
Chapter 2
Modeling Physical Systems

How can we use math to predict the behavior of physical systems? In this chapter we
cover principles for modeling physical systems; differential equations, with a focus
on Ordinary Differential Equations (ODEs); systems of equations; vector calculus;
one-, two- and three-dimensional mechanical systems (statics and dynamics); and
resistive and linear electric circuits.

2.1 Reconnecting with the Physical World

In Chapter 1 we explained how CPSs are ubiquitous in modern society. The systems
are closely coupled with the physical world. To understand these systems and to build
the skills required to develop new innovations we need to have some experience with
modeling physical systems. Often, it is the physical nature of the problem that will
either drive the solution or affect the extent to which a new product solves the given
problem.

The physical phenomena that are useful to model depend on the problem. For
different problems, we may wish to model physical, chemical, biological, economic,
or even social phenomena. While working on our solution, it can be very helpful
to consult specialized textbooks or research papers about modeling any particular
phenomena that seem to have a significant effect on the behavior of our system.

Physics has a particularly important role in the design of CPSs. It encompasses
mechanics, electromagnetics, optics, and thermodynamics, all of which are often
present even in the realization of the cyber (computational) components of a CPS.
Fortunately, understanding the basic principles for such systems can help us both in
analyzing real-world problems and in developing the “mathematical muscles” that
can help us to learn more about modeling on our own when required.
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20 2 Modeling Physical Systems

2.2 Conservation Laws

A theme in physical modeling is the presence of conservation laws. These laws are
the workhorse of the process of mathematical modeling, so, it is very useful to keep
an eye out for them. Examples from mechanical systems include:

• Conservation of energy.
• Conservation of momentum (translational and rotational).
• Conservation of mass.

The main example from electrical systems is:

• Conservation of current.

Deeper principles in physics allow us to connect some of the principles mentioned.
For example, the famous equation E = mc2 allows to connect energy and mass. For
us here, the importance of these principles stems from their utility in allowing us to
model and analyze physical systems.

2.3 Elements in Mechanical Systems

In addition to conservation laws, mechanical and physical systems will have standard
elements. Examples in a mechanical system include:

Mass The basic rule for a mass is F = ma, where F is force, m is mass, and a is
acceleration. Note that this is a second order differential equation, since a is really
x′′ (the second derivative of x), where x is the position. Note also that this equation
holds when we are in one, two, or three dimensions. In all cases, F and a are both
n-dimensional vectors where n is the dimension of the space we are working in, but
m always remains a scalar (single-dimensional) value.

Force (Including Gravity) Force is an element that can represent the basic
mechanical interaction between two objects. It is also involved in the basic rule
F = ma. For our purpose it can be through physical contact or the effect of gravity.

Lever This is an element that consists of a long rod balanced on a pivot, which
has two forces applied to it that would individually cause it to rotate in opposite
directions. The lever is in equilibrium if the torques around the pivot are equal. In
the case of the example shown in Figure 2.1, this means that

m1ga = m2gb. (2.1)

Interestingly, we can see gravity appears as a multiplier on both sides. This means
two things. First, in the rare situation where there is no gravity, and so, g = 0, the
equation holds for any masses and lengths. More practically, in non-zero gravity we
can divide both sides of the equation by g to get

m1a = m2b. (2.2)
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Fig. 2.1 Two masses m1 and m2 are placed on a rod balanced on a pivot. The distances to the
pivot, a and b, can be chosen so that the system is in equilibrium and does not move

Friction is a phenomena that generates a force that opposes the direction of
(potential) movement, and is usually proportional to a normal force that is normal
to the direction of the movement (often a surface along which another object is
moving). In the case of the example shown in Figure 2.2, the normal force would be
pointing upward.

