂Ω, ∂f

∂ν

∣∣∣
∂Ω

}
∈ H3/2(∂Ω)×H1/2(∂Ω)

extends by continuity to a continuous operator

H2(Ω) � f �→ {τDf, τNf} ∈ H3/2(∂Ω)×H1/2(∂Ω), (8.2.12)

which is surjective; here

τD : H2(Ω) → H3/2(∂Ω) (8.2.13)

denotes the Dirichlet trace operator and

τN : H2(Ω) → H1/2(∂Ω) (8.2.14)

denotes the Neumann trace operator. In particular, for all f ∈ C∞(Ω) one has

τDf = f |Ω and τNf =
∂f

∂ν
|∂Ω,

respectively. With the help of the trace operators one has another useful charac-
terization of the space H2

0 (Ω) in (8.2.2), namely,

H2
0 (Ω) =

{
f ∈ H2(Ω) : τDf = τNf = 0

}
. (8.2.15)

It will also be used that the Dirichlet trace operator τD : H2(Ω) → H3/2(∂Ω)
admits a continuous surjective extension

τ
(1)
D : H1(Ω) → H1/2(∂Ω), (8.2.16)

which, in analogy to (8.2.15), leads to the characterization

H1
0 (Ω) =

{
f ∈ H1(Ω) : τ

(1)
D f = 0

}
. (8.2.17)

Recall next that for f ∈ H2(Ω) and g ∈ H1(Ω) the first Green identity

(−Δf, g)L2(Ω) = (∇f,∇g)L2(Ω;Cn) −
(
τNf, τ

(1)
D g

)
L2(∂Ω)

(8.2.18)
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holds. Note that τNf, τDg ∈ H1/2(∂Ω) by (8.2.14) and (8.2.16). If, in addition,
also g ∈ H2(Ω), then one concludes from (8.2.18) the second Green identity

(−Δf, g)L2(Ω) − (f,−Δg)L2(Ω) = (τDf, τNg)L2(∂Ω) − (τNf, τDg)L2(∂Ω), (8.2.19)

which is valid for all f, g ∈ H2(Ω).

In the next lemma it will be shown that the Neumann trace operator τN
in (8.2.14) admits an extension to the subspace of H1(Ω) consisting of all those
functions f ∈ H1(Ω) such that Δf ∈ L2(Ω), and it turns out that the first Green
identity (8.2.18) remains valid in an extended form. Here, and in the following,
the expression Δf is understood in the sense of distributions. If, in addition, one
has that Δf ∈ L2(Ω), then Δf is a regular distribution generated by the function
Δf ∈ L2(Ω) via

(Δf)(ϕ) =

∫
Ω

(Δf)(x)ϕ(x) dx, ϕ ∈ C∞
0 (Ω). (8.2.20)

Lemma 8.2.4. For f ∈ H1(Ω) with Δf ∈ L2(Ω) there exists a unique element
ϕ ∈ H−1/2(∂Ω) such that

(−Δf, g)L2(Ω) = (∇f,∇g)L2(Ω;Cn) −
〈
ϕ, τ

(1)
D g

〉
H−1/2(∂Ω)×H1/2(∂Ω)

(8.2.21)

holds for all g ∈ H1(Ω). In the following the notation τ
(1)
N f := ϕ will be used.

Proof. Notice that there exists a bounded right inverse of τ
(1)
D in (8.2.16), that is,

there is a bounded operator η : H1/2(∂Ω) → H1(Ω) with the property

τ
(1)
D ηψ = ψ, ψ ∈ H1/2(∂Ω).

For a fixed f ∈ H1(Ω) such that Δf ∈ L2(Ω) define the antilinear functional
ϕ : H1/2(∂Ω) → C by

ϕ(ψ) := (∇f,∇ηψ)L2(Ω;Cn) + (Δf, ηψ)L2(Ω), ψ ∈ H1/2(∂Ω). (8.2.22)

Then one has

|ϕ(ψ)| ≤ ‖∇f‖L2(Ω;Cn)‖∇ηψ‖L2(Ω;Cn) + ‖Δf‖L2(Ω)‖ηψ‖L2(Ω)

≤ C‖ηψ‖H1(Ω)

≤ C ′‖ψ‖H1/2(∂Ω)

with some constants C,C ′ > 0, and hence ϕ ∈ H−1/2(∂Ω). Thus, (8.2.22) can also
be written in the form

〈ϕ,ψ〉H−1/2(∂Ω)×H1/2(∂Ω) = (∇f,∇ηψ)L2(Ω;Cn) + (Δf, ηψ)L2(Ω), (8.2.23)

where ψ ∈ H1/2(∂Ω). Now let g ∈ H1(Ω) and set g0 := g− ητ
(1)
D g. Then it follows

from the characterization of the space H1
0 (Ω) in (8.2.17) that g0 ∈ H1

0 (Ω), and
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hence (8.2.2) shows that there is a sequence (gm) ⊂ C∞
0 (Ω) such that gm → g0 in

H1(Ω). It follows that

(∇f,∇g0)L2(Ω;Cn) = lim
m→∞(∇f,∇gm)L2(Ω;Cn)

= − lim
m→∞(Δf, gm)L2(Ω)

= −(Δf, g0)L2(Ω)

and one obtains, together with (8.2.23) (and with ψ = τ
(1)
D g), that

(∇f,∇g)L2(Ω;Cn) =
(∇f,∇(

g0 + ητ
(1)
D g

))
L2(Ω;Cn)

= −(Δf, g0)L2(Ω) +
(∇f,∇(

ητ
(1)
D g

))
L2(Ω;Cn)

= −(Δf, g0)L2(Ω) +
〈
ϕ, τ

(1)
D g

〉
H−1/2(∂Ω)×H1/2(∂Ω)

− (
Δf, ητ

(1)
D g

)
L2(Ω)

= (−Δf, g)L2(Ω) +
〈
ϕ, τ

(1)
D g

〉
H−1/2(∂Ω)×H1/2(∂Ω)

.

This shows that ϕ ∈ H−1/2(∂Ω) in (8.2.22)–(8.2.23) satisfies (8.2.21).

It remains to check that ϕ ∈ H−1/2(∂Ω) in (8.2.21) is unique. Suppose that
ϕ1, ϕ2 ∈ H−1/2(∂Ω) satisfy (8.2.21). Then〈

ϕ1 − ϕ2, τ
(1)
D g

〉
H−1/2(∂Ω)×H1/2(∂Ω)

= 0

for all g ∈ H1(Ω). As τ
(1)
D : H1(Ω) → H1/2(∂Ω) is surjective it follows that

ϕ1 − ϕ2 = 0 and hence ϕ in (8.2.21) is unique. �

Remark 8.2.5. The assertion in Lemma 8.2.4 and its proof extend in a natural
manner to all f ∈ H1(Ω) such that −Δf ∈ H1(Ω)∗. In this situation there still
exists a unique element ϕ ∈ H−1/2(∂Ω) such that (instead of (8.2.21)) one has
the slightly more general first Green identity

〈−Δf, g〉H1(Ω)∗×H1(Ω) = (∇f,∇g)L2(Ω;Cn) −
〈
ϕ, τ

(1)
D g

〉
H−1/2(∂Ω)×H1/2(∂Ω)

for all g ∈ H1(Ω); cf. [573, Lemma 4.3].

8.3 Trace maps for the maximal Schrödinger operator

The differential expression −Δ+ V is considered on a bounded domain Ω, where
the function V ∈ L∞(Ω) is assumed to be real. One then associates with −Δ+ V
a preminimal, minimal and maximal operator in L2(Ω), which are adjoints of
each other. Furthermore, the Dirichlet and Neumann operators are defined via the
corresponding sesquilinear form and the first representation theorem, and some
of their properties are collected. In the case where Ω is a bounded C2-domain it
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is shown in Theorem 8.3.9 and Theorem 8.3.10 that the Dirichlet and Neumann
trace operators in the previous section admit continuous extensions to the maximal
domain; this is a key ingredient in the construction of a boundary triplet in the
next section.

Let n ≥ 2, let Ω ⊂ Rn be a bounded domain, and assume that the func-
tion V ∈ L∞(Ω) is real. The preminimal operator associated to the differential
expression −Δ+ V is defined as

T0 = −Δ+ V, domT0 = C∞
0 (Ω).

It follows immediately from

(T0f, f)L2(Ω) = (∇f,∇f)L2(Ω;Cn) + (V f, f)L2(Ω), f ∈ domT0,

that T0 is a densely defined symmetric operator in L2(Ω) which is bounded from
below with v− := essinfV as a lower bound, so that T0 − v− is nonnegative.
Actually, for f ∈ domT0 one has(
(T0 − v−)f, f

)
L2(Ω)

= (∇f,∇f)L2(Ω;Cn) +
(
(V − v−)f, f

)
L2(Ω)

≥ ‖∇f‖2L2(Ω;Cn)

and hence, by the Poincaré inequality (8.2.11),(
(T0 − v−)f, f

)
L2(Ω)

≥ C‖f‖21 ≥ C‖f‖2L2(Ω) (8.3.1)

with some constant C > 0. This shows that T0 − v− is uniformly positive.

The closure of T0 in L2(Ω) is the minimal operator

Tmin = −Δ+ V, domTmin = H2
0 (Ω). (8.3.2)

In fact, using Lemma 8.2.3 and the fact that V ∈ L∞(Ω) one obtains that the
graph norm

‖ · ‖L2(Ω) + ‖Tmin · ‖L2(Ω)

is equivalent to the H2-norm on the closed subspace H2
0 (Ω) of H

2(Ω). Hence, Tmin

is a closed operator in L2(Ω) and it follows from (8.2.2) that T 0 = Tmin. Therefore,
Tmin is a densely defined closed symmetric operator in L2(Ω) and Tmin − v− is
uniformly positive.

Besides the preminimal and minimal operator, also the maximal operator
Tmax associated with −Δ + V in L2(Ω) will be important in the sequel; it is
defined by

Tmax = −Δ+ V,

domTmax =
{
f ∈ L2(Ω) : −Δf + V f ∈ L2(Ω)

}
.

(8.3.3)

Here the expression Δf for f ∈ L2(Ω) is understood in the distributional sense.
Since V ∈ L∞(Ω), it is clear that f ∈ L2(Ω) belongs to domTmax if and only
if Δf ∈ L2(Ω), that is, the (regular) distribution Δf is generated by an L2-
function; cf. (8.2.20). Observe that H2(Ω) ⊂ domTmax, and it will also turn out
that H2(Ω) 	= domTmax.
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Proposition 8.3.1. Let T0, Tmin, and Tmax be the preminimal, minimal, and max-
imal operator associated with −Δ + V in L2(Ω), respectively. Then T 0 = Tmin,
and

(Tmin)
∗ = Tmax and Tmin = (Tmax)

∗. (8.3.4)

Proof. It has already been shown above that T 0 = Tmin holds. In particular,
this implies T ∗

0 = (Tmin)
∗ and thus for the first identity in (8.3.4) it suffices to

show T ∗
0 = Tmax. Furthermore, since multiplication by V ∈ L∞(Ω) is a bounded

operator in L2(Ω), it is no restriction to assume V = 0 in the following. Let
f ∈ domT ∗

0 and consider T ∗
0 f ∈ L2(Ω) as a distribution. Then one has for all

ϕ ∈ C∞
0 (Ω) = domT0

(T ∗
0 f)(ϕ) = (T ∗

0 f, ϕ)L2(Ω) = (f, T0ϕ)L2(Ω) = (f,−Δϕ)L2(Ω) = (−Δf)(ϕ),

and hence −Δf = T ∗
0 f ∈ L2(Ω). Thus, f ∈ domTmax and Tmaxf = T ∗

0 f . Con-
versely, for f ∈ domTmax and all ϕ ∈ C∞

0 (Ω) = domT0 one has

(T0ϕ, f)L2(Ω) = (−Δϕ, f)L2(Ω) = (ϕ,−Δf)L2(Ω),

that is, f ∈ domT ∗
0 and T ∗

0 f = −Δf = Tmaxf . Thus, the first identity in (8.3.4)
has been shown. The second identity in (8.3.4) follows by taking adjoints. �

In the following the self-adjoint Dirichlet realization AD and the self-adjoint
Neumann realization AN of −Δ + V in L2(Ω) will play an important role. The
operators AD and AN will be introduced via the corresponding sesquilinear forms
using the first representation theorem. More precisely, consider the densely defined
forms

tD[f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω), dom tD = H1
0 (Ω),

and
tN[f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω), dom tN = H1(Ω),

in L2(Ω). It is easy to see that both forms are semibounded from below and
that v− = essinfV is a lower bound. The same argument as in (8.3.1) using the
Poincaré inequality (8.2.11) on dom tD = H1

0 (Ω) implies the stronger statement
that the form tD − v− is uniformly positive. Furthermore, it follows from the
definitions that the form (∇·,∇·)L2(Ω;Cn) defined on H1

0 (Ω) or H
1(Ω) is closed in

L2(Ω); cf. Lemma 5.1.9. Since V ∈ L∞(Ω), it is clear that the form (V ·, ·)L2(Ω) is
bounded on L2(Ω) and hence it follows from Theorem 5.1.16 that also the forms
tD and tN are closed in L2(Ω). Therefore, by the first representation theorem
(Theorem 5.1.18), there exist unique semibounded self-adjoint operators AD and
AN in L2(Ω) associated with tD and tN, respectively, such that

(ADf, g)L2(Ω) = tD[f, g] for f ∈ domAD, g ∈ dom tD,

and
(ANf, g)L2(Ω) = tN[f, g] for f ∈ domAN, g ∈ dom tN.
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The self-adjoint operators AD and AN are called the Dirichlet operator and Neu-
mann operator, respectively. In the next propositions some properties of these
operators are discussed.

Proposition 8.3.2. Assume that Ω ⊂ Rn is a bounded domain. Then the Dirichlet
operator AD is given by

ADf = −Δf + V f,

domAD =
{
f ∈ H1

0 (Ω) : −Δf + V f ∈ L2(Ω)
}
,

(8.3.5)

and for all λ ∈ ρ(AD) the resolvent (AD−λ)−1 is a compact operator in L2(Ω). The
Dirichlet operator AD coincides with the Friedrichs extension SF of the minimal
operator Tmin in (8.3.2). In particular, AD−v− is uniformly positive. Furthermore,
if Ω ⊂ Rn is a bounded C2-domain, then the Dirichlet operator AD is given by

ADf = −Δf + V f,

domAD =
{
f ∈ H1(Ω) : −Δf + V f ∈ L2(Ω), τ

(1)
D f = 0

}
.

(8.3.6)

Proof. Observe that for f ∈ domAD and g ∈ C∞
0 (Ω) ⊂ dom tD one has

(ADf, g)L2(Ω) = tD[f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω) =
(−Δf + V f

)
(g),

where −Δf + V f is viewed as a distribution. Since this identity holds for all
g ∈ C∞

0 (Ω) and AD is an operator in L2(Ω) it follows that

−Δf + V f = ADf ∈ L2(Ω).

Therefore, AD is given by (8.3.5). In the case that Ω ⊂ Rn has a C2-smooth
boundary the form of the domain of AD in (8.3.6) follows from (8.3.5) and (8.2.17).

Next it will be shown that for λ ∈ ρ(AD) the resolvent (AD − λ)−1 is a
compact operator in L2(Ω). For this observe first that

(AD − λ)−1 : L2(Ω) → H1
0 (Ω), λ ∈ ρ(AD), (8.3.7)

is everywhere defined and closed as an operator from L2(Ω) into H1
0 (Ω). In fact,

if fn → f in L2(Ω) and (AD − λ)−1fn → h in H1
0 (Ω), then (AD − λ)−1fn → h in

L2(Ω), and since the operator (AD−λ)−1 is everywhere defined and continuous in
L2(Ω), it is clear that (AD−λ)−1f = h. Hence, the operator in (8.3.7) is bounded
by the closed graph theorem. By Rellich’s theorem the embedding H1

0 (Ω) ↪→ L2(Ω)
is compact, and it follows that (AD − λ)−1, λ ∈ ρ(AD), is a compact operator in
L2(Ω).

