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Abstract. We study leakage-resilient continuously non-malleable secret
sharing, as recently introduced by Faonio and Venturi (CRYPTO 2019).
In this setting, an attacker can continuously tamper and leak from a tar-
get secret sharing of some message, with the goal of producing a modi-
fied set of shares that reconstructs to a message related to the originally
shared value. Our contributions are two fold.

– In the plain model, assuming one-to-one one-way functions, we show
how to obtain noisy-leakage-resilient continuous non-malleability for
arbitrary access structures, in case the attacker can continuously leak
from and tamper with all of the shares independently.

– In the common reference string model, we show how to obtain a
new flavor of security which we dub bounded-leakage-resilient continu-
ous non-malleability under selective k-partitioning. In this model, the
attacker is allowed to partition the target n shares into any number
of non-overlapping blocks of maximal size k, and then can continu-
ously leak from and tamper with the shares within each block jointly.
Our construction works for arbitrary access structures, and assuming
(doubly enhanced) trapdoor permutations and collision-resistant hash
functions, we achieve a concrete instantiation for k ∈ O(log n).

Prior to our work, there was no secret sharing scheme achieving continu-
ous non-malleability against joint tampering, and the only known scheme
for independent tampering was tailored to threshold access structures.
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1 Introduction

A non-malleable secret sharing for an access structure A over n parties allows
to share a secret message m into n shares s = (s1, . . . , sn), in such a way that
the following properties are guaranteed.

Privacy: No attacker given the shares belonging to an arbitrary unauthorized
subset U �∈ A of the players can infer any information on m.

Non-malleability: No attacker tampering with all of the shares via some func-
tion f ∈ F within some family of allowed1 modifications can generate a
mauled secret sharing s̃ = f(s) that reconstructs to m̃ �= m related to m.

Sometimes, non-malleability is considered together with leakage resilience. This
means that the attacker can additionally leak partial information g(s) from all
of the shares (via functions g ∈ G) before launching a tampering attack. Leakage
resilience typically comes in one of two flavors: bounded leakage (i.e,. there is a
fixed upper bound on the maximum amount of information retrieved from the
shares) or noisy leakage (i.e., the length of the retrieved information is arbitrary
as long as it does not decrease the entropy of the shares by too much).

In this work we focus on leakage-resilient continuous non-malleability with
adaptive concurrent reconstruction, as recently introduced by Faonio and
Venturi [19].2 Here, the attacker can (leak from and) tamper poly-many times
with a target secret sharing using functions f (q) ∈ F as above, and for each
tampering query q it can also choose adaptively the reconstruction set T (q) ∈ A
used to determine the reconstructed message. There are only two limitations:
First, the attacker is computationally bounded; second, the experiment stops
(we say it “self-destructs”) after the first tampering query yielding an invalid set
of shares. Both limitations are inherent for continuous non-malleability [6,19,20].

The only known scheme achieving such a strong flavor of non-malleability is
the one by Faonio and Venturi, which tolerates the families F and G of indepen-
dent tampering/leakage, i.e. for each query q we have f (q) = (f (q)

1 , . . . , f
(q)
n ) ∈ F

where f
(q)
i gets as input the i-th share (and similarly g(q) = (g(q)1 , . . . , g

(q)
n ) ∈ G).

The access structure A supported by their construction is the τ -threshold access
structure—i.e., any subset of at most τ players has no information about the
message—with the caveat that reconstruction works with at least τ + 2 shares,
namely a ramp secret sharing, thus leaving a minimal gap between the recon-
struction and privacy threshold. The following natural question arise:

Problem 1. Can we obtain leakage-resilient continuously non-malleable secret
sharing against independent leakage/tampering, for general access structures?

Another open question is whether leakage-resilient continuous non-
malleability is achievable for stronger tampering and leakage families F ,G, e.g.
in case the attacker can leak from and manipulate subsets of the shares jointly.
1 It is easy to see that non-malleability is impossible for arbitrary (polynomial-time)

tampering.
2 From now on, we omit to explicitly mention the feature of adaptive concurrent

reconstruction and simply talk about continuous non-malleability.
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Problem 2. Can we obtain leakage-resilient continuously non-malleable secret
sharing against joint leakage/tampering?

1.1 Our Contributions

We make significant progress towards solving the above problems. In particular,
our first contribution is a positive answer to Problem 1:

Theorem 1 (Informal). Assuming one-to-one one-way functions, for any
access structure A over n parties there exists a noisy-leakage-resilient continu-
ously non-malleable secret sharing scheme realizing A against independent leak-
age and tampering, in the plain model.

Our second contribution is a positive answer to Problem 2 assuming trusted
setup, in the form of a common reference string (CRS). More in details, we
put forward a new security notion for secret sharing dubbed continuous non-
malleability under selective k-partitioning. This roughly means that the attacker,
after seeing the CRS, must commit to a partition of the set [n] into β (non-
overlapping) blocks (B1, . . . ,Bβ) of size at most k; hence, the adversary can
jointly, and continuously, tamper with and leak from each collection sBi

of the
shares.3

Theorem 2 (Informal). Assuming (doubly-enhanced) trapdoor permutations
and collision-resistant hash functions, for any access structure A over n parties
there exists a bounded-leakage-resilient continuously non-malleable secret sharing
scheme realizing A against selective O(log n)-joint leakage and tampering in the
CRS model.