Fig. 2.2 A box is pushed with a force FApplied to the right. A force Ffriction is acting in the opposite
direction. The gravitational force is negated by a normal force that points in the opposite direction

Spring The spring is a component that is modeled by Hooke’s law, which is
usually represented by the equation

F = −kx, (2.3)

where F is a force, x is a displacement relative to a neutral (natural) position for the
spring, and k is a (scalar) coefficient that relates these two values. Figure 2.3 illustrates
this behavior by presenting three instances of the same spring in equilibrium. In the
first case there is no mass attached; in the second, there is a single mass attached;
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in the third, there is a double-mass attached, leading to double the extension seen in
the middle example. It is important to note again that both the F and x quantities
can be n-dimensional, and that the k parameter is always a scalar.

Fig. 2.3 Illustration of Hooke’s law. If an object with mass 2m is attached to a spring, its length
increases twice as compared to when an object with mass m is attached to the spring

Damper A damper is a device that creates a force against the direction of move-
ment, and in proportion to the speed of the movement (compare this to friction
mentioned above). The rule for a damper therefore has the form

F = −kv, (2.4)

where F is a force, k is a constant, and v is a velocity. We use k for constants. Thus,
this is not the same constant as the one used in Hooke’s law, i.e., Equation (2.3).
The example shown in Figure 2.4 presents a combined example involving a mass, a
damper, a spring, and an external force. This example is one dimensional.



2.3 Elements in Mechanical Systems 23

Fig. 2.4 A system with both a damper and a spring. Dynamical behaviors of such systems will
attenuate over time and the system converges to a static configuration

Air Resistance This is a force created by air and applied to any object moving
through it. At slow speeds (much less than the speed of sound), we can view this
force as being proportional to the square of the speed. Thus, the formula can be
expressed in the one-dimensional case as

F = −kv · abs(v). (2.5)

We use the absolute value function abs in this manner to make sure that the resulting
value gives the force the right sign. Now, in the more general 3D-setting, the equation
would be expressed as follows:

F = −kv‖v‖, (2.6)

where ‖v‖ is the Euclidean norm of v. The reader can verify that (2.6) reduces to
(2.5) in the one-dimensional case.

Using these rules, we can model complex systems by writing the equations for
all of the individual components and solving (or simulating) them as a system of
equations.

A statics problem is one where the system components are not moving, and
nothing internal to the system can cause them to move. As an example, consider the
system shown in Figure 2.5. If we are told that this system is at rest, then we can write
an equation that relates m, g, k, x, and Fk. Given any three of these parameters, we
can determine the fourth. Also, given a relation between two of these parameters,
we can determine a relation between the other two.

The same system can become a dynamic system if we are told that at least one
part may be moving. For example, the mass m (at position x) may be moving, in
which case it would have speed x′ and acceleration x′′. The possibility of a non-zero
acceleration must now be factored into the equation, and it would involve g, k, x, x′,
and F . We will also generally need to know the position at some given time, such as
the position x(0) at time 0, in order to be able to solve the resulting equation.

A more involved example is the following configuration in Figure 2.6. For this
example, we can write a system of ODEs involving x1 and for x2, their derivatives
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Fig. 2.5 An object with mass m is attached to a spring. The gravitational force is acting on the
object but no air resistance is assumed

Fig. 2.6 A one-dimensional system involving two objects with masses m1 and m2, respectively.
The objects are connected via springs and dampers

and their second order derivatives. This system of equations provides a model which
we can analyze and simulate.

2.4 Working in 2D and 3D

For many physical systems, it is useful to reason about the mechanics in 3D. But
occasionally the problem can help us keep things simple, and we can work in 2D
or even 1D. When we need to work in 2D or 3D, the key insight required is how to
factor a single force or speed into multiple forces that are relevant to the equations for
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the components. In general, for such a factorization, basic trigonometric identities
will be very helpful. Consider the example in Figure 2.7. In this example, the normal

Fig. 2.7 A box with mass m is placed on a slope. A friction force given as a function of the normal
force is stopping the box from sliding down. However, when the inclination, given by the angle α,
is large, the friction force is not large enough to stop the box from sliding

force Fnormal is a determined by the gravitational force mg and would have to be
computed using the angle α. The value of Ffriction, in turn, would be determined by
the friction laws. A good source of examples of this type of analysis can be found at
physicsclassroom.com.