It remains to verify that AD is the Friedrichs extension SF of Tmin = T 0 or,
equivalenty, the Friedrichs extension of T0; cf. Lemma 5.3.1 and Definition 5.3.2.
For this, consider the form tT0 [f, g] = (T0f, g)L2(Ω), defined for f, g ∈ domT0, and
note that

tT0 [f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω), dom tT0 = C∞
0 (Ω).
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Observe that fm →tT0
f if and only if fm → f in L2(Ω) and (∇fm) is a Cauchy

sequence in L2(Ω;Cn). Hence, fm →tT0
f implies fm → f in the norm of H1(Ω),

and so f ∈ H1
0 (Ω) by (8.2.2). Therefore, by (5.1.16), the closure of the form tT0 is

given by

t̃T0 [f, g] = lim
m→∞ tT0 [fm, gm] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω),

where f, g ∈ H1
0 (Ω) and fm →tT0

f , gm →tT0
g. Hence, t̃T0

= tD, and since by
Definition 5.3.2 the Friedrichs extension of T0 is the unique self-adjoint operator
corresponding to the closed form t̃T0 , the assertion follows. �

In order to specify the Neumann operator AN, the first Green identity and

the trace operators τ
(1)
D : H1(Ω) → H1/2(∂Ω) and τ

(1)
N : H1(Ω) → H−1/2(∂Ω) will

be used; cf. Lemma 8.2.4. For this reason in the next proposition it is assumed that
Ω ⊂ Rn is a bounded C2-domain. It is also important to note that the Neumann
operator AN below differs from the Krĕın–von Neumann extension and the Krĕın
type extensions in Definition 5.4.2; cf. Section 8.5 for more details.

Proposition 8.3.3. Assume that Ω ⊂ Rn is a bounded C2-domain. Then the Neu-
mann operator AN is given by

ANf = −Δf + V f,

domAN =
{
f ∈ H1(Ω) : −Δf + V f ∈ L2(Ω), τ

(1)
N f = 0

}
,

(8.3.8)

and for all λ ∈ ρ(AN) the resolvent (AN − λ)−1 is a compact operator in L2(Ω).

Proof. In a first step it follows for f ∈ domAN ⊂ H1(Ω) and all g ∈ C∞
0 (Ω) in

the same way as in the proof of Proposition 8.3.2 that

(ANf, g)L2(Ω) = tN[f, g] = (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω) =
(−Δf + V f

)
(g),

and hence ANf = (−Δ + V )f ∈ L2(Ω). In particular, for f ∈ domAN one has
f ∈ H1(Ω) and −Δf ∈ L2(Ω), so that Lemma 8.2.4 applies and yields

(ANf, g)L2(Ω) = tN[f, g]

= (∇f,∇g)L2(Ω;Cn) + (V f, g)L2(Ω)

=
(
(−Δ+ V )f, g

)
L2(Ω)

+
〈
τ
(1)
N f, τ

(1)
D g

〉
H−1/2(∂Ω)×H1/2(∂Ω)

for all g ∈ dom tN = H1(Ω). As ANf = (−Δ+ V )f , one concludes that〈
τ
(1)
N f, τ

(1)
D g

〉
H−1/2(∂Ω)×H1/2(∂Ω)

= 0 for all g ∈ H1(Ω).

Since τ
(1)
D : H1(Ω) → H1/2(∂Ω) is surjective, it follows that τ

(1)
N f = 0. This implies

the representation (8.3.8).
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To show that the resolvent (AN − λ)−1 is a compact operator in L2(Ω) one
argues in the same way as in the proof of Proposition 8.3.2. In fact, the operator

(AN − λ)−1 : L2(Ω) → H1(Ω), λ ∈ ρ(AN),

is everywhere defined and closed, and hence bounded by the closed graph theorem.
Since Ω ⊂ Rn is a bounded C2-domain, the embeddingH1(Ω) ↪→ L2(Ω) is compact
and this implies that (AN −λ)−1, λ ∈ ρ(AN), is a compact operator in L2(Ω). �

It is known that functions f in domAD or domAN are locally H2-regular,
that is, for every compact subset K ⊂ Ω the restriction of f to K is in H2(K). The
next theorem is an important elliptic regularity result which ensures H2-regularity
of the functions in domAD or domAN in (8.3.6) and (8.3.8), respectively, up to the
boundary if the bounded domain Ω is C2-smooth in the sense of Definition 8.2.1.

Theorem 8.3.4. Assume that Ω ⊂ Rn is a bounded C2-domain. Then one has

ADf = −Δf + V f, domAD =
{
f ∈ H2(Ω) : τDf = 0

}
,

and
ANf = −Δf + V f, domAN =

{
f ∈ H2(Ω) : τNf = 0

}
.

Note that under the assumptions in Theorem 8.3.4 the domain of the Dirichlet
operator AD is H2(Ω) ∩ H1

0 (Ω); cf. (8.2.17). The direct sum decompositions in
the next corollary follow immediately from Theorem 1.7.1 when considering the
operator T = −Δ + V , domT = H2(Ω), and taking into account that AD ⊂ T
and AN ⊂ T .

Corollary 8.3.5. Assume that Ω ⊂ Rn is a bounded C2-domain and denote by
τD : H2(Ω) → H3/2(∂Ω) and τN : H2(Ω) → H1/2(∂Ω) the Dirichlet and Neumann
trace operator in (8.2.13) and (8.2.14), respectively. Then for λ ∈ ρ(AD) one has
the direct sum decomposition

H2(Ω) = domAD +
{
fλ ∈ H2(Ω) : (−Δ+ V )fλ = λfλ

}
= ker τD +

{
fλ ∈ H2(Ω) : (−Δ+ V )fλ = λfλ

}
,

(8.3.9)

and for λ ∈ ρ(AN) one has the direct sum decomposition

H2(Ω) = domAN +
{
fλ ∈ H2(Ω) : (−Δ+ V )fλ = λfλ

}
= ker τN +

{
fλ ∈ H2(Ω) : (−Δ+ V )fλ = λfλ

}
.

(8.3.10)

As a consequence of the decomposition (8.3.9) in Corollary 8.3.5 and (8.2.12)
one concludes that the so-called Dirichlet-to-Neumann map in the next definition
is a well-defined operator from H3/2(∂Ω) into H1/2(∂Ω).

Definition 8.3.6. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet operator, and let τD : H2(Ω) → H3/2(∂Ω) and τN : H2(Ω) → H1/2(∂Ω)
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be the Dirichlet and Neumann trace operator in (8.2.13) and (8.2.14), respectively.
For λ ∈ ρ(AD) the Dirichlet-to-Neumann map is defined as

D(λ) : H3/2(∂Ω) → H1/2(∂Ω), τDfλ �→ τNfλ,

where fλ ∈ H2(Ω) is such that (−Δ+ V )fλ = λfλ.

Note that for λ ∈ ρ(AD) ∩ ρ(AN) both decompositions (8.3.9) and (8.3.10)
in Corollary 8.3.5 hold and together with (8.2.12) this implies that the Dirichlet-
to-Neumann map D(λ) is a bijective operator from H3/2(∂Ω) onto H1/2(∂Ω).

A further useful consequence of Theorem 8.3.4 is given by the following a pri-
ori estimates.

Corollary 8.3.7. Assume that Ω ⊂ Rn is a bounded C2-domain and let AD and AN

be the Dirichlet and Neumann operator, respectively. Then there exist constants
CD > 0 and CN > 0 such that

‖f‖H2(Ω) ≤ CD

(‖f‖L2(Ω) + ‖ADf‖L2(Ω)

)
, f ∈ domAD,

and
‖g‖H2(Ω) ≤ CN

(‖g‖L2(Ω) + ‖ANg‖L2(Ω)

)
, g ∈ domAN.

Proof. One verifies in the same way as in the proof of Proposition 8.3.2 that for
λ ∈ ρ(AD) the operator (AD − λ)−1 : L2(Ω) → H2(Ω) is everywhere defined
and closed, and hence bounded. For f ∈ domAD choose h ∈ L2(Ω) such that
f = (AD − λ)−1h. Then

‖f‖H2(Ω) = ‖(AD − λ)−1h‖H2(Ω) ≤ C‖h‖L2(Ω) = CD‖(AD − λ)f‖L2(Ω)

for some C > 0 and CD > 0, and the first estimate follows. The second estimate
is proved in the same way. �

The next lemma is an important ingredient in the following.

Lemma 8.3.8. Let Tmax be the maximal operator associated to −Δ+ V in (8.3.3).
Then the space C∞(Ω) is dense in domTmax with respect to the graph norm.

Proof. Since V ∈ L∞(Ω) is bounded, the graph norms(‖ · ‖2L2(Ω) + ‖Tmax · ‖2L2(Ω)

)1/2
and

(‖ · ‖2L2(Ω) + ‖Δ · ‖2L2(Ω)

)1/2
are equivalent on dom Tmax, and hence it is no restriction to assume that V = 0.
Now suppose that f ∈ domTmax is such that for all g ∈ C∞(Ω)

0 = (f, g)L2(Ω) + (Δf,Δg)L2(Ω). (8.3.11)

Then (8.3.11) holds for all g ∈ C∞
0 (Ω), so that 0 = (f +Δ2f)(g), where f +Δ2f

is viewed as a distribution. As f ∈ L2(Ω), one concludes that

Δ2f = −f ∈ L2(Ω). (8.3.12)
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Next it will be shown that
Δf ∈ H2

0 (Ω). (8.3.13)

In fact, choose an open ball B such that Ω ⊂ B and let h ∈ C∞
0 (B). Let

ÃD = −Δ, dom ÃD = H2(B) ∩H1
0 (B),

be the self-adjoint Dirichlet Laplacian in L2(B); cf. Theorem 8.3.4. Since B is

bounded, one has 0 ∈ ρ(ÃD) by Proposition 8.3.2. As h ∈ C∞
0 (B), elliptic regular-

ity yields Ã−1
D h ∈ C∞(B) and hence (Ã−1

D h)|Ω ∈ C∞(Ω) for the restriction onto

Ω. Denote by f̃ and Δ̃f the extension of f and Δf by zero to B. Then it follows
with the help of (8.3.11) that

(Ã−1
D f̃ , h)L2(B) = (f̃ , Ã−1

D h)L2(B)

=
(
f, (Ã−1

D h)|Ω
)
L2(Ω)

= −(
Δf,Δ(Ã−1

D h)|Ω
)
L2(Ω)

= (−Δ̃f, h)L2(B)

holds for h ∈ C∞
0 (B). This yields −Δ̃f = Ã−1

D f̃ ∈ H2(B). Moreover, as Δ̃f
vanishes outside of Ω it follows that Δf ∈ H2

0 (Ω), that is, (8.3.13) holds.

Now choose a sequence (ψk) ⊂ C∞
0 (Ω) such that ψk → Δf in H2(Ω). Then,

by (8.3.12),

0 ≤ (Δf,Δf)L2(Ω) = lim
k→∞

(ψk,Δf)L2(Ω) = lim
k→∞

(Δψk, f)L2(Ω)

= (Δ2f, f)L2(Ω) = −(f, f)L2(Ω) ≤ 0,

that is, f = 0 in (8.3.11). Hence, C∞(Ω) is dense in domTmax with respect to the
graph norm. �

The following result on the extension of the Dirichlet trace operator onto
domTmax is essential for the construction of a boundary triplet for Tmax.

Theorem 8.3.9. Assume that Ω ⊂ Rn is a bounded C2-domain. Then the Dirichlet
trace operator τD : H2(Ω) → H3/2(∂Ω) in (8.2.13) admits a unique extension to
a continuous surjective operator

τ̃D : domTmax → H−1/2(∂Ω),

where domTmax is equipped with the graph norm. Furthermore,

ker τ̃D = ker τD = domAD.

Proof. In the following fix λ ∈ ρ(AD) and consider the operator

Υ := −τN(AD − λ)−1 : L2(Ω) → H1/2(∂Ω). (8.3.14)
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Since (AD − λ)−1 : L2(Ω) → H2(Ω) is everywhere defined and closed, it is clear
that (AD−λ)−1 : L2(Ω) → H2(Ω) is continuous and maps onto domAD. Hence, it
follows from Theorem 8.3.4 and (8.2.12) that Υ ∈ B(L2(Ω), H1/2(∂Ω)) in (8.3.14)
is a surjective operator.

Next it will be shown that

kerΥ = Nλ(Tmax)
⊥, (8.3.15)

where Nλ(Tmax) = ker (Tmax−λ). In fact, for the inclusion (⊂) in (8.3.15), assume
that

Υh = −τN(AD − λ)−1h = 0

for some h ∈ L2(Ω). Then it follows from Theorem 8.3.4 that

(AD − λ)−1h ∈ domAD ∩ domAN

and hence (AD − λ)−1h ∈ domTmin by (8.2.15) and (8.3.2). For fλ ∈ Nλ(Tmax)
one concludes, together with Proposition 8.3.1, that

(fλ, h)L2(Ω) =
(
fλ, (Tmin − λ)(AD − λ)−1h

)
L2(Ω)

=
(
(Tmax − λ)fλ, (AD − λ)−1h

)
L2(Ω)

= 0,

which shows h ∈ Nλ(Tmax)
⊥. For the inclusion (⊃) in (8.3.15), let h ∈ Nλ(Tmax)

⊥.
Then h ∈ ran (Tmin − λ), and hence there exists k ∈ domTmin = H2

0 (Ω) such that
h = (Tmin − λ)k. It follows that

Υh = −τN(AD − λ)−1h = −τN(AD − λ)−1(Tmin − λ)k = −τNk = 0,

which shows that h ∈ kerΥ. This completes the proof of (8.3.15).

From (8.3.14) and (8.3.15) it follows that the restriction of Υ to Nλ(Tmax)
is an isomorphism from Nλ(Tmax) onto H1/2(∂Ω). This implies that the dual
operator

Υ′ : H−1/2(∂Ω) → L2(Ω) (8.3.16)

is bounded and invertible, and by the closed range theorem (see Theorem 1.3.5
for the Hilbert space adjoint) one has

ranΥ′ = (kerΥ)⊥ = Nλ(Tmax).

The inverse (Υ′)−1 is regarded as an isomorphism from Nλ(Tmax) ontoH
−1/2(∂Ω).

Now recall the direct sum decomposition

domTmax = domAD +Nλ(Tmax)

from Theorem 1.7.1 or Corollary 1.7.5, and write the elements f ∈ domTmax

accordingly,
f = fD + fλ, fD ∈ domAD, fλ ∈ Nλ(Tmax).
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Define the mapping

τ̃D : domTmax → H−1/2(∂Ω), f �→ τ̃Df = (Υ′)−1fλ. (8.3.17)

Next it will be shown that τ̃D is an extension of the Dirichlet trace operator
τD : H2(Ω) → H3/2(∂Ω). For this, consider ϕ ∈ ran τD = H3/2(∂Ω) ⊂ H−1/2(∂Ω)
and note that by (8.3.9) and (8.2.12) there exists a unique fλ ∈ H2(Ω) such that

(−Δ+ V )fλ = λfλ and τDfλ = ϕ. (8.3.18)

Let h ∈ L2(Ω) and set k := (AD−λ)−1h. Then, by (8.3.14), the fact that τDk = 0,
and the second Green identity (8.2.19),

(Υ′ϕ, h)L2(Ω) = 〈ϕ,Υh〉H−1/2(∂Ω)×H1/2(∂Ω)

= (ϕ,Υh)L2(∂Ω)

= −(
ϕ, τN(AD − λ)−1h

)
L2(∂Ω)

= −(τDfλ, τNk)L2(∂Ω) + (τNfλ, τDk)L2(∂Ω)

= −(
(−Δ+ V )fλ, k

)
L2(Ω)

+
(
fλ, (−Δ+ V )k

)
L2(Ω)

= −(λfλ, k)L2(Ω) + (fλ, ADk)L2(Ω)

=
(
fλ, (AD − λ)k

)
L2(Ω)

= (fλ, h)L2(Ω),

and thus Υ′ϕ = fλ. Hence, the restriction of Υ′ to H3/2(∂Ω) maps ϕ ∈ H3/2(∂Ω)
to the unique H2(Ω)-solution fλ of the boundary value problem (8.3.18), that is,
to the unique element fλ ∈ Nλ(Tmax) ∩ H2(Ω) such that τDfλ = ϕ. Therefore,
(Υ′)−1 maps the elements in Nλ(Tmax) ∩ H2(Ω) onto their Dirichlet boundary
values, that is,

(Υ′)−1fλ = τDfλ for fλ ∈ Nλ(Tmax) ∩H2(Ω).