2.5 Elements in Electrical Systems

Standard elements in electrical systems include:
Resistor This is one of the most basic elements of an electric circuit. The current

I passing through this element has a direct relation to the voltage V across the
resistor. This relation is known as Ohm’s law, and is expressed mathematically as

V = IR, (2.7)

http://www.physicsclassroom.com/class/vectors/Lesson-3/Equilibrium-and-Statics
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where R is the resistance. The diagram in Figure 2.8 illustrates schematically a
situation where this relation should hold.

Fig. 2.8 The current I is passing through a resistor with resistance R

Capacitor This is an element where the voltage across is proportional to the
integral of the current going through the element. The diagram in Figure 2.9 includes
the schematic symbol for this kind of device in a circuit diagram. Alternatively, we
can say that the current is proportional to the rate of change of the voltage across it,
that is, V ′ = dV (t)/dt. Mathematically, this means that

I = CV ′, (2.8)

where the ratio C is called the capacitance. The higher the capacitance, the greater
the current needed to correspond to a small change in voltage.

Inductor This is an element where the rate of change in current, that is, I ′ =
dI(t)/dt, is proportional to the voltage across it. That is

V = LI ′, (2.9)

where the ratio L is called the inductance. The higher the inductance, the higher the
voltage we need to get the same rate of change in current. Figure 2.10 illustrates a
circuit involving an inductor.

Voltage Source A voltage source simply provides a voltage that is either fixed
(a direct current or DC source) or variable, in which case it may be an alternating
current (AC) source.

Current Source Like a voltage source, a current source provides a current that
may be fixed or variable, depending on the type of source.

As can be seen from the remarks above, each of these elements comes with a set
of equations that describes its effect on the system that it is used in. To analyze a
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Fig. 2.9 Circuit with a capacitor

Fig. 2.10 Circuit with an inductor

given circuit, these rules are applied, along with one or more instances of the basic
conservations laws for circuits, which are that:

• At any node (that is, region of the circuit that is connected and is not interrupted
by elements), the total in-going and outgoing current must be zero.

• Around any loop in the circuit (that is, any path through connected components
in the circuit) the total voltage differences experienced must be zero.

Several examples of this kind of analysis can be found online at this page by Erik
Cheevers (see also To Probe Further below).

http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA1.html
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2.6 The Absence or Presence of Time in a Model

In many important systems, it is possible to remove time out of the modeling process.
The study of mechanical systems where time is not involved is called “statics.”
Electrical systems that can be analyzed without need to consider time include circuits
made purely out of resistors and a constant source of voltage or current. Whether or
not we need to model time depends on

1. The type of components involved in the system,
2. The state of the system, and
3. The type of input that we are applying to the system.

For example, a mechanical system made of a lever, e.g., a teeter-totter, that is in
balance does not need a notion of time to be analyzed. Similarly, an electric circuit
made of resistors, capacitors, and inductors, and where all currents and voltages are
constant, can also be analyzed without reference to time. However, if the mechanical
system is not in balance or the circuit has a voltage changing over time, then time
needs to be taken into account.

2.7 Arithmetic Equations, and Linear and Non-linear Systems of
Equations

When we consider problems where there is no notion of time, we generally build
equations using arithmetic operations including addition, subtraction, multiplication,
and division. Equations that use only addition and subtraction (or multiplication/di-
vision by a constant) are called “linear equations,” and are generally relatively easy
to solve by hand when the number of variables involved is small.

Example 2.1 Consider the following set of equations:
x + y = 3
x − 3y = −1
Solve this equation for x and y.