By definition τ̃DfD = 0 = τDfD for fD ∈ domAD. Therefore, if f ∈ H2(Ω) is
decomposed according to (8.3.9) as

f = fD + fλ, fD ∈ domAD, fλ ∈ Nλ(Tmax) ∩H2(Ω),

then
τ̃Df = τ̃D(fD + fλ) = (Υ′)−1fλ = τDfλ = τDf,

so that τ̃D in (8.3.17) is an extension of τD. Note that by construction τ̃D is
surjective. Furthermore, the property ker τ̃D = ker τD is clear from the definition.

It remains to show that τ̃D in (8.3.17) is continuous with respect to the graph
norm on domTmax. For this, consider f = fD + fλ ∈ domTmax with fD ∈ domAD

and fλ ∈ Nλ(Tmax), and note that

fλ = f − fD = f − (AD − λ)−1(Tmax − λ)fD

= f − (AD − λ)−1(Tmax − λ)f.
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Since (Υ′)−1 : Nλ(Tmax) → H−1/2(∂Ω) is an isomorphism and hence, in particular,
bounded, one has

‖τ̃Df‖H−1/2(∂Ω) = ‖(Υ′)−1fλ‖H−1/2(∂Ω)

≤ C‖fλ‖L2(Ω)

≤ C
(‖f‖L2(Ω) + ‖(AD − λ)−1(Tmax − λ)f‖L2(Ω)

)
≤ C ′(‖f‖L2(Ω) + ‖(Tmax − λ)f‖L2(Ω)

)
≤ C ′′(‖f‖L2(Ω) + ‖Tmaxf‖L2(Ω)

)
with some constants C,C ′, C ′′ > 0. Thus, τ̃D is continuous. The proof of Theo-
rem 8.3.9 is complete. �

The following result is parallel to Theorem 8.3.9 and can be proved in a
similar way.

Theorem 8.3.10. Assume that Ω ⊂ Rn is a bounded C2-domain. Then the Neu-
mann trace operator τN : H2(Ω) → H1/2(∂Ω) in (8.2.14) admits a unique exten-
sion to a continuous surjective operator

τ̃N : domTmax → H−3/2(∂Ω),

where domTmax is equipped with the graph norm. Furthermore,

ker τ̃N = ker τN = domAN.

As a consequence of Theorem 8.3.9 and Theorem 8.3.10 one can also extend
the second Green identity in (8.2.19) to elements f ∈ domTmax and g ∈ H2(Ω).

Corollary 8.3.11. Assume that Ω ⊂ Rn is a bounded C2-domain, and let

τ̃D : domTmax → H−1/2(∂Ω) and τ̃N : domTmax → H−3/2(∂Ω)

be the unique continuous extensions of the Dirichlet and Neumann trace operators

τD : H2(Ω) → H3/2(∂Ω) and τN : H2(Ω) → H1/2(∂Ω)

from Theorem 8.3.9 and Theorem 8.3.10, respectively. Then the second Green iden-
tity in (8.2.19) extends to

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω)

= 〈τ̃Df, τNg〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τ̃Nf, τDg〉H−3/2(∂Ω)×H3/2(∂Ω)

for f ∈ domTmax and g ∈ H2(Ω).

Proof. Let f ∈ domTmax and g ∈ H2(Ω). Since C∞(Ω) is dense in domTmax with
respect to the graph norm by Lemma 8.3.8 and C∞(Ω) ⊂ H2(Ω) ⊂ domTmax,
there exists a sequence (fn) ⊂ H2(Ω) such that fn → f and Tmaxfn → Tmaxf
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in L2(Ω). Moreover, τDfn → τ̃Df in H−1/2(∂Ω) and τNfn → τ̃Nf in H−3/2(∂Ω),
because τ̃D and τ̃N are continuous with respect to the graph norm. Therefore, with
the help of the second Green identity (8.2.19), one concludes that

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω)

= lim
n→∞(Tmaxfn, g)L2(Ω) − lim

n→∞(fn, Tmaxg)L2(Ω)

= lim
n→∞

[
(τDfn, τNg)L2(∂Ω) − (τNfn, τDg)L2(∂Ω)

]
= lim

n→∞
[〈τDfn, τNg〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τNfn, τDg〉H−3/2(∂Ω)×H3/2(∂Ω)

]
= 〈τ̃Df, τNg〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τ̃Nf, τDg〉H−3/2(∂Ω)×H3/2(∂Ω),

which completes the proof. �

Note that, by construction, there exists a bounded right inverse for the ex-
tended Dirichlet trace operator τ̃D (see (8.3.16)–(8.3.17)) and similarly there exists
a bounded right inverse for the extended Neumann trace operator τ̃N. This also
implies that the Dirichlet-to-Neumann map in Definition 8.3.6 admits a natural
extension to a bounded mapping from from H−1/2(∂Ω) into H−3/2(∂Ω).

Corollary 8.3.12. Assume that Ω ⊂ Rn is a bounded C2-domain and let τ̃D and τ̃N
be the unique continuous extensions of the Dirichlet and Neumann trace operators
from Theorem 8.3.9 and Theorem 8.3.10, respectively. Then for λ ∈ ρ(AD) the
Dirichlet-to-Neumann map in Definition 8.3.6 admits an extension to a bounded
operator

D̃(λ) : H−1/2(∂Ω) → H−3/2(∂Ω), τ̃Dfλ �→ τ̃Nfλ,

where fλ ∈ Nλ(Tmax).

For later purposes the following fact is provided.

Proposition 8.3.13. The minimal operator Tmin in (8.3.2) is simple.

Proof. Since AD is a self-adjoint extension of Tmin with discrete spectrum, it suf-
fices to check that Tmin has no eigenvalues; cf. Proposition 3.4.8. For this, assume
that Tminf = λf for some λ ∈ R and some f ∈ domTmin. Since domTmin = H2

0 (Ω),
there exist (fk) ∈ C∞

0 (Ω) such that fk → f in H2(Ω). Denote the zero extensions

of f and fk to all of Rn by f̃ and f̃k, respectively. Then f̃k → f̃ in L2(Rn) and for
all h ∈ C∞

0 (Rn) and α ∈ Nn
0 such that |α| ≤ 2 one computes∫

Rn

f̃(x)Dαh(x)dx = lim
k→∞

∫
Rn

f̃k(x)D
αh(x)dx

= (−1)|α| lim
k→∞

∫
Rn

(Dαf̃k)(x)h(x)dx

= (−1)|α| lim
k→∞

∫
Ω

(Dαfk)(x)h(x)dx
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= (−1)|α|
∫
Ω

(Dαf)(x)h(x)dx

= (−1)|α|
∫
Rn

(̃Dαf)(x)h(x)dx,

where (̃Dαf) denotes the zero extension of Dαf to all of Rn. It follows from this
computation that

Dαf̃ = (̃Dαf) ∈ L2(Rn), |α| ≤ 2,

and hence f̃ ∈ H2(Rn). Furthermore, if Ṽ ∈ L∞(Rn) denotes some real extension

of V , then (−Δ + Ṽ )f̃ = λf̃ and since f̃ vanishes on an open subset of Rn, the

unique continuation principle (see, e.g., [652, Theorem XIII.63]) implies f̃ = 0, so
that f = 0. Therefore, Tmin has no eigenvalues and now Proposition 3.4.8 shows
that Tmin is simple. �

8.4 A boundary triplet for the maximal
Schrödinger operator

In this section a boundary triplet {L2(∂Ω),Γ0,Γ1} for the maximal operator Tmax

in (8.3.3) is provided under the assumption that Ω ⊂ Rn is a bounded C2-domain.
The corresponding Weyl function is closely connected to the extended Dirichlet-
to-Neumann map in Corollary 8.3.12. As examples, Neumann and Robin type
boundary conditions are discussed, and it is also explained that there exist self-
adjoint realizations of −Δ + V in L2(Ω) which are not semibounded and which
may have essential spectrum of rather arbitrary form.

Recall from Corollary 8.2.2 that{
H1/2(∂Ω), L2(∂Ω), H−1/2(∂Ω)

}
is a Gelfand triple and there exist isometric isomorphisms ι± :H± 1

2 (∂Ω)→L2(∂Ω)
such that

〈ϕ,ψ〉H−1/2(∂Ω)×H1/2(∂Ω) = (ι−ϕ, ι+ψ)L2(∂Ω)

holds for all ϕ ∈ H−1/2(∂Ω) and ψ ∈ H1/2(∂Ω). For the definition of the boundary
mappings in the next proposition recall also the definition and the properties of the
Dirichlet operator AD (see Theorem 8.3.4), as well as the direct sum decomposition

domTmax = domAD +Nη(Tmax), (8.4.1)

which holds for all η ∈ ρ(AD). In particular, since AD is semibounded from below,
one may choose η ∈ ρ(AD)∩R in (8.4.1). Further, let τN : H2(Ω) → H1/2(∂Ω) be
the Neumann trace operator in (8.2.12) and let τ̃D : domTmax → H−1/2(∂Ω) be
the extension of the Dirichlet trace operator in Theorem 8.3.9.
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Theorem 8.4.1. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ + V in L2(Ω) in Theorem 8.3.4, fix η ∈ ρ(AD) ∩ R,
and decompose f ∈ domTmax according to (8.4.1) in the form f = fD + fη, where
fD ∈ domAD and fη ∈ Nη(Tmax). Then {L2(∂Ω),Γ0,Γ1}, where

Γ0f = ι−τ̃Df and Γ1f = −ι+τNfD, f = fD + fη ∈ domTmax,

is a boundary triplet for (Tmin)
∗ = Tmax such that

A0 = AD and A1 = Tmin +̂ N̂η(Tmax). (8.4.2)

Proof. Let f, g ∈ domTmax and decompose f and g in the form f = fD + fη and
g = gD + gη with fD, gD ∈ domAD ⊂ H2(Ω) and fη, gη ∈ Nη(Tmax). Since AD is
self-adjoint,

(Tmax fD, gD)L2(Ω) = (ADfD, gD)L2(Ω) = (fD, AD gD)L2(Ω) = (fD, Tmax gD)L2(Ω)

and since η is real, one also has

(Tmaxfη, gη)L2(Ω) = (ηfη, gη)L2(Ω) = (fη, ηgη)L2(Ω) = (fη, Tmax gη)L2(Ω).

Therefore, one obtains

(Tmax f, g)L2(Ω) − (f, Tmax g)L2(Ω)

=
(
Tmax(fD + fη), gD + gη

)
L2(Ω)

− (
fD + fη, Tmax(gD + gη)

)
L2(Ω)

= (Tmax fη, gD)L2(Ω) + (Tmax fD, gη)L2(Ω)

− (fη, Tmax gD)L2(Ω) − (fD, Tmax gη)L2(Ω).

Let τ̃N be the extension of the Neumann trace to dom Tmax from Theorem 8.3.10.
Then it follows together with Corollary 8.3.11 and τDfD = τDgD = 0 that

(Tmax fη, gD)L2(Ω) − (fη, Tmax gD)L2(Ω)

= 〈τ̃Dfη, τNgD〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τ̃Nfη, τDgD〉H−3/2(∂Ω)×H3/2(∂Ω)

= 〈τ̃Dfη, τNgD〉H−1/2(∂Ω)×H1/2(∂Ω)

and

(TmaxfD, gη)L2(Ω) − (fD, Tmaxgη)L2(Ω)

= 〈τDfD, τ̃Ngη〉H3/2(∂Ω)×H−3/2(∂Ω) − 〈τNfD, τ̃Dgη〉H1/2(∂Ω)×H−1/2(∂Ω)

= −〈τNfD, τ̃Dgη〉H1/2(∂Ω)×H−1/2(∂Ω).

Hence,

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω)

= 〈τ̃Dfη, τNgD〉H−1/2(∂Ω)×H1/2(∂Ω) − 〈τNfD, τ̃Dgη〉H1/2(∂Ω)×H−1/2(∂Ω)

=
(
ι−τ̃Dfη, ι+τNgD

)
L2(∂Ω)

− (
ι+τNfD, ι−τ̃Dgη

)
L2(∂Ω)
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and, since fD, gD ∈ ker τD = ker τ̃D according to Theorem 8.3.9, one sees that

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω)

=
(
ι−τ̃Df, ι+τNgD

)
L2(∂Ω)

− (
ι+τNfD, ι−τ̃Dg

)
L2(∂Ω)

=
(−ι+τNfD, ι−τ̃Dg

)
L2(∂Ω)

− (
ι−τ̃Df,−ι+τNgD

)
L2(∂Ω)

= (Γ1f,Γ0g)L2(∂Ω) − (Γ0f,Γ1g)L2(∂Ω)

for all f, g ∈ domTmax, that is, the abstract Green identity is satisfied. To verify
the surjectivity of the mapping(

Γ0

Γ1

)
: domTmax → L2(∂Ω)× L2(∂Ω), (8.4.3)

let ϕ,ψ ∈ L2(∂Ω) and consider ι−1
− ϕ ∈ H−1/2(∂Ω) and −ι−1

+ ψ ∈ H1/2(∂Ω).
Observe that by (8.2.12) the Neumann trace operator τN is a surjective mapping
from {h ∈ H2(Ω) : τDh = 0} onto H1/2(∂Ω), that is, τN : domAD → H1/2(∂Ω) is
onto, and hence there exists fD ∈ domAD such that τNfD = −ι−1

+ ψ. Next recall
from Theorem 8.3.9 that the extended Dirichlet trace operator τ̃D maps domTmax

onto H−1/2(∂Ω) and that ker τ̃D = ker τD = domAD. Hence, it follows from the
direct sum decomposition dom Tmax = domAD + Nη(Tmax) that the restriction
τ̃D : Nη(Tmax) → H−1/2(∂Ω) is bijective, in particular, there exists fη ∈ Nη(Tmax)
such that τ̃Dfη = ι−1

− ϕ. Now it follows that f := fD + fη ∈ domTmax satisfies

Γ0f = ι−τ̃Df = ι−τ̃Dfη = ι−ι−1
− ϕ = ϕ

and
Γ1f = −ι+τNfD = ι+ι

−1
+ ψ = ψ,

and hence the mapping in (8.4.3) is onto. Thus, {L2(∂Ω),Γ0,Γ1} is a boundary
triplet for (Tmin)

∗ = Tmax, as claimed.

From the definition of Γ0 and ker τ̃D = ker τD = domAD it is clear that
domAD = ker Γ0, and hence the self-adjoint extension corresponding to Γ0 coin-
cides with the Dirichlet operator AD, that is, the first identity in (8.4.2) holds. It
remains to check the second identity in (8.4.2). For this let f = fD + fη ∈ ker Γ1,
which means τNfD = 0. Thus, fD ∈ domTmin by (8.2.15) and it follows that

A1 ⊂ Tmin +̂ N̂η(Tmax). The inclusion Tmin +̂ N̂η(Tmax) ⊂ A1 is clear from the
definition of Γ1. This leads to the second identity in (8.4.2). �

Remark 8.4.2. The boundary triplet {L2(∂Ω),Γ0,Γ1} in Theorem 8.4.1 is closely
related to the boundary triplet {Nη(Tmax),Γ

′
0,Γ

′
1} in Corollary 5.5.12, where

Γ′
0f = fη and Γ′

1f = PNη(Tmax)(AD − η)fD, f = fD + fη ∈ domTmax.