Solution 2.1 This is a linear system of equation. A basic strategy for solving such
a system of equations is to convert one of the equations into a form where only one
of the variables appears on the left-hand side of the equal sign. Then substitute that
variable with the expression on the left-hand side in the remaining equation. The first
equation can be rewritten as x = 3−y when we subtract y from both sides. When we
substitute the right-hand side into the next equation we get (3−y)−3y = −1, which
simplifies to 3 − 4y = −1. By subtracting 3 from both sides we get −4y = −4.
Dividing both sides by −4 we get y = 1. Substituting that into x = 3 − y we get
x = 3 − 1 = 2.
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If we have equations where we multiply two different variables, or if we use
functions like exponentiation, logarithms, roots, or trigonometric functions for vari-
ables or values that depend on variables, then these equations are no longer linear.
Sometimes, it is possible to use a method similar to the one above to solve such
equations. In general, however, it is not possible. As a result, it is often necessary
to resort to iterative approximation methods to solve such equations, which can be
more computationally expensive (even when done by a computer).

2.8 Where Different Numbers Come from

It is helpful to note that the kinds of operations that we use in the equations actually
give rise to different classes of numbers. For example, the N (natural numbers),
Z (integer numbers), Q (rational numbers), A (algebraic numbers), and R (real
numbers) are the numbers that can express solutions to different kinds of problems.
In the order they were presented, these sets are larger and larger, and incorporate
more points. The set N = {1, 2, 3, . . .} is also referred to as the counting numbers.
The set Z contains N but also all numbers in N constructed by multiplied by −1 or
0, that is, besides N. The rational numbers are all numbers that can be written as a

b ,
where a ∈ Z and b ∈ N.

The algebraic numbers in the set A are solutions to equations like

xm = n (2.10)

and they require having inverse options like root(m, xm) = root(m, n) implies x =
root(m, n). The value computed by such a function is not in the set of natural
numbers N nor in the set of rational numbers Q, but is in a “new” set A.

2.9 Time-Dependent and Differential Equations

Because many components have time-dependent behavior, we will often need or-
dinary (as opposed to partial) differential equations to describe them. Ordinary
Differential Equations (ODEs) can be classified in several ways. One of the most im-
portant classifications is the distinction between linear and non-linear equations. In
the case of linear ODEs, the equations are linear in the variables and the derivatives
thereof. Linear ODEs usually have solutions only involving exponential or complex
exponential functions. By complex exponential functions we mean exponential func-
tions where the exponent has a complex number coefficient. According to Euler’s
identity, exponentials that have purely imaginary coefficients correspond to sine and
cosine functions. They are commonly used in connection with electrical circuits and
mechanical systems. It is very important to note that sine, cosine, and other functions
occur in the solutions but not in the equations themselves.

http://en.wikipedia.org/wiki/Euler%27s_formula
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Non-linear ODEs may have solutions that do not have a closed form (analytical)
representation. In such cases one usually has to rely on simulation and numerical
solutions, which is commonly done for mechanical systems and electronics circuits.
One could point out in this context that even though the solution is not expressible
in closed form, certain aspects of it could sometimes be deduced analytically. For
example one could prove that the solution will converge to a specific point as time
progresses (but not exactly how without simulation). This is something that goes
beyond the scope of this book.

Other types of differential equations exist apart from ODEs, such as Partial
Differential Equations (PDEs) and Integral Differential Equations (IDEs), but those
will also not be covered in this book. Our focus here is on ODEs with respect to time
and rigid body systems, with no flexible elements.

We will always use t as the variable for time, and we differentiate with respect
to time. We identify time with the real numbers R. For derivatives with respect to
time, we often see the notation dx/dt or dy/dt. Depending on the situation, we may
write the same equation as:

dx(t)/dt = 1 or
dx(t)

dt
= 1. (2.11)

Or more concisely as:

dx/dt = 1 or
dx

dt
= 1. (2.12)

Or even more concisely as:
x′ = 1. (2.13)

The notation in the last equation is the same as that in Acumen. Acumen is a small
modeling language and it is designed to be this way to let us learn a lot about
cyber-physical systems in this book.

2.10 Prototypes of Equations (That Will Recur Throughout
the Book)

The Acumen examples from Lab 1 are prototypes that represent important classes
of subproblems that can be used to solve a bigger problem. We will see examples of
these equations throughout the book.