In fact, one has ker Γ0 = ker Γ′
0 and ker Γ1 = ker Γ′

1, and hence(
Γ′
0

Γ′
1

)
=

(
W11 0
0 W22

)(
Γ0

Γ1

)
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with some 2 × 2 operator matrix W = (Wij)
2
i,j=1 as in Theorem 2.5.1, see also

Corollary 2.5.5. In the present situation it follows from Theorem 8.3.9 and (8.4.1)
that the restriction ι−τ̃D : Nη(Tmax) → L2(∂Ω) is bijective and one concludes
W11 = (ι−τ̃D)−1. Now the properties of W imply that W22 = (ι−τ̃D)∗.

With the help of the extended Dirichlet-to-Neumann map in Corollary 8.3.12
one obtains a more explicit description of the domain of the self-adjoint operator
A1 in (8.4.2).

Proposition 8.4.3. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ + V in L2(Ω), and fix η ∈ ρ(AD) ∩ R. Moreover, let

D̃(η) be the extended Dirichlet-to-Neumann map in Corollary 8.3.12. Then the
self-adjoint extension A1 of Tmin in (8.4.2) is defined on

domA1 =
{
f ∈ domTmax : τ̃Nf = D̃(η)τ̃Df

}
. (8.4.4)

In the case that η < m(AD), where m(AD) denotes the lower bound of AD, the op-
erator A1 coincides with the Krĕın type extension SK,η of Tmin in Definition 5.4.2.
In particular, if m(AD) > 0 and η = 0, then A1 = SK,0 is the Krĕın–von Neumann
extension of Tmin.

Proof. It is clear from Theorem 8.4.1 that

domA1 = ker Γ1 =
{
f = fD + fη ∈ domTmax : τNfD = 0

}
.

Let τ̃N be the extension of the Neumann trace τN to the maximal domain in
Theorem 8.3.10. Then the boundary condition τNfD = 0 can be rewritten as
τ̃Nf = τ̃Nfη, where f = fD + fη ∈ domTmax. With the help of the extended
Dirichlet-to-Neumann map

D̃(η) : H−1/2(∂Ω) → H−3/2(∂Ω), τ̃Dfη �→ τ̃Nfη, fη ∈ Nη(Tmax),

one obtains τ̃Nfη = D̃(η)τ̃Dfη = D̃(η)τ̃Df , which implies (8.4.4).

If η ∈ R is chosen smaller than the lower bound m(AD) of AD, then it follows
from the second identity in (8.4.2), Lemma 5.4.1, and Definition 5.4.2 that the

Krĕın type extension SK,η = Tmin +̂ N̂η(Tmax) of Tmin and A1 coincide. In the
special case m(AD) > 0 and η = 0 one has A1 = SK,0, which is the Krĕın–von
Neumann extension of Tmin; cf. Definition 5.4.2. �

In the next proposition the γ-field and the Weyl function corresponding to
the boundary triplet {L2(∂Ω),Γ0,Γ1} in Theorem 8.4.1 are provided. Note that
for f = fD + fη decomposed as in (8.4.1) one has

Γ0f = ι−τ̃Df = ι−τ̃Dfη,

as ker τ̃D = ker τD = domAD by Theorem 8.3.9. It is also clear from (8.4.1) that
Γ0 is a bijective mapping from Nη(Tmax) onto L2(∂Ω).
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Proposition 8.4.4. Let {L2(∂Ω),Γ0,Γ1} be the boundary triplet for (Tmin)
∗ = Tmax

in Theorem 8.4.1 and let fη(ϕ) be the unique element in Nη(Tmax) such that
Γ0fη(ϕ) = ϕ. Then for all λ ∈ ρ(AD) the γ-field corresponding to the boundary
triplet {L2(∂Ω),Γ0,Γ1} is given by

γ(λ)ϕ =
(
I + (λ− η)(AD − λ)−1

)
fη(ϕ), ϕ ∈ L2(∂Ω), (8.4.5)

and fλ(ϕ) := γ(λ)ϕ is the unique element in Nλ(Tmax) such that Γ0fλ(ϕ) = ϕ.
Furthermore, one has

γ(λ)∗ = −ι+τN(AD − λ)−1, λ ∈ ρ(AD). (8.4.6)

The Weyl function M corresponding to the boundary triplet {L2(∂Ω),Γ0,Γ1} is
given by

M(λ)ϕ = (η − λ)ι+τN(AD − λ)−1fη(ϕ), ϕ ∈ L2(∂Ω).

In particular, γ(η)ϕ = fη(ϕ) and M(η)ϕ = 0 for all ϕ ∈ L2(∂Ω).

Proof. Since by definition γ(η) is the inverse of the restriction of Γ0 to Nη(Tmax),
it is clear that γ(η)ϕ = fη(ϕ), where fη(ϕ) is the unique element in Nη(Tmax) such
that Γ0fη(ϕ) = ϕ. Both (8.4.5) and (8.4.6) are consequences of Proposition 2.3.2.
In order to compute the Weyl function note that

γ(λ)ϕ = fη(ϕ) + (λ− η)(AD − λ)−1fη(ϕ)

is decomposed in (λ− η)(AD − λ)−1fη(ϕ) ∈ domAD and fη(ϕ) ∈ Nη(Tmax), and
hence by the definition of Γ1 it follows that

M(λ)ϕ = Γ1γ(λ)ϕ = −ι+τN
[
(λ− η)(AD − λ)−1fη(ϕ)

]
= (η − λ)ι+τN(AD − λ)−1fη(ϕ).

The assertion M(η)ϕ = 0 for all ϕ ∈ L2(∂Ω) is clear from the above. �

The Weyl function M in Proposition 8.4.4 is closely connected with the
Dirichlet-to-Neumann map D(λ) and its extension D̃(λ), λ ∈ ρ(AD), in Defini-
tion 8.3.6 and Corollary 8.3.12. This connection will be made explicit in the next
lemma. First, consider f = fD + fη ∈ domTmax as in (8.4.1). In the present
situation one has

τNfD = τ̃NfD = τ̃Nf − τ̃Nfη.

Hence, making use of D̃(η)τ̃Dfη = τ̃Nfη (see Corollary 8.3.12) and the identity
ker τ̃D = domAD, it follows that

τNfD = τ̃Nf − D̃(η)τ̃Dfη = τ̃Nf − D̃(η)τ̃Df. (8.4.7)
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Lemma 8.4.5. Let M be the Weyl function corresponding to the boundary triplet
in Theorem 8.4.1 and let D̃(λ), λ ∈ ρ(AD), be the extended Dirichlet-to-Neumann
map in Corollary 8.3.12. Then the regularization property

ran
(
D̃(η)− D̃(λ)

) ⊂ H1/2(∂Ω) (8.4.8)

holds and one has

M(λ)ϕ = ι+
(
D̃(η)− D̃(λ)

)
ι−1
− ϕ, ϕ ∈ L2(∂Ω), (8.4.9)

and

M(λ)ϕ = ι+
(
D(η)−D(λ)

)
ι−1
− ϕ, ϕ ∈ H2(∂Ω), (8.4.10)

Proof. For ψ ∈ H−1/2(∂Ω) choose fλ ∈ Nλ(Tmax) such that τ̃Dfλ = ψ or, equiva-
lently, Γ0fλ = ι−ψ. Decompose fλ in the form fλ = fλ

D + fλ,η with fλ
D ∈ domAD

and fλ,η ∈ Nη(Tmax). Then one computes(
D̃(η)− D̃(λ)

)
ψ = D̃(η)τ̃Dfλ − τ̃Nfλ = −τNf

λ
D, (8.4.11)

where (8.4.7) was used in the last step for f = fλ. Since fλ
D ∈ domAD ⊂ H2(Ω),

the regularization property (8.4.8) follows from (8.2.12). From (8.4.11) one also
concludes that

ι+
(
D̃(η)− D̃(λ)

)
ι−1
− Γ0fλ = −ι+τNf

λ
D = Γ1fλ,

and since M(λ)Γ0fλ = Γ1fλ by the definition of the Weyl function, this shows
(8.4.9).

It remains to prove the second assertion (8.4.10). For this note that the
restriction of ι−1

− : L2(∂Ω) → H−1/2(∂Ω) to H2(∂Ω) is an isometric isomorphism

from H2(∂Ω) onto H3/2(∂Ω) by Corollary 8.2.2. Furthermore, it follows from the

definition that the extended Dirichlet-to-Neumann map D̃(λ) coincides with the
Dirichlet-to-Neumann map D(λ) on H3/2(∂Ω). With these observations it is clear
that (8.4.10) follows when restricting (8.4.9) to H2(∂Ω). �

Remark 8.4.6. The boundary mappings in Theorem 8.4.1 and the corresponding
γ-field and Weyl function depend on the choice of η ∈ ρ(AD) ∩R and the decom-
position of f ∈ domTmax as f = fη

D + fη; observe that also fD = fη
D ∈ domAD

depends on η. Suppose now that the boundary mappings are defined with respect

to some other η′ ∈ ρ(AD) ∩ R and decompose f accordingly as f = fη′
D + fη′ . If

Γη
0 ,Γ

η
1 denote the boundary mappings in Theorem 8.4.1 with respect to η, and

Γη′
0 ,Γη′

1 denote the boundary mappings in Theorem 8.4.1 with respect to η′, then
one has (

Γη′
0

Γη′
1

)
=

(
I 0

−M(η′) I

)(
Γη
0

Γη
1

)
. (8.4.12)
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In fact, that Γη′
0 f = Γη

0f for f ∈ domTmax is clear from Theorem 8.4.1, and for
the remaining identity in (8.4.12) it follows from Lemma 8.4.5 that

−M(η′)Γη
0f + Γη

1f = ι+
(
D̃(η′)− D̃(η)

)
ι−1
− Γη

0f + Γη
1f

= ι+
(
D̃(η′)τ̃Df − D̃(η)τ̃Df

)− ι+τNf
η
D

= ι+
(
D̃(η′)τ̃Dfη′ − D̃(η)τ̃Dfη

)− ι+τNf
η
D

= ι+
(
τ̃Nfη′ − τ̃Nfη

)− ι+τNf
η
D

= ι+τN(f
η
D − fη′

D

)− ι+τNf
η
D

= Γη′
1 f.

Finally, note that the γ-fields and Weyl functions of the boundary triplets in
Theorem 8.4.1 for different η and η′ transform accordingly; cf. Proposition 2.5.3.

Next some classes of extensions of Tmin and their spectral properties are
briefly discussed. Let {L2(∂Ω),Γ0,Γ1} be the boundary triplet in Theorem 8.4.1
with corresponding γ-field γ and Weyl function M in Proposition 8.4.4. According
to Corollary 2.1.4, the self-adjoint (maximal dissipative, maximal accumulative)
extensions AΘ ⊂ Tmax of Tmin are in a one-to-one correspondence to the self-
adjoint (maximal dissipative, maximal accumulative) relations Θ in L2(∂Ω) via

domAΘ =
{
f ∈ domTmax : {Γ0f,Γ1f} ∈ Θ

}
=

{
f ∈ domTmax : {ι−τ̃Df,−ι+τNfD} ∈ Θ

}
.

(8.4.13)

If Θ is an operator in L2(∂Ω), then the domain of AΘ is given by

domAΘ =
{
f ∈ domTmax : Θι−τ̃Df = −ι+τNfD

}
. (8.4.14)

Let Θ be a self-adjoint relation in L2(∂Ω) and let AΘ be the corresponding
self-adjoint realization of −Δ+ V in L2(Ω). By Corollary 1.10.9, Θ can be repre-
sented in terms of bounded operators A,B ∈ B(L2(∂Ω)) satisfying the conditions
A∗B = B∗A, AB∗ = BA∗, and A∗A+B∗B = I = AA∗ +BB∗ such that

Θ =
{{Aϕ,Bϕ} : ϕ ∈ L2(∂Ω)

}
=

{{ψ,ψ′} : A∗ψ′ = B∗ψ
}
.

In this case one has

domAΘ =
{
f ∈ domTmax : −A∗ι+τNfD = B∗ι−τ̃Df

}
,

and for λ ∈ ρ(AΘ) ∩ ρ(AD) the Krĕın formula for the corresponding resolvents

(AΘ − λ)−1 = (AD − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗

= (AD − λ)−1 + γ(λ)A
(
B−M(λ)A

)−1
γ(λ)∗

(8.4.15)
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holds by Theorem 2.6.1 and Corollary 2.6.3. Recall that in the present situation the
spectrum of AD = A0 is discrete by Proposition 8.3.2. According to Theorem 2.6.2,
λ ∈ ρ(AD) is an eigenvalue of AΘ if and only if ker (Θ −M(λ)) or, equivalently,
ker (B−M(λ)A) is nontrivial, and that

ker (AΘ − λ) = γ(λ) ker
(
Θ−M(λ)

)
= γ(λ)A ker

(
B−M(λ)A

)
.

Although Ω is a bounded C2-domain, it will turn out in Example 8.4.9 that the
spectrum of AΘ is in general not discrete, and thus continuous spectrum may be
present. It then follows from Theorem 2.6.2 and Theorem 2.6.5 that λ ∈ ρ(AD) be-
longs to the continuous spectrum σc(AΘ) (essential spectrum σess(AΘ) or discrete
spectrum σd(AΘ)) of AΘ if and only if 0 belongs to σc(Θ−M(λ)) (σess(Θ−M(λ))
or σd(Θ−M(λ))).

For a complete description of the spectrum of AΘ recall that the symmetric
operator Tmin is simple according to Proposition 8.3.13 and make use of a trans-
form of the boundary triplet {L2(∂Ω),Γ0,Γ1} as in Chapter 3.8. This reasoning
implies that λ is an eigenvalue of AΘ if and only if λ is a pole of the function

λ �→ MΘ(λ) =
(
A∗ +B∗M(λ)

)(
B∗ −A∗M(λ)

)−1
.

It is important to note in this context that the multiplicity of the eigenvalues of
AΘ is not necessarily finite and that the dimension of the eigenspace ker (AΘ −λ)
of an isolated eigenvalue λ of AΘ coincides with the dimension of the range of
the residue of MΘ at λ. Furthermore, the continuous and absolutely continuous
spectrum of AΘ can be characterized as in Section 3.8, e.g., one has

σac(AΘ) =
⋃

ϕ∈L2(∂Ω)

closac
({

x ∈ R : 0 < Im
(
MΘ(x+ i0)ϕ,ϕ

)
L2(∂Ω)

< ∞})
.

In the special case that the self-adjoint relation Θ in L2(∂Ω) is a bounded opera-
tor the boundary condition reads as in (8.4.14) and according to Section 3.8 the
spectral properties of the self-adjoint operator AΘ can also be described with the
help of the function

λ �→ (
Θ−M(λ)

)−1
.

The general boundary conditions in (8.4.13) and (8.4.14) contain also typical
classes of boundary conditions that are treated in spectral problems for partial
differential operators, as, e.g., Neumann or Robin type boundary conditions. In
the following example the standard Neumann boundary conditions are discussed.
Note that the Neumann operator does not coincide with the Krĕın type extension
SK,η or the Krĕın–von Neumann extension SK,0 of Tmin in Proposition 8.4.3.