In what follows, we discuss how these prototypes can be solved.
• x′ = 1, x(0) = x0.

Solved by taking definite integral from 0 to t to both sides: :
∫ t

0 x′ds =
∫ t

0 1ds
and this implies x(t) + k1 = t + k2 which in turn implies x(t) = t + k2 − k1.
Now we can use this equation and our initial assumption that x(0) = x0 to deduce
that k2 − k1 = x(0). Thus x(t) = t + x0.

https://en.wikipedia.org/wiki/Lyapunov_stability
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• x′′ = 1, x′(0) = v0, x(0) = x0.

Solved by applying the same procedure as the previous equation twice. In partic-
ular this is used in Newton’s law f = ma where a is the second derivative of x.
We assume that f is constant and consider the equation:

f

m
= x′′,

where f
m is chosen to be equal to 1 for simplicity.

∫ t

0 x′′ds =
∫ t

0 1ds and so
x′ = t + v0. We can now do the same trick to solve it:

∫ t

0 x′ds =
∫ t

0 (t + v0)ds,
which gives us x = t2/2 + v0t + x0. As an exercise, use this method to solve a
variation of this problem where x′′ = −9.8.

• x′ = x.

If we apply the same trick as in the previous examples and integrate both sides:∫ t

0 x′ds =
∫ t

0 xds, that is x(t)−x(0) =
∫ t

0 xds we cannot move forward because
we need to know x to be able to integrate it. The solution, if x(0) = 1, is the
exponential function x(t) = et, since its derivative is the function itself. The
function et describes exponential growth, present in applications such as bank in-
terest growth or bacteria population growth. The function e−t models exponential
decay, for example, radioactive isotope decay or capacity charge decay.

• x′′ = −x.

A solution, when x(0) = 0, is sin(t) (recall: sin′(t) = cos(t) and cos′(t) =
− sin(t)). Note that sin(t) is an exponential function with a complex coefficient.
An example modeled by this equation is a spring mass. Please see Harmonic
oscillator for a description. The equation arises from the description of the force
exercised by the spring: Remember that the force created by a spring is −kx
where x is the distance from the equilibrium part. The equation above would
arise if there is a mass m = 1 and a spring coefficient k = 1.

• x′′ = − sin(x).

sin(x) is a non-linear function, so this is an example of a non-linear ODE, where
we usually resort to simulation for evaluation of system behavior. This particular
equation is used to describe a pendulum pendulum.

http://en.wikipedia.org/wiki/Harmonic_oscillator
https://en.wikipedia.org/wiki/Pendulum_(mathematics)
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Key point from these examples is that x′ = 1 and x′′ = 1 have polynomial solu-
tions, whereas x′ = x and x′′ = −x have (real or complex) exponential solutions.

Example 2.2 Prove that the solution of x′ = x is NOT a polynomial of finite
order. Proof sketch: Assume that the solution is a polynomial of finite order, and the
highest nominal has power n. Derive a contradiction.

Exercise 2.2 Prove that the solution to x′′ = sin(x) is not an exponential function.

2.11 Remarks on the Basic Machinery for Solving Differential
Equations

In many cases we know how to solve a differential equation because we know what
function has that derivative. For example, consider the monomial tn+1. This is a
function of t that has the following derivative: d(t(n+1))/dt = (n + 1)tn.

Example 2.3 d(t2)/dt = 2t and d(t14)/dt = 14t13.
The linear property of differentiation states that if a and b are functions of time,

then d(a + b)/dt = d(a)/dt + d(b)/dt.
Example 2.4 The properties described above help us to compute derivatives by

hand. For example, we can use it to compute that d(t101 + t52)/dt = dt101/dt +
dt52/dt = 101t100 + 52t51.