Example 8.4.7. Let {L2(∂Ω),Γ0,Γ1} be the boundary triplet in Theorem 8.4.1
and choose η ∈ ρ(AD) ∩ R in (8.4.1) in such a way that also η ∈ ρ(AN), where
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AN denotes the Neumann realization of −Δ + V in Proposition 8.3.3 and The-
orem 8.3.4. Since both self-adjoint operators AD and AN are semibounded from
below (or both have discrete spectrum), such an η exists. In this situation it follows
that the Dirichlet-to-Neumann map

D(η) : H3/2(∂Ω) → H1/2(∂Ω)

in Definition 8.3.6 is a bijective mapping. Furthermore, ι+ : H1/2(∂Ω) → L2(∂Ω)
is bijective and the restriction of ι−1

− : L2(∂Ω) → H−1/2(∂Ω) to H2(∂Ω) is an

isometric isomorphism from H2(∂Ω) onto H3/2(∂Ω) according to Corollary 8.2.2.
Hence, it is clear that

ΘN := ι+D(η)ι−1
− , domΘN := H2(∂Ω), (8.4.16)

is a densely defined bijective operator in L2(∂Ω). Furthermore, for ϕ ∈ H2(∂Ω)
and ψ = ι−1

− ϕ ∈ H3/2(∂Ω) it follows from Corollary 8.2.2 that(
ι+D(η)ι−1

− ϕ,ϕ
)
L2(∂Ω)

=
(
ι+D(η)ψ, ι−ψ

)
L2(∂Ω)

= (D(η)ψ,ψ)L2(∂Ω). (8.4.17)

Now choose fη ∈ H2(Ω) such that (−Δ + V )fη = ηfη and τDfη = ψ, which is
possible by (8.3.9) and (8.2.12). Then it follows from Definition 8.3.6 and the first
Green identity in (8.2.18) that

(D(η)ψ,ψ)L2(∂Ω) =
(
D(η)τDfη, τDfη

)
L2(∂Ω)

= (τNfη, τDfη)L2(∂Ω)

= ‖∇fη‖2L2(Ω;Cn) + (Δfη, fη)L2(Ω)

= ‖∇fη‖2L2(Ω;Cn) + ((V − η)fη, fη)L2(Ω),

(8.4.18)

so that (D(η)ψ,ψ)L2(∂Ω) ∈ R and hence (ΘNϕ,ϕ)L2(∂Ω) ∈ R by (8.4.16)–(8.4.17)
for all ϕ ∈ H2(∂Ω). It follows that the bijective operator ΘN is symmetric in
L2(∂Ω), and hence ΘN is an unbounded self-adjoint operator in L2(∂Ω) such that
0 ∈ ρ(ΘN).

The self-adjoint realization of −Δ + V in L2(Ω) corresponding to the self-
adjoint operator ΘN in (8.4.16) is denoted by AΘN . A function f ∈ domTmax

belongs to domAΘN if and only if

Γ0f = ι−τ̃Df ∈ domΘN and Γ1f = ΘNΓ0f.

Note that ι−τ̃Df ∈ domΘN forces τ̃Df ∈ H3/2(∂Ω) and hence f ∈ H2(Ω) and
τ̃Df = τDf by (8.2.12) and Theorem 8.3.9. It then follows from (8.4.7) and (8.4.16)
that the boundary condition Γ1f = ΘNΓ0f takes on the form

ι+D(η)τDf − ι+τNf = −ι+τNfD = Γ1f = ΘNΓ0f = ι+D(η)τDf,
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that is, τNf = 0. Hence, it has been shown that domAΘN ⊂ H2(Ω) and that
τNf = 0 for all f ∈ domAΘN

. Therefore, AΘN
⊂ AN and since both operators are

self-adjoint one concludes that AΘN
= AN.

Note also that by (8.4.16) and Lemma 8.4.5 one has(
ΘN −M(λ)

)
ϕ = ι+D(η)ι−1

− ϕ− ι+
(
D(η)−D(λ)

)
ι−1
− ϕ = ι+D(λ)ι−1

− ϕ

for ϕ ∈ H2(∂Ω) and λ ∈ ρ(AD). Hence, it follows that ΘN − M(λ) is a bijec-
tive operator in L2(∂Ω) for all λ ∈ ρ(AD) ∩ ρ(AN) which is defined on H2(∂Ω).
Therefore, (8.4.15) implies that the resolvents of AD and AN are related via

(AN − λ)−1 = (AD − λ)−1 + γ(λ)ι−D(λ)−1ι−1
+ γ(λ)∗,

where γ is the γ-field corresponding to the boundary triplet {L2(∂Ω),Γ0,Γ1} in
Proposition 8.4.4.

The next example is a generalization of the previous example from Neumann
to local and nonlocal Robin boundary conditions.

Example 8.4.8. Let {L2(∂Ω),Γ0,Γ1} be as in the previous example and fix some
η ∈ ρ(AD) ∩ ρ(AN) ∩ R. Then the operator ΘN = ι+D(η)ι−1

− in (8.4.16) is an
unbounded self-adjoint operator in L2(∂Ω) with domain H2(∂Ω), and 0 ∈ ρ(ΘN).
Assume that

B : H3/2(∂Ω) → H1/2(∂Ω) (8.4.19)

is compact as an operator from H3/2(∂Ω) into H1/2(∂Ω) and that B is symmetric
in L2(∂Ω), that is, (Bψ,ψ)L2(∂Ω) ∈ R for all ψ ∈ domB = H3/2(∂Ω). Then it
follows that

ι+Bι−1
− : H2(∂Ω) → L2(∂Ω)

is compact as an operator from H2(∂Ω) into L2(∂Ω) and as in (8.4.17) one sees
that ι+Bι−1

− is symmetric in L2(∂Ω). Consider the operator

ΘB := ι+
(
D(η)−B

)
ι−1
− = ΘN − ι+Bι−1

− , domΘB = H2(∂Ω), (8.4.20)

and observe that the symmetric operator ι+Bι−1
− is a relative compact perturba-

tion of the self-adjoint operator ΘN in L2(∂Ω), that is, the operator

ι+Bι−1
− Θ−1

N

is compact in L2(∂Ω). It is well known from standard perturbation results (see,
e.g., [652, Corollary 2 of Theorem XIII.14]) that in this case the perturbed operator
ΘB is self-adjoint in L2(∂Ω).

The self-adjoint realization of −Δ + V in L2(Ω) corresponding to the self-
adjoint operator ΘB in (8.4.20) is denoted by AΘB

. It is clear that a function
f ∈ domTmax belongs to domAΘB

if and only if

Γ0f = ι−τ̃Df ∈ domΘB and Γ1f = ΘBΓ0f. (8.4.21)
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In the same way as in Example 8.4.7 the fact that ι−τ̃Df ∈ domΘB implies that
f ∈ H2(Ω) and τ̃Df = τDf , and the boundary condition Γ1f = ΘBΓ0f takes the
explicit form

ι+D(η)τDf − ι+τNf = Γ1f = ΘBΓ0f = ι+
(
D(η)−B

)
τDf,

that is, τNf = BτDf . Conversely, if f ∈ H2(Ω) is such that τNf = BτDf , then
f satisfies (8.4.21) and hence f ∈ domAΘB

. Thus, it has been shown that the
self-adjoint operator AΘB

is defined on

domAΘB
=

{
f ∈ H2(Ω) : τNf = BτDf

}
.

In the same way as in the previous example one obtains

ΘB −M(λ) = ι+
(
D(λ)−B

)
ι−1
−

and hence for all λ ∈ ρ(AD) ∩ ρ(AΘB
) one has

(AΘB
− λ)−1 = (AD − λ)−1 + γ(λ)ι−

(
D(λ)−B

)−1
ι−1
+ γ(λ)∗.

Finally, note that a sufficient condition for the operator B in (8.4.19) to be
compact is that B : H3/2(∂Ω) → H1/2+ε(∂Ω) is bounded for some ε > 0, or that
B : H3/2−ε′(∂Ω) → H1/2(∂Ω) is bounded for some ε′ > 0, since the embeddings
H1/2+ε(∂Ω) ↪→ H1/2(∂Ω) and H3/2(∂Ω) ↪→ H3/2−ε′(∂Ω) are compact by (8.2.8).

In the next example it is shown that the (essential) spectrum of a self-adjoint
realization AΘ of −Δ + V can be very general, depending on the properties of
the parameter Θ. In particular, the self-adjoint realization AΘ may not be semi-
bounded.

Example 8.4.9. Let η ∈ ρ(AD)∩R, consider an arbitrary self-adjoint operator Ξ in
the Hilbert space Nη(Tmax) = ker (Tmax−η), and assume that η ∈ ρ(Ξ). Denote by
PNη the orthogonal projection in L2(Ω) onto Nη(Tmax) and let ιNη be the natural
embedding of Nη(Tmax) into L2(Ω).

Let {L2(∂Ω),Γ0,Γ1} be the boundary triplet in Theorem 8.4.1 with corre-
sponding γ-field and Weyl function in Proposition 8.4.4. Note that M(η) = 0 and
that both

PNη
γ(η) : L2(∂Ω) → Nη(Tmax) and γ(η)∗ιNη

: Nη(Tmax) → L2(∂Ω)

are isomorphisms. It follows that

Θ :=
(
γ(η)∗ιNη

)
(Ξ− η)

(
PNηγ(η)

)
is a self-adjoint operator in L2(∂Ω) with 0 ∈ ρ(Θ) and

Θ−1 =
(
PNηγ(η)

)−1
(Ξ− η)−1

(
γ(η)∗ιNη

)−1
. (8.4.22)
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Let AΘ be the corresponding self-adjoint realization of −Δ+V in (8.4.13)–(8.4.14)
defined on

domAΘ =
{
f ∈ domTmax : Θι−τ̃Df = −ι+τNfD

}
.

Since M(η) = 0 and η ∈ R, Krĕın’s formula in (8.4.15) takes the form

(AΘ − η)−1 = (AD − η)−1 + γ(η)Θ−1γ(η)∗

= (AD − λ)−1 +

(
PNηγ(η)Θ

−1γ(η)∗ιNη 0
0 0

)
,

where the block operator matrix is acting with respect to the space decomposition
L2(Ω) = Nη(Tmax)⊕ (Nη(Tmax))

⊥. Using (8.4.22) one then concludes that

(AΘ − η)−1 = (AD − η)−1 +

(
(Ξ− η)−1 0

0 0

)
.

In particular, since (AD − η)−1 is compact, well-known perturbation results show
that

σess

(
(AΘ − η)−1

)
= σess

(
(Ξ− η)−1

) ∪ {0},
and hence σess(AΘ) = σess(Ξ).

8.5 Semibounded Schrödinger operators

The semibounded self-adjoint realizations of −Δ + V , where V ∈ L∞(Ω) is real,
and the corresponding densely defined closed semibounded forms in L2(Ω) are
described in this section. For this purpose it is convenient to construct a boundary
pair which is compatible with the boundary triplet in Theorem 8.4.1 and to apply
the general results from Section 5.6. Under the additional assumption that V ≥ 0,
the nonnegative realizations of −Δ+ V and the corresponding nonnegative forms
in L2(Ω) are discussed as a special case. In this situation the Krĕın–von Neumann
extension appears as the smallest nonnegative extension.

Let Ω ⊂ Rn be a bounded C2-domain and let AD be the self-adjoint Dirichlet
realization of −Δ + V . It is clear from Proposition 8.3.2 that AD coincides with
the Friedrichs extension of the minimal operator Tmin in (8.3.2) and that AD

is bounded from below with lower bound m(AD) > v−, where v− = essinfV .
Furthermore, the resolvent of AD is compact since the domain Ω is bounded.
Therefore, the following description of the semibounded self-adjoint extensions of
Tmin is an immediate consequence of Proposition 5.5.6 and Proposition 5.5.8.

Proposition 8.5.1. Let Ω ⊂ Rn be a bounded C2-domain, let {L2(∂Ω),Γ0,Γ1} be
the boundary triplet for (Tmin)

∗ = Tmax from Theorem 8.4.1, and let

AΘ = −Δ+ V,

domAΘ =
{
f ∈ domTmax : {Γ0f,Γ1f} ∈ Θ

}
,
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be a self-adjoint extension of Tmin in L2(Ω) corresponding to a self-adjoint relation
Θ in L2(∂Ω) as in (8.4.13). Then

AΘ is semibounded ⇔ Θ is semibounded.

Recall also from Section 8.3 that the densely defined closed semibounded
form tAD corresponding to AD is defined on H1

0 (Ω). Now fix some η < m(AD), use
the direct sum decomposition

domTmax = Nη(Tmax) + domAD = Nη(Tmax) +
(
H2(Ω) ∩H1

0 (Ω)
)

(8.5.1)

from (8.4.1) and Proposition 8.3.2, and consider the corresponding boundary
triplet {L2(∂Ω),Γ0,Γ1} for (Tmin)

∗ = Tmax in Theorem 8.4.1 given by

Γ0f = ι−τ̃Df and Γ1f = −ι+τNfD, (8.5.2)

where f = fη + fD ∈ domTmax with fη ∈ Nη(Tmax) and fD ∈ domAD; cf.
(8.5.1). It is clear that A0 = AD coincides with the Friedrichs extension of Tmin

and A1 = Tmin +̂ N̂η(Tmax) coincides with the Krĕın type extension SK,η of Tmin;
cf. Definition 5.4.2. In order to define a boundary pair for Tmin corresponding to
A1 = SK,η, consider the densely defined closed semibounded form tSK,η

associated
with SK,η and recall from Corollary 5.4.16 the direct sum decomposition

dom tSK,η = Nη(Tmax) + dom tAD = Nη(Tmax) +H1
0 (Ω) (8.5.3)

of dom tSK,η . Comparing (8.5.1) and (8.5.3) one sees that domTmax ⊂ dom tSK,η

and that the domain of the Dirichlet operator AD in (8.5.1) is replaced by the
corresponding form domain in (8.5.3). The functions f ∈ dom tSK,η will be written
in the form f = fη + fF, where fη ∈ Nη(Tmax) and fF ∈ dom tAD = H1

0 (Ω). Now
define the mapping

Λ : dom tSK,η
→ L2(∂Ω), f �→ Λf = ι−τ̃Dfη. (8.5.4)

It will be shown next that {L2(∂Ω),Λ} is a boundary pair that is compatible with
the boundary triplet {L2(∂Ω),Γ0,Γ1} in the sense of Definition 5.6.4; although
the main part of the proof of Lemma 8.5.2 is similar to Example 5.6.9, the details
are provided.

Lemma 8.5.2. Let Ω ⊂ Rn be a bounded C2-domain and let AD be the self-adjoint
Dirichlet realization of −Δ + V with lower bound m(AD). Fix η < m(AD), let
{L2(∂Ω),Γ0,Γ1} be the corresponding boundary triplet for (Tmin)

∗ = Tmax from
Theorem 8.4.1, and let Λ be the mapping in (8.5.4). Then {L2(∂Ω),Λ} is a bound-
ary pair for Tmin corresponding to the Krĕın type extension SK,η which is compat-
ible with the boundary triplet {L2(∂Ω),Γ0,Γ1}. Moreover, one has

(Tmaxf, g)L2(Ω) = tSK,η
[f, g] + (Γ1f,Λg)L2(∂Ω) (8.5.5)

for all f ∈ domTmax and g ∈ dom tSK,η .
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Proof. According to Lemma 5.6.5 (ii), it suffices to show that for some a < η the
mapping Λ in (8.5.4) is bounded from the Hilbert space

HtSK,η
−a =

(
dom tSK,η , (·, ·)tSK,η

−a

)
to L2(∂Ω) and that Λ extends the mapping Γ0 in (8.5.2). In the present situation
it is clear that the compatibility condition A1 = SK,η is satisfied.

In order to show that Λ is bounded fix some a < η, recall first from (5.1.7)
that the Hilbert space norm on HtSK,η

−a is given by

‖f‖2tSK,η
−a = tSK,η [f ]− a‖f‖2L2(Ω), f ∈ dom tSK,η = HtSK,η

−a.