Fundamental Theorem of Calculus
∫ B

A
f(t)dt = F (B) − F (A) where dF/dt

is f , (see Fundamental theorem of calculus).
Why Is the Fundamental Theorem of Calculus so Important for Us? There is

a common pattern in mathematics that is worth keeping in mind as we look at solving
differential equations. This pattern highlights the importance of inverse functions
in helping us solve equations. For example, if we are asked to solve for x in the
equation x + m = n, what do we do? Firstly we isolate x by applying the inverse
of +m, which is −m, to both sides of the equation. This means that we convert the
first equation to a new one: x + m − m = n − m. Then, we simplify it to get
x = n − m, and this last equation gives us the solution to this problem. A similar
thing happens with differential equations. Intuitively, the Fundamental Theorem of
Calculus is important because it tells us that there is a way in which integration is
essentially an inverse of differentiation. This means that it is often very useful to use
integration when solving differential equations.

Note on the Exponential Function Not only does it hold that (et)′ = et, but
also d(ket)/dt = kd(et)/dt = ket.

A generalization of x′ = x or x′ = −x is x′ = kx. This corresponds to the
generalization of the exponential function to ekt, for which we have d(ekt)/dt =
kekt.

http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
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2.12 Chapter Highlights

1. Overview of Modeling

(a) Basic physical phenomena
• Physics
• Chemical process
• Biological processes

(b) Characteristics of models’ physical phenomena
• Quantities are often real-valued
• Change is often continuous
• Usually enjoy conservation laws that are the key to modeling them!
• The equations we get will be:

– Either linear or non-linear
– Either without time (statics) or involving time (dynamics)

2. Mechanical Systems (Statics)

(a) Conservation laws: Force, Energy, Momentum
(b) Components: Mass, gravity, surface, friction, spring, pulleys
(c) Static Examples:

• A single mass with gravity
• A single mass with gravity, friction, and a lateral force
• A pile of masses
• A lever (teeter-totter)

(d) Laws for different components (like springs and pulleys)
(e) Conservation of force generalizes naturally in 1, 2, 3 dimensions

3. Electrical Systems (“Statics”)

(a) Conservation laws: Current, Voltage
(b) Components: Resistors, capacitors, and inductances

2.13 Study Problems

1. Modify the pendulum equation x′′ = − sin(x) to model air resistance on the
point mass as it moves. Assume a coefficient of 1 for the term that you introduce
to model air resistance. Modify the Acumen pendulum model used in the first lab
(Sect. 1.9) to show the behavior resulting from this modification.

2. Consider the mechanism in Figure 2.11.
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Fig. 2.11 An object with mass m is attached to a spring, which, in turn, is attached to the ceiling

Assume that all objects are sufficiently far from each other. In other words, you
do not have to worry about impacts.
Assume that there is a gravitational force g pulling the mass down, and that the
normal length for the spring is l0.

(a) Assume the usual spring law, and a coefficient k. Write the equations for x′′

and z′′ for the system.
(b) Assume that air resistance has an effect on the object with mass m as a

result of its movement. Assume a coefficient r for the effect of air resistance
on this mass. Write an updated version of the equations you wrote above to
reflect this effect.

(c) Instead of the usual spring force law, use the following modified law:

force = k(length − l0)3.

Write the equations for x′ and z′ for the system above.
(d) Assume that air resistance has an effect on the masses m as a result of its

movement. Assume coefficient r for the effect of air resistance on this mass.
Instead of the usual air resistance law, use the following modified law:

force = r(speed)3.

Write a modified version of the equations you wrote above to reflect this
effect.
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3. Consider the following simple system shown in Figure 2.12.

Fig. 2.12 An object with mass m is attached to two springs, which, in turn, is attached to the ceiling

The diagram depicts an 8 kg mass that is hanging from two springs. The mass
is subject to the effect of gravity. Assume g = 10 m/s2. The mass has no other
support than the springs (if they are removed, it falls). The springs are attached
to the ceiling. The distance between the box and the ceiling is 1 m. We denote
by kA and kB , the spring constants for spring A and spring B, respectively. The
system is static, meaning, it is stable and there is no movement. This means that
the springs are stretched, or extended so that they are each exerting a force.

(a) As expressions of the spring constants kA and kB , write the equations for
the x-component and the y-component of the forces acting on the mass.
Note the particular convention indicated above for axes.

(b) Determine the spring constants kA and kB .

4. Consider the impact of a ping pong ball with a flat floor.

(a) Assume that the ping pong ball is a point mass with position p = (x, y, z).
Assume that the floor has infinite mass, and is horizontal. Assume further a
coefficient of restitution of 0.8, meaning that the outgoing vertical speed is
0.8 of the incoming vertical speed. Write down an expression of p′ after the
impact in terms of p′ before the impact.

(b) Now assume that the floor can have any orientation, and that the normal unit
vector to the floor is N = (nx, ny, nz) that is orthogonal to the surface of
this floor. Note that a unit vector N has the property that ‖N‖ = 1. Write
down an expression for p′ after the impact in terms of p′ before impact.

(c) Now assume further that the floor has mass 5 kg and the ball has mass 2 kg,
and that the floor is not moving before impact. What is the speed p′ after
impact?
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5. Consider the following mechanism in Figure 2.13.

Fig. 2.13 A one-dimensional mechanism involving two objects and three springs

Let the normal (unstretched) length for the springs be zero. Let u1 and u2 be input
forces on each mass. Let x1 and x2 be the positions of the two masses labeled
m1 and m2 as measured from the left wall. Let the right wall be at position L
from the left wall. Assume the width of each mass is negligible (zero). Let k1, k2,
and k3 be the coefficients for the three springs. Assume that all objects remain
sufficiently far from each other and the two walls at all times (do not worry about
impacts).

(a) Write down an expression for the total force acting on each of the two
masses.

(b) Write the equations for x′′
1 and x′′

2 , taking into account the effects of the
external forces, the springs, and the inertia (mass).

(c) Assume u1 and u2 are zero. Write down an equation for x1 and x2 where the
system can be without any motion (that is, the system is in static equilibrium).

2.14 Lab: Spring Bouncing and Object Creation

The purpose of this lab is to introduce us to some key modeling challenges and
concepts that arise when we want to integrate both continuous and discrete dynamics.
This is a good preparation for the project work and for the coming chapter.
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A simple way to model a bouncing ball is that when it is away from the ground
it is in free fall, and when it is touching the ground it experiences a force that we
can view as the force of a spring with a high coefficient. We can call this the spring
bouncing model. The following idea can be expressed as follows:

model Main ( simulator ) =

initially
x = 10, x' = 0, x'' = 0

always
if (x > 0)
then x'' = -9.8

else x'' = -9.8 - 100 * x

Begin this lab by sketching out the expected plots for the variables x, x’, and x’’.
Then, run this simulation and compare it to the sketch that you had made.

An important Acumen construct used in the ping pong model is object creation.
Model definitions allow us to define a type of objects. For example, we can take out
parts of a model that relate to a ball from the model Main, which is a special model
representing the entire world that we are simulating, to a separate model. This would
lead to a model such as the following:

model ball (x0) =

initially
x = x0 , x' = 0, x'' = 0

always
if (x > 0)
then x'' = -9.8

else x'' = -9.8 - 100 * x

Now, we can easily create a world in which there are two different balls that start
at different heights as soon as the world that we are simulating starts. This is done
as follows:

model Main ( simulator ) =

initially
ball1 = create ball (10) ,
ball2 = create ball (20)
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For this lab, explore how to modify and test such a definition to: (1) how to model
the presence of a damping force during the process of bouncing (this is a force that
simply acts against the direction of movement), and (2) how we can introduce the
effect of air resistance to a model of a moving ball.