It follows from Theorem 8.3.9 that the restriction ι−τ̃D : Nη(Tmax) → L2(∂Ω) is
bounded and hence for f = fη + fF ∈ dom tSK,η

, decomposed according to (8.5.3)
in fη ∈ Nη(Tmax) and fF ∈ dom tAD

, one has the estimate

‖Λf‖2L2(∂Ω) = ‖ι−τ̃Dfη‖2L2(∂Ω) ≤ C‖fη‖2L2(Ω). (8.5.6)

Now the orthogonal sum decomposition

dom tSK,η = Na(Tmax)⊕tSK,η
−a dom tAD (8.5.7)

from Corollary 5.4.15 will be used. To this end, define

fa :=
(
I + (a− η)(AD − a)−1

)
fη

and note that f = fa + hF with fa ∈ Na(Tmax) and hF = fη − fa + fF ∈ dom tAD .
Then one has

fη =
(
I + (η − a)(AD − η)−1

)
fa

and Proposition 1.4.6 leads to the estimate

‖fη‖L2(Ω) ≤ m(AD)− a

m(AD)− η
‖fa‖L2(Ω). (8.5.8)

Furthermore, it follows from (5.1.9) and the orthogonal sum decomposition (8.5.7)
that

(η − a)‖fa‖2L2(Ω) ≤ ‖fa‖2tSK,η
−a ≤ ‖fa‖2tSK,η

−a + ‖hF‖2tSK,η
−a = ‖f‖2tSK,η

−a.

From this estimate, (8.5.6), and (8.5.8) one concludes that Λ : HtSK,η
−a → L2(∂Ω)

is bounded.

From the definition of Λ in (8.5.4) and the decompositions (8.5.1) and (8.5.3)
it is clear that Λ is an extension of the mapping Γ0 in (8.5.2). Moreover, by
construction, the condition A1 = SK,η is satisfied. Therefore, Lemma 5.6.5 (ii)
shows that {L2(∂Ω),Λ} is a boundary pair for Tmin corresponding to SK,η which
is compatible with the boundary triplet {L2(∂Ω),Γ0,Γ1}. The identity (8.5.5)
follows from Corollary 5.6.7. �
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The next theorem is a variant of Theorem 5.6.13 in the present situation.

Theorem 8.5.3. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ+V with lower bound m(AD), and fix η < m(AD). Let
{L2(∂Ω),Γ0,Γ1} be the boundary triplet for (Tmin)

∗ = Tmax from Theorem 8.4.1
and let {L2(∂Ω),Λ} be the compatible boundary pair in Lemma 8.5.2. Furthermore,
let Θ be a semibounded self-adjoint relation in L2(∂Ω) and let AΘ be the corre-
sponding semibounded self-adjoint extension of Tmin in Proposition 8.5.1. Then
the closed semibounded form ωΘ in L2(∂Ω) corresponding to Θ and the densely
defined closed semibounded form tAΘ

corresponding to AΘ are related by

tAΘ [f, g] = tSK,η [f, g] + ωΘ[Λf,Λg],

dom tAΘ =
{
f ∈ dom tSK,η : Λf ∈ domωΘ

}
.

(8.5.9)

For completeness, the form tAΘ
in Theorem 8.5.3 will be made more explicit

using Corollary 5.6.14. First note that, by the definition of the boundary map Λ
in (8.5.4) and the decomposition (8.5.3), one can rewrite (8.5.9) as

tAΘ [f, g] = tSK,η [f, g] + ωΘ[ι−τ̃Dfη, ι−τ̃Dgη],

dom tAΘ
=

{
f = fη + fF ∈ dom tSK,η

: ι−τ̃Dfη ∈ domωΘ

}
.

(8.5.10)

If m(Θ) denotes the lower bound of the semibounded self-adjoint relation Θ and
μ ≤ m(Θ) is fixed, then the closed semibounded form tAΘ in (8.5.9)–(8.5.10)
corresponding to AΘ is given by

tAΘ [f, g] = tSK,η [f, g] +
(
(Θop − μ)

1
2 ι−τ̃Dfη, (Θop − μ)

1
2 ι−τ̃Dgη

)
L2(∂Ω)

+ μ (ι−τ̃Dfη, ι−τ̃Dgη)L2(∂Ω) ,

dom tAΘ
=

{
f = fη + fF ∈ dom tSK,η

: ι−τ̃Dfη ∈ dom (Θop − μ)
1
2

}
;

as usual, here Θop denotes the semibounded self-adjoint operator part of Θ acting
in L2(∂Ω)op = domΘ. In the special case where Θop ∈ B(L2(∂Ω)op) one has

tAΘ [f, g] = tSK,η [f, g] +
(
Θop ι−τ̃Dfη, ι−τ̃Dgη

)
L2(∂Ω)

,

dom tAΘ =
{
f = fη + fF ∈ dom tSK,η : ι−τ̃Dfη ∈ domΘop

}
,

and if Θ ∈ B(L2(∂Ω)), then

tAΘ [f, g] = tSK,η [f, g] +
(
Θι−τ̃Dfη, ι−τ̃Dgη

)
L2(∂Ω)

, dom tAΘ = dom tSK,η .

Recall also from Corollary 5.4.15 that the form tSK,η can be expressed in terms of
the form tAD

and the resolvent of AD.

Finally, the special case V ≥ 0 will be briefly considered. In this situation the
minimal operator Tmin and the Dirichlet operator AD are both uniformly positive
and hence in the above construction of a boundary triplet and corresponding
boundary pair one may choose η = 0. More precisely, Theorem 8.4.1 has the
following form.
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Corollary 8.5.4. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ+V in L2(Ω) with V ≥ 0, and decompose f ∈ domTmax

according to (8.4.1) with η = 0 in the form f = fD + f0, where fD ∈ domAD and
f0 ∈ kerTmax. Then {L2(∂Ω),Γ0,Γ1}, where

Γ0f = ι−τ̃Df and Γ1f = −ι+τNfD, f = fD + f0 ∈ domTmax,

is a boundary triplet for (Tmin)
∗ = Tmax such that

A0 = AD and A1 = Tmin +̂ N̂0(Tmax)

coincide with the Friedrichs extension and the Krĕın–von Neumann extension of
Tmin, respectively.

It is clear from Proposition 8.4.4 that for all λ ∈ ρ(AD) the γ-field and Weyl
function corresponding to the boundary triplet {L2(∂Ω),Γ0,Γ1} in Corollary 8.5.4
have the form

γ(λ)ϕ =
(
I + λ(AD − λ)−1

)
f0(ϕ), ϕ ∈ L2(∂Ω),

and

M(λ)ϕ = −ι+τNλ(AD − λ)−1f0(ϕ), ϕ ∈ L2(∂Ω), (8.5.11)

respectively, where f0(ϕ) is the unique element in N0(Tmax) with the property
that Γ0f0(ϕ) = ι−τ̃Df0(ϕ) = ϕ.

The next proposition is a variant of Proposition 8.5.1 for nonnegative exten-
sions.

Proposition 8.5.5. Let Ω ⊂ Rn be a bounded C2-domain, assume that V ≥ 0,
and let {L2(∂Ω),Γ0,Γ1} be the boundary triplet for (Tmin)

∗ = Tmax from Corol-
lary 8.5.4. Let

AΘ = −Δ+ V,

domAΘ =
{
f ∈ domTmax : {Γ0f,Γ1f} ∈ Θ

}
,

be a self-adjoint extension of Tmin in L2(Ω) corresponding to a self-adjoint relation
Θ in L2(∂Ω) as in (8.4.13). Then

AΘ is nonnegative ⇔ Θ is nonnegative.

Proof. Note that the Weyl function M in (8.5.11) satisfies M(0) = 0 and that
Tmin is uniformly positive. Therefore, if AΘ is a nonnegative self-adjoint extension
of Tmin, then Proposition 5.5.6 with x = 0 shows that the self-adjoint relation Θ
in L2(∂Ω) is nonnegative. Conversely, if Θ is a nonnegative self-adjoint relation
in L2(∂Ω), then it follows from Corollary 5.5.15 and A1 = SK,0 ≥ 0 that AΘ is a
nonnegative self-adjoint extension of Tmin. �
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In the nonnegative case the boundary mapping Λ in (8.5.4) is given by

Λ : dom tSK,0 → L2(∂Ω), f �→ Λf = ι−τ̃Df0, (8.5.12)

where one has the direct sum decomposition

dom tSK,0
= N0(Tmax) + dom tAD = N0(Tmax) +H1

0 (Ω),

and according to Lemma 8.5.2 {L2(∂Ω),Λ} is a boundary pair that is compatible
with the boundary triplet {L2(∂Ω),Γ0,Γ1} in Corollary 8.5.4.

In the nonnegative case a description of the nonnegative extensions and their
form domains is of special interest. In the present situation Corollary 5.6.18 reads
as follows.

Corollary 8.5.6. Let Ω ⊂ Rn be a bounded C2-domain, let AD be the self-adjoint
Dirichlet realization of −Δ + V with V ≥ 0, let {L2(∂Ω),Γ0,Γ1} be the bound-
ary triplet for (Tmin)

∗ = Tmax from Corollary 8.5.4, and let {L2(∂Ω),Λ} be the
compatible boundary pair in (8.5.12). Then the formula

tAΘ [f, g] = tSK,0 [f, g] +
(
Θ

1
2
op ι−τ̃Df0,Θ

1
2
op ι−τ̃Dg0

)
L2(∂Ω)

,

dom tAΘ =
{
f = f0 + fF ∈ dom tSK,0 : ι−τ̃Df0 ∈ domΘ

1
2
op

}
,

establishes a one-to-one correspondence between all closed nonnegative forms tAΘ

corresponding to nonnegative self-adjoint extension AΘ of Tmin in L2(Ω) and all
closed nonnegative forms ωΘ corresponding to nonnegative self-adjoint relations Θ
in L2(∂Ω).

8.6 Coupling of Schrödinger operators

The aim of this section is to interpret the natural self-adjoint Schrödinger operator

A = −Δ+ V, domA = H2(Rn), (8.6.1)

in L2(Rn) with a real potential V ∈ L∞(Rn) as a coupling of Schrödinger operators
on a bounded C2-domain and its complement, that is, A is identified as a self-
adjoint extension of the orthogonal sum of the minimal Schrödinger operators on
the subdomains and its resolvent is expressed in a Krĕın type resolvent formula.
The present treatment is a multidimensional variant of the discussion in Section 6.5
and is based on the abstract coupling construction in Section 4.6.

Let Ω+ ⊂ Rn be a bounded C2-domain and let Ω− := Rn \ Ω+ be the
corresponding exterior domain. Since C := ∂Ω− = ∂Ω+ is C2-smooth in the sense
of Definition 8.2.1, the term C2-domain will be used here for Ω−, although Ω−
is unbounded. In the following the common boundary C is sometimes referred
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to as an interface, linking the two domains Ω+ and Ω−. Note that one has the
identification

L2(Rn) = L2(Ω+)⊕ L2(Ω−). (8.6.2)

Consider the Schrödinger operator A = −Δ + V , domA = H2(Rn), in (8.6.1)
with V ∈ L∞(Rn) real. Since the Laplacian −Δ defined on H2(Rn) is unitarily
equivalent in L2(Rn) via the Fourier transform to the maximal multiplication
operator with the function x �→ |x|2, it is clear that −Δ, and hence A in (8.6.1),
is self-adjoint in L2(Rn). Moreover, for f ∈ C∞

0 (Rn) integration by parts shows
that

(Af, f)L2(Rn) = (∇f,∇f)L2(Rn;Cn) + (V f, f)L2(Rn) ≥ v−‖f‖2L2(Rn),

where v− = essinfV . As C∞
0 (Rn) is dense in H2(Rn), this estimate extends to

H2(Rn). Therefore, A is semibounded from below and v− is a lower bound.

The restriction of the real function V ∈ L∞(Ω) to Ω± is denoted by V±
and the same ±-index notation will be used for the restriction f± ∈ L2(Ω±)
of an element f ∈ L2(Rn). The minimal and maximal operator associated with
−Δ+ V+ in L2(Ω+) will be denoted by T+

min and T+
max, respectively, and the self-

adjoint Dirichlet realization in L2(Ω+) will be denoted by A+
D; cf. Proposition 8.3.1,

Proposition 8.3.2, and Theorem 8.3.4. For the minimal operator

T−
min = −Δ+ V−, domT−

min = H2
0 (Ω−),

and the maximal operator

T−
max = −Δ+ V−,

domT−
max =

{
f− ∈ L2(Ω−) : −Δf− + V−f− ∈ L2(Ω−)

}
,

on the unbounded C2-domain one can show in the same way as in the proof of
Proposition 8.3.1 that (T−

min)
∗ = T−

max and T−
min = (T−

max)
∗. Furthermore, since

Ω− has a compact C2-smooth boundary, it follows by analogy to Theorem 8.3.4
that the self-adjoint Dirichlet realization A−

D corresponding to the densely defined
closed semibounded form

t−D[f−, g−] = (∇f−,∇g−)L2(Ω−;Cn) + (V−f−, g−)L2(Ω−), dom t−D = H1
0 (Ω−),

via the first representation theorem (Theorem 5.1.18) is given by

A−
D = −Δ+ V−, domA−

D =
{
f− ∈ H2(Ω−) : τ−D f− = 0

}
,

where τ−D denotes the Dirichlet trace operator on Ω−; cf. (8.2.13). The operator A−
D

is semibounded from below and v− = essinfV is a lower bound. In contrast to the
Dirichlet operator A+

D, the resolvent of A−
D is not compact since Rellich’s theorem

is not valid on the unbounded domain Ω−; cf. the proof of Proposition 8.3.2. Note
also that the Dirichlet trace operator τ−D : H2(Ω−) → H3/2(C) and Neumann
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trace operator τ−N : H2(Ω−) → H1/2(C) have the same mapping properties as on a
bounded domain. Moreover, both trace operators admit continuous extensions to
domT−

max as in Theorem 8.3.9 and Theorem 8.3.10. With the identification (8.6.2)
it is clear that the orthogonal sum

ÃD =

(
A+

D 0
0 A−

D

)
(8.6.3)

is a self-adjoint operator in L2(Rn) with Dirichlet boundary conditions on C. The
goal of the following considerations is to identify the self-adjoint Schrödinger oper-
ator A in (8.6.1) as a self-adjoint extension of the orthogonal sum of the minimal

operators T±
min and to compare A with the orthogonal sum ÃD in (8.6.3) using a

Krĕın type resolvent formula.

From now on it is assumed that η < essinfV is fixed, so that, in particular,
η ∈ ρ(A+

D) ∩ ρ(A−
D) ∩ R. Consider the boundary triplet {L2(C),Γ+

0 ,Γ
+
1 } for T+

max

in Theorem 8.4.1, that is,

Γ+
0 f+ = ι−τ̃+D f+ and Γ+

1 f+ = −ι+τ
+
N fD,+, f+ ∈ domT+

max,

where f+ = fD,+ + fη,+ with fD,+ ∈ domA+
D and fη,+ ∈ Nη(T

+
max). In the same

way as in the proof of Theorem 8.4.1 one verifies that {L2(C),Γ−
0 ,Γ

−
1 }, where

Γ−
0 f− = ι−τ̃−D f− and Γ−

1 f− = −ι+τ
−
N fD,−, f− ∈ domT−

max,

where f− = fD,−+ fη,− with fD,− ∈ domA−
D and fη,− ∈ Nη(T

−
max), is a boundary

triplet for T−
max such that domA−

D = ker Γ−
0 . The γ-fields and Weyl functions

in Proposition 8.4.4 corresponding to the boundary triplets {L2(C),Γ±
0 ,Γ

±
1 } are

denoted by γ± and M±, respectively.
In analogy to Section 4.6, the orthogonal coupling of the boundary triplets

{L2(C),Γ+
0 ,Γ

+
1 } and {L2(C),Γ−

0 ,Γ
−
1 } leads to the boundary triplet{

L2(C)⊕ L2(C), Γ̃0, Γ̃1

}
(8.6.4)

for the orthogonal sum Tmax := T+
max ⊕̂ T−

max of the maximal operator T±
max, where

Γ̃0f =

(
Γ+
0 f+

Γ−
0 f−

)
=

(
ι−τ̃+D f+
ι−τ̃−D f−

)
, f =

(
f+
f−

)
, f± ∈ domT±

max, (8.6.5)

and

Γ̃1f =

(
Γ+
1 f+

Γ−
1 f−

)
=

(−ι+τ
+
N fD,+

−ι+τ
−
N fD,−

)
, f =

(
f+
f−

)
, f± ∈ domT±

max. (8.6.6)

It is clear that

domA+
D × domA−

D = ker Γ̃0,
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and hence the self-adjoint operator in (8.6.3) coincides with the self-adjoint ex-

tension of Tmin := T+
min ⊕̂ T−

min corresponding to the boundary condition ker Γ̃0.