2.15 Project: Mascot and Ping Pong Game

There are two parts to this chapter’s project activities: Creating a mascot for your
ping pong player and familiarizing yourself with the ping pong model.
Part 1 Design a mascot for your player using Acumen. You should be able to do this
after you have finished going through all the examples in the 01_Introduction
directory of the Acumen distribution, and carrying out the exercises there. The
mascot should consist only of a Main class and should include a _3D statement that
creates the 3D form of your mascot. Once you have a good design you can consider
animating the mascot or making it act in a short animation (maximum 10 s). Some
examples of mascots and animations produced by past students can be found in the
following online video.
Part 2 The Acumen distribution comes with a default ping pong model that can
be used for the project. If you are using the book in the context of a course, your
instructor may provide a custom made version of that model. The ping pong model
is designed to illustrate:

1. Key modeling concepts that we need to know to develop almost any cyber-physical
system

2. Basic path planning (at an intuitive level)
3. Basics of control
4. Dealing with basic mechanical features of robots
5. Dealing with issues such as quantization and discretization
6. Basic game theory

If you are not already familiar with the game of ping pong, browse through the
article Table Tennis (ping pong) to familiarize yourself with it.

A good description of the model we will use for the project can be found in
Section 6.2 of Xu Fei’s Master’s Thesis. Characteristics of this model include:

1. Names of included files suggest their role
2. Names also suggest a relation between these components (in terms of data flow).

For example,

(a) Ball_Sensor processes Ball data going into Player
(b) Ball_Actuator processes signals going from Player to Bat

https://youtu.be/kkuJKhiT9sk
http://en.wikipedia.org/wiki/Table_tennis
http://hh.diva-portal.org/smash/get/diva2:815726/FULLTEXT02.pdf
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3. To learn the most from the physical modeling part of this model, it helps to do
some derivation yourself starting from a 1D model of a bouncing ball to build up
to a 3D. It is instructive to go over that model in detail to learn how vector and
vector calculus operations are supported in Acumen.
In the flying case, the aerodynamics part motivates the discussion of unit and
norm of vectors, and some identities between them (such as what is the value of
unit(p)*norm(p), for example).

4. Going over the Ball_Sensor model helps in understanding sampling and how
it can be modeled.

The initial model for ping pong that is used for the project can be found in the
following directory:

examples/01_CPS_Course/99_Ping_Pong/Tournament1
in the Acumen distribution. Read and make sure that you understand all the files in
this directory. The distribution also comes with default models for different stages
of the project (called tournaments in the implementation). If you are using this
textbook for a course, your instructor may also provide you with special editions
of these models more closely matching the goals of the course you are following.
Figure 2.14 depicts the way the ping pong model typically appears in Acumen.
Numbers associated with each players are scores, and the bars on the side indicate
remaining energy for the player. The white sphere is the ball itself, while the red and
cyan dots are values predictions/estimates made by each player about where the ball
will be at certain times. By modifying the default models provided you will both
develop the design of the robot player and control how different aspects of the design
are visualized in simulations.

Fig. 2.14 A typical view of ping pong model in Acumen
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2.16 To Probe Further

• The examples presented at physicsclassroom.com
• The page by Erik Cheevers
• Background on mathematics, and physics
• You are also encouraged to watch this lecture on Rigid Body Dynamics
• Khan Academy has a great collection on basic physics
• To dig deeper, consult as needed these basic technical references on differentiation

and integration, and on resistive circuit elements, analysis of resistive circuits,
and RLC circuit analysis

• Sections 6.1 and 6.2 of this draft of David Morin’s book on Classical Mechanics
• For fun, you may enjoy checking out this great illustration on the scale of the

universe
• Close et al.’s textbook on modeling and analysis of dynamic systems
• The Ethicist: A Heating Problem (Short article)
• Article about 17 Equations that Changed the World
• An example of a model that won a Nobel Prize: the Hodgkin-Huxkley model
• Check out Wolfram’s online Alpha tool
• Readers interested in more advanced methods for modeling mechanical systems

(beyond the scope of this book) may wish to consult the article Euler-Lagrange
Equation

• Much modeling and simulation aims at predicting the behavior of systems. NY
Review has an interesting article on three books on prediction
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