Note also that the corresponding γ-field γ̃ and Weyl function M̃ have the form

γ̃(λ) =

(
γ+(λ) 0

0 γ−(λ)

)
and M̃(λ) =

(
M+(λ) 0

0 M−(λ)

)
(8.6.7)

for λ ∈ ρ(A+
D) ∩ ρ(A−

D).

In Lemma 8.6.2 it will be shown that a certain relation Θ̃ is self-adjoint in
L2(C) ⊕ L2(C). This relation will turn out to be the boundary parameter that
corresponds to the Schrödinger operator A in (8.6.1) via the boundary triplet
(8.6.4). The following lemma on the sum of the Dirichlet-to-Neumann maps is
preparatory.

Lemma 8.6.1. Let η < essinfV and let D±(λ) : H3/2(C) → H1/2(C) be the
Dirichlet-to-Neumann maps as in Definition 8.3.6 corresponding to −Δ + V±.
Then for all λ ∈ C \ [η,∞) the operator

D+(λ) +D−(λ) : H3/2(C) → H1/2(C) (8.6.8)

is bijective.

Proof. First it will be shown that the operator in (8.6.8) is injective. Assume that
(D+(λ)+D−(λ))ϕ = 0 for some ϕ ∈ H3/2(C) and some λ ∈ C\ [η,∞). Then there
exist fλ,± ∈ H2(Ω±) such that

(−Δ+ V±)fλ,± = λfλ,±, τ+D fλ,+ = τ−D fλ,− = ϕ, (8.6.9)

and

0 =
(
D+(λ) +D−(λ)

)
ϕ =

(
D+(λ) +D−(λ)

)
τ±D fλ,± = τ+N fλ,+ + τ−N fλ,−.

As τ+D fλ,+ = τ−D fλ,− and τ+N fλ,+ = −τ−N fλ,− this implies that

fλ =

(
fλ,+
fλ,−

)
∈ H2(Rn). (8.6.10)

In fact, for each h = (h+, h−)� ∈ domA = H2(Rn) one also has τ+D h+ = τ−D h−
and τ+N h+ = −τ−N h− (note that the different signs are due to the fact that the
Neumann trace on each domain is taken with respect to the outward normal
vector) and hence

(Ah,fλ)L2(Rn) − (h, Tmaxfλ)L2(Rn)

= (T+
maxh+, fλ,+)L2(Ω+) − (h+, T

+
maxfλ,+)L2(Ω+)

+ (T−
maxh−, fλ,−)L2(Ω−) − (h−, T−

maxfλ,−)L2(Ω−)

= (τ+D h+, τ
+
N fλ,+)L2(C) − (τ+N h+, τ

+
D fλ,+)L2(C)

+ (τ−D h−, τ−N fλ,−)L2(C) − (τ−N h−, τ−D fλ,−)L2(C)

= 0.
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As the operator A is self-adjoint this shows, in particular, fλ ∈ domA and hence
(8.6.10) holds. Furthermore, from (8.6.9) it follows that

Afλ = (−Δ+ V )fλ = λfλ.

Since σ(A) ⊂ [v−,∞) ⊂ [η,∞) and λ ∈ C \ [η,∞), this implies that fλ = 0 and
hence ϕ = τ±D fλ,± = 0. Thus, it has been shown that the operator in (8.6.8) is
injective for all λ ∈ C \ [η,∞).

Next it will be shown that the operator in (8.6.8) is surjective. For this
consider the space

HC(Rn) :=

{
f =

(
f+
f−

)
: f± ∈ H2(Ω±), τ+D f+ = τ−D f−

}
and observe that as a consequence of (8.2.12) the mapping

τCN : HC(Rn) → H1/2(C), f �→ τCNf := τ+N f+ + τ−N f−,

is surjective. For λ ∈ C \ [η,∞) it will be shown now that the direct sum decom-
position

HC(Rn) = domA+

{
fλ =

(
fλ,+
fλ,−

)
:
fλ,± ∈ H2(Ω±), τ+D fλ,+ = τ−D fλ,−,

(−Δ+ V±)fλ,± = λfλ,±

}
holds. In fact, the inclusion (⊃) is clear since domA = H2(Rn) and the second
summand on the right-hand side is obviously contained in HC(Rn). The inclusion
(⊂) follows from Theorem 1.7.1 applied to T = −Δ+ V , domT = HC(Rn), after
observing that the space{

fλ =

(
fλ,+
fλ,−

)
:
fλ,± ∈ H2(Ω±), τ+D fλ,+ = τ−D fλ,−,

(−Δ+ V±)fλ,± = λfλ,±

}
(8.6.11)

coincides with Nλ(T ) = ker (T −λ) and λ ∈ ρ(A). Note also that λ ∈ ρ(A) implies
that the sum is direct.

Next observe that for f ∈ domA one has τCNf = 0 and hence also the restric-
tion of τCN to the space (8.6.11) maps onto H1/2(C). Therefore, for ψ ∈ H1/2(C)
there exists fλ = (fλ,+, fλ,−)� such that fλ,± ∈ H2(Ω±), (−Δ+V±)fλ,± = λfλ,±,

τ+D fλ,+ = τ−D fλ,− =: ϕ ∈ H3/2(C) and τCNfλ = τ+N fλ,+ + τ−N fλ,− = ψ.

It follows that(
D+(λ) +D−(λ)

)
ϕ = D+(λ)τ

+
D fλ,+ +D−(λ)τ−D fλ,− = τ+N fλ,+ + τ−N fλ,− = ψ,

and hence the operator in (8.6.8) is surjective.

Consequently, it has been shown that (8.6.8) is a bijective operator for all
λ ∈ C \ [η,∞). �
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Lemma 8.6.1 will be used to prove the following lemma on the self-adjointness
of a particular relation Θ̃ in L2(C)⊕ L2(C).

Lemma 8.6.2. Let η < essinfV and let D±(η) : H3/2(C) → H1/2(C) be the
Dirichlet-to-Neumann maps as in Definition 8.3.6 corresponding to −Δ + V±.
Then the relation

Θ̃ =

{{(
ξ
ξ

)
,

(
ϕ
ψ

)}
: ξ ∈ H2(C), ϕ+ ψ = ι+

(
D+(η) +D−(η)

)
ι−1
− ξ

}
is self-adjoint in L2(C)⊕ L2(C).

Proof. Recall first from Example 8.4.7 that ι+D+(η)ι
−1
− and ι+D−(η)ι−1

− are both
unbounded bijective self-adjoint operators in L2(C) with domain H2(C). Since
η < essinfV , one also sees from (8.4.18) that these operators are nonnegative.
It follows, in particular, that ι+(D+(η) + D−(η))ι−1

− is a symmetric operator in
L2(C). Since

D+(η) +D−(η) : H3/2(C) → H1/2(C)

is bijective by Lemma 8.6.1 and the restricted operators ι−1
− : H2(C) → H3/2(C)

and ι+ : H1/2(C) → L2(C) are also bijective, one concludes that

ι+(D+(η) +D−(η))ι−1
− (8.6.12)

is a uniformly positive self-adjoint operator in L2(C) defined on H2(C).

To show that Θ̃ ⊂ Θ̃∗, consider two arbitrary elements{(
ξ
ξ

)
,

(
ϕ
ψ

)}
,

{(
ξ′

ξ′

)
,

(
ϕ′

ψ′

)}
∈ Θ̃,

that is, ξ, ξ′ ∈ H2(C),

ϕ+ ψ = ι+
(
D+(η) +D−(η)

)
ι−1
− ξ and ϕ′ + ψ′ = ι+

(
D+(η) +D−(η)

)
ι−1
− ξ′.

Then one computes((
ξ
ξ

)
,

(
ϕ′

ψ′

))
(L2(C))2

−
((

ϕ
ψ

)
,

(
ξ′

ξ′

))
(L2(C))2

= (ξ, ϕ′ + ψ′)L2(C) − (ϕ+ ψ, ξ′)L2(C)

=
(
ξ, ι+

(
D+(η) +D−(η)

)
ι−1
− ξ′

)
L2(C)

− (
ι+

(
D+(η) +D−(η)

)
ι−1
− ξ, ξ′

)
L2(C)

= 0,

where in the last step it was used that (8.6.12) is a symmetric operator in L2(C).

Hence, the relation Θ̃ is symmetric in L2(C). For the opposite inclusion Θ̃∗ ⊂ Θ̃
consider an element {(

α
β

)
,

(
γ
δ

)}
∈ Θ̃∗, (8.6.13)
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that is, ((
α
β

)
,

(
ϕ
ψ

))
(L2(C))2

=

((
γ
δ

)
,

(
ξ
ξ

))
(L2(C))2

(8.6.14)

holds for all {(
ξ
ξ

)
,

(
ϕ
ψ

)}
∈ Θ̃.

The special choice ξ = 0 yields ϕ + ψ = 0 by the definition of Θ̃ and hence
(α − β, ϕ)L2(C) = 0 for all ϕ ∈ L2(C). This shows α = β and therefore (8.6.14)
becomes(

α, ι+
(
D+(η) +D−(η)

)
ι−1
− ξ

)
L2(C)

= (α,ϕ+ ψ)L2(C) = (γ + δ, ξ)L2(C)

for all ξ ∈ H2(C). Since ι+(D+(η) +D−(η))ι−1
− is a self-adjoint operator in L2(C)

defined on H2(C), it follows that α ∈ H2(C) and

ι+
(
D+(η) +D−(η)

)
ι−1
− α = γ + δ.

This implies that the element in (8.6.13) belongs to Θ̃. Thus, Θ̃ is a self-adjoint
relation in L2(C)⊕ L2(C). �

The following theorem is the main result in this section. It turns out that
the self-adjoint operator corresponding to Θ̃ in Lemma 8.6.2 coincides with the
Schrödinger operator A.

Theorem 8.6.3. Let {L2(C)⊕L2(C),Γ̃0,Γ̃1} be the boundary triplet for T+
max ⊕̂T−

max

from (8.6.4) with γ-field γ̃, let Θ̃ be the self-adjoint relation in Lemma 8.6.2, and
let D±(λ) be the Dirichlet-to-Neumann maps corresponding to −Δ + V±. Then

the self-adjoint operator ÃΘ̃ corresponding to the parameter Θ̃ coincides with the
Schrödinger operator A in (8.6.1) and for all λ ∈ C \ [η,∞) one has the resolvent
formula

(A− λ)−1 = (ÃD − λ)−1 + γ̃(λ)Λ̃(λ)γ̃(λ)∗,

where Λ̃(λ) ∈ B(L2(C)⊕ L2(C)) has the form

Λ̃(λ) =

(
ι−(D+(λ) +D−(λ))−1ι−1

+ ι−(D+(λ) +D−(λ))−1ι−1
+

ι−(D+(λ) +D−(λ))−1ι−1
+ ι−(D+(λ) +D−(λ))−1ι−1

+

)
.

Proof. First it will be shown that the self-adjoint extension ÃΘ̃ and the self-adjoint
Schrödinger operator A in (8.6.1) coincide. Since both operators are self-adjoint,

it suffices to verify the inclusion A ⊂ ÃΘ̃. For this, consider f ∈ domA = H2(Rn)
and note that f = (f+, f−)� satisfies τ+D f+ = τ−D f− and τ+N f+ = −τ−N f−. It will
be shown that {Γ̃0f, Γ̃1f} ∈ Θ̃. By the definition of the boundary mappings Γ̃0

and Γ̃1 in (8.6.5)–(8.6.6), one has

Γ̃0f =

(
ι−τ̃+D f+
ι−τ̃−D f−

)
and Γ̃1f =

(−ι+τ
+
N fD,+

−ι+τ
−
N fD,−

)
=:

(
ϕ
ψ

)
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and, as f ∈ H2(Rn), it follows that

ξ := ι−τ+D f+ = ι−τ̃+D f+ = ι−τ̃−D f− = ι−τ−D f− ∈ H2(C).

Since f± = fD,± + fη,± with fD,± ∈ domA±
D and fη,± ∈ Nη(T

±
max), one has

τ±D f± = τ±D fη,± and one concludes that

ι+
(
D+(η) +D−(η)

)
ι−1
− ξ = ι+

(
D+(η)τ

+
D fη,+ +D−(η)τ−D fη,−

)
= ι+

(
τ+N fη,+ + τ−N fη,−

)
= ι+

(
τ+N f+ + τ−N f− − τ+N fD,+ − τ−N fD,−

)
= −ι+τ

+
N fD,+ − ι+τ

−
N fD,−

= ϕ+ ψ,

where the property τ+N f+ = −τ−N f− for f ∈ domA was used. These considerations

imply {Γ̃0f, Γ̃1f} ∈ Θ̃ and thus f ∈ dom ÃΘ̃. Therefore, domA = H2(Rn) is

contained in dom ÃΘ̃, and since both operators are self-adjoint, it follows that

they coincide, that is, A = ÃΘ̃.

As a consequence of Theorem 2.6.1 one has for λ ∈ ρ(A) ∩ ρ(ÃD) that

(A− λ)−1 = (ÃD − λ)−1 + γ̃(λ)
(
Θ̃− M̃(λ)

)−1
γ̃(λ)∗,

where γ̃ and M̃ are the γ-field and Weyl function, respectively, of the boundary
triplet {L2(C)⊕L2(C), Γ̃0, Γ̃1} in (8.6.7). Here it is also clear from Theorem 2.6.1
that (

Θ̃− M̃(λ)
)−1 ∈ B(L2(C)⊕ L2(C)), λ ∈ ρ(A) ∩ ρ(ÃD).

From now consider only λ ∈ C \ [η,∞). It follows from Lemma 8.6.2 and (8.6.7)
that (

Θ̃− M̃(λ)
)−1

=

{{(
ϕ−M+(λ)ξ
ψ −M−(λ)ξ

)
,

(
ξ
ξ

)}
:

ξ ∈ H2(C),
ϕ+ ψ = ι+

(
D+(η) +D−(η)

)
ι−1
− ξ

}
,

and setting ϑ1 = ϕ−M+(λ)ξ and ϑ2 = ψ −M−(λ)ξ one obtains

ϑ1 + ϑ2 = ϕ+ ψ −M+(λ)ξ −M−(λ)ξ

= ι+
(
D+(η) +D−(η)

)
ι−1
− ξ −M+(λ)ξ −M−(λ)ξ.

Since M±(λ)ξ = ι+(D±(η)−D±(λ))ι−1
− ξ for ξ ∈ H2(C) by Lemma 8.4.5, it follows

that
ϑ1 + ϑ2 = ι+

(
D+(λ) +D−(λ)

)
ι−1
− ξ.

Lemma 8.6.1 implies that ι+(D+(λ) +D−(λ))ι−1
− is a bijective operator in L2(C)

for λ ∈ C \ [η,∞) and hence

ι−
(
D+(λ) +D−(λ)

)−1
ι−1
+ ϑ1 + ι−

(
D+(λ) +D−(λ)

)−1
ι−1
+ ϑ2 = ξ.
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Therefore, one has(
Θ̃− M̃(λ)

)−1
=

(
ι−(D+(λ) +D−(λ))−1ι−1

+ ι−(D+(λ) +D−(λ))−1ι−1
+

ι−(D+(λ) +D−(λ))−1ι−1
+ ι−(D+(λ) +D−(λ))−1ι−1

+

)
.

This completes the proof of Theorem 8.6.3. �

Finally, the boundary triplet in (8.6.4) is modified in the same way as in
Proposition 4.6.4 to interpret the Schrödinger operator A as the self-adjoint ex-
tension corresponding to the boundary mapping Γ̂0. More precisely, the boundary
triplets {L2(C),Γ+

0 ,Γ
+
1 } and {L2(C),Γ−

0 ,Γ
−
1 } lead to the boundary triplet{

L2(C)⊕ L2(C), Γ̂0, Γ̂1

}
(8.6.15)

for Tmax = T+
max ⊕̂ T−

max, where

Γ̂0f =

(−Γ+
1 f+ − Γ−

1 f−
Γ+
0 f+ − Γ−

0 f−

)
=

(
ι+(τ

+
N fD,+ + τ−N fD,−)

ι−(τ̃+D f+ − τ̃−D f−)

)
and

Γ̂1f =

(
Γ+
0 f+

−Γ−
1 f−

)
=

(
ι−τ̃+D f+
ι+τ

−
N fD,−

)
for f = (f+, f−)� with f± ∈ domT±

max. It follows from Proposition 4.6.4 that the
Schrödinger operator A = −Δ+V in (8.6.1) coincides with the self-adjoint exten-

sion defined on ker Γ̂0 and that the Weyl function corresponding to the boundary
triplet in (8.6.15) is given by

M̂(λ) = −
(
M+(λ) −I
−I −M−(λ)−1

)−1

, λ ∈ C \ R,

where M±(λ) = ι+(D̃±(η) − D̃±(λ))ι−1
− is the Weyl function corresponding to

the boundary triplet {L2(C),Γ±
0 ,Γ

±
1 }; cf. Proposition 8.4.4 and Lemma 8.4.5. In

particular, the results in Section 3.5 and Section 3.6 can be used to describe the
isolated and embedded eigenvalues, continuous, and absolutely continuous spec-
trum of A with the help of the limit properties of the Dirichlet-to-Neumann maps
D̃±. For this, however, one has to ensure that the underlying minimal operator
Tmin = T+

min ⊕̂ T−
min is simple, which follows from Proposition 8.3.13 and [120,

Proposition 2.2].

8.7 Bounded Lipschitz domains

In this last section Schrödinger operators −Δ+V with a real function V ∈ L∞(Ω)
on bounded Lipschitz domains are briefly discussed. This situation is more general
than the setting of bounded C2-domains treated in the previous sections. The main
objective here is to highlight the differences to the C2-case and to indicate which
methods have to be adapted in order to obtain results of similar nature as above.
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The notions of a Lipschitz hypograph and a bounded Lipschitz domain are
defined in the same way as C2-hypographs and bounded C2-domains in Section 8.2.
More precisely, for a Lipschitz continuous function φ : Rn−1 → R the domain

Ωφ :=
{
(x′, xn)

� ∈ Rn : xn < φ(x′)
}

is called a Lipschitz hypograph with boundary ∂Ω. The surface integral and surface
measure on ∂Ωφ are defined in the same way as in (8.2.4), and this leads to the
L2-space L2(∂Ωφ) on ∂Ωφ. For s ∈ [0, 1] define the Sobolev space of order s on
∂Ωφ by

Hs(∂Ωφ) :=
{
h ∈ L2(∂Ωφ) : x

′ �→ h(x′, φ(x′)) ∈ Hs(Rn−1)
}

and equip Hs(∂Ωφ) with the corresponding scalar product (8.2.6).

Definition 8.7.1. A bounded nonempty open subset Ω ⊂ Rn is called a Lipschitz
domain if there exist open sets U1, . . . , Ul ⊂ Rn and (possibly up to rotations of
coordinates) Lipschitz hypographs Ω1, . . . ,Ωl ⊂ Rn, such that

∂Ω ⊂
l⋃

j=1

Uj and Ω ∩ Uj = Ωj ∩ Uj , j = 1, . . . , l.

For a bounded Lipschitz domain Ω ⊂ Rn the boundary ∂Ω ⊂ Rn is compact.
Using a partition of unity subordinate to the open cover {Uj} of ∂Ω one defines
the surface integral, surface measure, and the L2-space L2(∂Ω) in the same way
as in Section 8.2. The Sobolev space Hs(∂Ω) for s ∈ [0, 1] is then defined by

Hs(∂Ω) :=
{
h ∈ L2(∂Ω) : ηjh ∈ Hs(∂Ωj), j = 1, . . . , l

}
and equipped with the corresponding Hilbert space scalar product (8.2.7). It fol-
lows that Hs(∂Ω), s ∈ [0, 1], is densely and continuously embedded in L2(∂Ω), and
the embedding Ht(∂Ω) ↪→ Hs(∂Ω) is compact for s < t ≤ 1. As in Section 8.2, the
spaces Hs(∂Ω), s ∈ [0, 1], can be defined in an equivalent way via interpolation.
The dual space of the antilinear continuous functionals on Hs(∂Ω) is denoted by
H−s(∂Ω), s ∈ [0, 1].

For a bounded Lipschitz domain Ω define the spaces

Hs
Δ(Ω) :=

{
f ∈ Hs(Ω) : Δf ∈ L2(Ω)

}
, s ≥ 0,

and equip them with the Hilbert space scalar product

(f, g)Hs
Δ(Ω) := (f, g)Hs(Ω) + (Δf,Δg)L2(Ω), f, g ∈ Hs

Δ(Ω). (8.7.1)

It is clear that Hs(Ω) = Hs
Δ(Ω) for s ≥ 2 and that H0

Δ(Ω) = domTmax for s = 0,
with (8.7.1) as the graph norm; cf. (8.3.3). The unit normal vector field pointing
outwards on ∂Ω will again be denoted by ν. It is known that the Dirichlet trace
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mapping C∞(Ω) � f �→ f |∂Ω extends by continuity to a continuous surjective
mapping

τD : Hs
Δ(Ω) → Hs−1/2(∂Ω),

1

2
≤ s ≤ 3

2
,

and that the Neumann trace mapping C∞(Ω) � f �→ ν · ∇f |∂Ω extends by conti-
nuity to a continuous surjective mapping

τN : Hs
Δ(Ω) → Hs−3/2(∂Ω),

1

2
≤ s ≤ 3

2
;

cf. [92, 326]. For the present purposes it is particularly useful to note that the
mappings

τD : H
3/2
Δ (Ω) → H1(∂Ω) and τN : H

3/2
Δ (Ω) → L2(∂Ω) (8.7.2)

are both continuous and surjective. Furthermore, the first and second Green iden-
tities remain true in the natural form, that is,

(−Δf, g)L2(Ω) = (∇f,∇g)L2(Ω;Cn) −
〈
τNf, τDg

〉
H−1/2(∂Ω)×H1/2(∂Ω)

and

(−Δf, g)L2(Ω) − (f,−Δg)L2(Ω)

=
〈
τDf, τNg

〉
H1/2(∂Ω)×H−1/2(∂Ω)

− 〈
τNf, τDg

〉
H−1/2(∂Ω)×H1/2(∂Ω)

hold for all f, g ∈ H1
Δ(Ω).

The minimal operator Tmin and maximal operator Tmax associated with
−Δ + V on a bounded Lipschitz domain are defined in exactly the same way
as in the beginning of Section 8.3. The assertions T ∗

min = Tmax and Tmin = T ∗
max in

Proposition 8.3.1 remain valid in the present situation. Furthermore, the Dirich-
let realization AD and Neumann realization AN of −Δ + V are defined as in
Section 8.3, and their properties are the same as in Proposition 8.3.2 and Proposi-
tion 8.3.3. The first remarkable and substantial difference for Schrödinger operators
on a bounded Lipschitz domain appears in connection with the regularity of the
domains of AD and AN when comparing with Theorem 8.3.4. In the present case
one has the following regularity result from [431, 432], see also [92, 323].

Theorem 8.7.2. Assume that Ω ⊂ Rn is a bounded Lipschitz domain. Then one
has

ADf = −Δf + V f, domAD =
{
f ∈ H

3/2
Δ (Ω) : τDf = 0

}
,

and
ANf = −Δf + V f, domAN =

{
f ∈ H

3/2
Δ (Ω) : τNf = 0

}
.

The same reasoning as in Section 8.3 one obtains the following useful decom-

position of the space H
3/2
Δ (Ω).
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Corollary 8.7.3. Assume that Ω ⊂ Rn is a bounded Lipschitz domain. Then for
λ ∈ ρ(AD) one has the direct sum decomposition

H
3/2
Δ (Ω) = domAD +

{
fλ ∈ H

3/2
Δ (Ω) : (−Δ+ V )fλ = λfλ

}
= ker τD +

{
fλ ∈ H

3/2
Δ (Ω) : (−Δ+ V )fλ = λfλ

}
,

and for λ ∈ ρ(AN) one has the direct sum decomposition

H
3/2
Δ (Ω) = domAN +

{
fλ ∈ H

3/2
Δ (Ω) : (−Δ+ V )fλ = λfλ

}
= ker τN +

{
fλ ∈ H

3/2
Δ (Ω) : (−Δ+ V )fλ = λfλ

}
.

For a bounded Lipschitz domain and λ ∈ ρ(AD) the Dirichlet-to-Neumann
map is defined as

D(λ) : H1(∂Ω) → L2(∂Ω), τDfλ �→ τNfλ, (8.7.3)

where fλ ∈ H
3/2
Δ (Ω) is such that (−Δ+V )fλ = λfλ. This definition is the natural

analog of Definition 8.3.6, taking into account the decomposiion in (8.7.3). As
before, it follows that for λ ∈ ρ(AD)∩ρ(AN) the Dirichlet-to-Neumann map (8.7.3)
is a bijective operator.

For completeness the following a priori estimates are stated.

Corollary 8.7.4. Assume that Ω ⊂ Rn is a bounded Lipschitz domain. Then there
exist constants CD > 0 and CN > 0 such that

‖f‖
H

3/2
Δ (Ω)

≤ CD

(‖f‖L2(Ω) + ‖ADf‖L2(Ω)

)
, f ∈ domAD,

and
‖g‖

H
3/2
Δ (Ω)

≤ CN

(‖g‖L2(Ω) + ‖ANg‖L2(Ω)

)
g ∈ domAN.

Next a variant of Theorem 8.3.9 and Theorem 8.3.10 on the extensions of
the Dirichlet and Neumann trace operators to dom Tmax = H0

Δ(Ω) for bounded
Lipschitz domains is formulated. For this consider the spaces

G0 :=
{
τDf : f ∈ domAN

}
and G1 :=

{
τNg : g ∈ domAD

}
, (8.7.4)

and note that for the special case of a bounded C2-domain the spaces G0 and G1

coincide with the spaces H3/2(∂Ω) and H1/2(∂Ω), respectively. The spaces G0 and
G1 are dense in L2(∂Ω) and, equipped with the scalar products

(ϕ,ψ)G0
:= (Σ−1/2ϕ,Σ−1/2ψ)L2(∂Ω), Σ = Im (D(i)−1),

(ϕ,ψ)G1 := (Λ−1/2ϕ,Λ−1/2ψ)L2(∂Ω), Λ = −ImD(i),
(8.7.5)

they are Hilbert spaces, as was shown in [92, 115]; here both Σ−1/2 and Λ−1/2 are
unbounded nonnegative self-adjoint operators in L2(∂Ω). The corresponding dual
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spaces of antilinear continuous functionals are denoted by G ′
0 and G ′

1, respectively,
and one obtains Gelfand triples {Gi, L

2(∂Ω),G ′
i }, i = 0, 1, which serve as the

counterparts of {Hs(∂Ω), L2(∂Ω), Hs(∂Ω)}, s = 1/2, 3/2. Now one can prove the
variant of Theorem 8.3.9 and Theorem 8.3.10 alluded to above.

Theorem 8.7.5. Assume that Ω ⊂ Rn is a bounded Lipschitz domain. Then the
Dirichlet and Neumann trace operators in (8.7.2) admit unique extensions to con-
tinuous surjective operators

τ̃D : domTmax → G ′
1 and τ̃N : domTmax → G ′

0,

where domTmax is equipped with the graph norm. Furthermore,

ker τ̃D = ker τD = domAD and ker τ̃N = ker τN = domAN.

By analogy to Corollary 8.3.11, the second Green identity extends to elements
f ∈ domTmax and g ∈ domAD in the form

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω) = 〈τ̃Df, τNg〉G ′
1×G1

,

and for f ∈ domTmax and g ∈ domAN the second Green identity reads

(Tmaxf, g)L2(Ω) − (f, Tmaxg)L2(Ω) = −〈τ̃Nf, τDg〉G ′
0×G0

.

It will also be used that for λ ∈ ρ(AD) the Dirichlet-to-Neumann map in (8.7.3)
admits an extension to a bounded operator

D̃(λ) : G ′
1 → G ′

0, τ̃Dfλ �→ τ̃Nfλ, (8.7.6)

where fλ ∈ Nλ(Tmax).

With the preparations above one can now follow the strategy in Section 8.4
and construct a boundary triplet for the maximal operator Tmax under the as-
sumption that Ω ⊂ Rn is a bounded Lipschitz domain. Consider the Gelfand triple
{G1, L

2(∂Ω),G ′
1} and the corresponding isometric isomorphisms ι+ : G1 → L2(∂Ω)

and ι− : G ′
1 → L2(∂Ω) such that

〈ϕ,ψ〉G ′
1×G1

= (ι−ϕ, ι+ψ)L2(∂Ω), ϕ ∈ G ′
1, ψ ∈ G1;

cf. Lemma 8.1.2. When comparing (8.1.6) and (8.7.5) it is clear that ι+ = Λ−1/2

and ι− is the extension of Λ1/2 onto G ′
1. Recall also the definition and the properties

of the Dirichlet operator AD in Theorem 8.7.2 and the direct sum decomposition
(8.4.1).

Theorem 8.7.6. Let Ω ⊂ Rn be a bounded Lipschitz domain and let AD be the self-
adjoint Dirichlet realization of −Δ+ V in L2(Ω) in Theorem 8.7.2. Fix a number
η ∈ ρ(AD) ∩ R and decompose f ∈ domTmax according to (8.4.1) in the form
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f = fD + fη, where fD ∈ domAD and fη ∈ Nη(Tmax). Then {L2(∂Ω),Γ0,Γ1},
where

Γ0f = ι−τ̃Df and Γ1f = −ι+τNfD, f = fD + fη ∈ domTmax,

is a boundary triplet for (Tmin)
∗ = Tmax such that

A0 = AD and A1 = Tmin +̂ N̂η(Tmax).

The γ-field and Weyl function corresponding to the boundary triplet in The-
orem 8.7.6 are formally the same as in Proposition 8.4.4. In fact, if fη(ϕ) denotes
the unique element in Nη(Tmax) such that Γ0fη(ϕ) = ϕ, then for all λ ∈ ρ(AD)
the γ-field is given by

γ(λ)ϕ =
(
I + (λ− η)(AD − λ)−1

)
fη(ϕ), ϕ ∈ L2(∂Ω),

where fλ(ϕ) := γ(λ)ϕ is the unique element in Nλ(Tmax) such that Γ0fλ(ϕ) = ϕ.
As in Proposition 8.4.4 one also has

γ(λ)∗ = −ι+τN(AD − λ)−1, λ ∈ ρ(AD).

Moreover, the Weyl function M is given by

M(λ)ϕ = (η − λ)ι+τN(AD − λ)−1fη(ϕ), ϕ ∈ L2(∂Ω).

As in the case of bounded C2-domains, the Weyl function can be expressed via the
Dirichlet-to-Neumann map; here the extended mapping D̃(λ) in (8.7.6) is used. In
the same way as in Lemma 8.4.5 one verifies the relation

M(λ) = ι+
(
D̃(η)− D̃(λ)

)
ι−1
− .

With the boundary triplet {L2(∂Ω),Γ0,Γ1} in Theorem 8.7.6 and the cor-
responding γ-field and Weyl function the self-adjoint realizations of −Δ + V on
a bounded Lipschitz domain Ω ⊂ Rn can be parametrized and the spectral prop-
erties can be described in a similar form as in Section 8.4. The discussion of the
semibounded extensions and of the corresponding sesquilinear forms with the help
of a compatible boundary pair is parallel to the considerations in Section 8.5 and
is not provided here. Finally, the coupling technique of Schrödinger operators from
Section 8.6 also extends under appropriate modifications to the general situation
of Lipschitz domains.
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