Prior to our work, we had secret sharing schemes unconditionally achieving
security either against joint leakage [29] or joint tampering [23,24], but nothing
was known for both even in the much simpler case of one-time non-malleability.

1.2 Related Work

Non-malleable secret sharing was introduced by Goyal and Kumar [23]. For any
τ ≤ n, they showed how to realize τ -threshold access structures, against one-time
tampering with either all of the shares independently, or jointly after partition-
ing the players into two non-overlapping blocks of size at most4 τ − 1. In a
subsequent work [24], the same authors show how to extend the result for inde-
pendent tampering to the case of arbitrary access structures; additionally, for
the case of joint tampering, they provide a new scheme realizing the n-threshold
access structure (i.e., an n-out-of-n secret sharing) in a stronger model where

3 The only restriction is that no block in the partition can contain an authorized set
of players, otherwise trivial attacks are possible.

4 An additional (artificial) requirement is that the size of the two blocks must be
different in order for their technique to work.
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the attacker can partition the players into two possibly overlapping blocks of
size at most n − 1. Srinivasan and Vasudevan [36] built the first non-malleable
secret sharing schemes for general access structures against independent tamper-
ing, with non-zero rate5 (in fact, even constant rate in case of threshold access
structures). Chattopadhyay et al. [9] construct non-malleable secret sharing for
threshold access structures, against affine tampering composed with joint split-
state tampering. Lin et al. [31] consider non-malleability against affine tampering
in an adaptive setting where the adversary gets to see an unauthorized subset
of the shares before launching a single tampering attack.

Badrinarayanan and Srinivasan [6] generalize non-malleability to p-time tam-
pering attacks, where p is an a-priori upper bound on the number of tampering
queries the adversary can ask. For each attempt, however, the reconstruction
set T must be chosen in advance at the beginning of the experiment. In this
model, they show how to realize arbitrary access structures against independent
tampering with all of the shares. Aggarwal et al. [2] were the first to consider
p-time non-malleability under non-adaptive concurrent reconstruction, i.e. the
attacker now can specify a different reconstruction set T (q) during the q-th tam-
pering query, although the sequence of sets T (1), . . . , T (p) must be chosen non-
adaptively. Kumar, Meka, and Sahai [29] pioneered bounded-leakage-resilient
one-time non-malleable secret sharing for general access structures, against inde-
pendent leakage and tampering with all of the shares.

In the special case of 2-threshold access structures overn = 2parties, the notion
of (leakage-resilient) non-malleable secret sharing collapses to that of split-state
(leakage-resilient) non-malleable codes [1,3–5,10,11,15,17,18,20,30,32,34].

Organization. All of our constructions rely on standard cryptographic primi-
tives, whichwe recall in Sect. 2 (togetherwith somebasic notation).The newmodel
of continuous tampering under selective partitioning is presented in Sect. 3.

Our main constructions appear in Sect. 4 (for joint tampering in the CRS
model) and Sects. 5–6 (for independent tampering in the plain model), respec-
tively; there, we also explain how to instantiate these constructions with concrete
building blocks, thus establishing Theorems 1 and 2. Finally, in Sect. 7, we con-
clude the paper with a list of open problems and interesting directions for further
research.

2 Standard Definitions

Basic Notation. For a string x, we denote its length by |x|; if X is a set, |X |
represents the number of elements in X . When x is chosen randomly in X , we
write x ←$ X . When A is a randomized algorithm, we write y ←$ A(x) to denote
a run of A on input x (and implicit random coins r) and output y; the value y is
a random variable, and A(x; r) denotes a run of A on input x and randomness r.
An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for

5 The rate refers to the asymptotic ratio between the maximal length of a share and
that of the message.
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any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial
number of steps (in the size of the input).

Negligible Functions. We denote with λ ∈ N the security parameter. A function
p is a polynomial, denoted p(λ) ∈ poly(λ), if p(λ) ∈ O(λc) for some constant
c > 0. A function ν : N → [0, 1] is negligible in the security parameter (or simply
negligible) if it vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) ∈
O(1/p(λ)) for all positive polynomials p(λ). We often write ν(λ) ∈ negl(λ) to
denote that ν(λ) is negligible.

Unless stated otherwise, throughout the paper, we implicitly assume that the
security parameter is given as input (in unary) to all algorithms.

Random Variables. For a random variable X, we write P[X = x] for the prob-
ability that X takes on a particular value x ∈ X (with X being the set where
X is defined). The statistical distance between two random variables X and
X′ defined over the same set X is defined as SD (X;X′) = 1

2

∑
x∈X |P[X =

x] − P[X′ = x]|.
Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to

denote that they are identically distributed, X ≈s Y to denote that they are
statistically close, i.e. SD (Xλ;X′

λ) ∈ negl(λ), and X ≈c Y to denote that they
are computationally indistinguishable, i.e., for all PPT distinguishers D:

|P[D(Xλ) = 1] − P[D(Yλ) = 1]| ∈ negl(λ).

We extend the notion of computational indistinguishability to the case of
interactive experiments (a.k.a. games) featuring an adversary A. In particular,
let GA(λ) be the random variable corresponding to the output of A at the end of
the experiment, where wlog. we may assume A outputs a decision bit. Given two
experiments GA(λ, 0) and GA(λ, 1), we write {GA(λ, 0)}λ∈N ≈c {GA(λ, 1)}λ∈N

as a shorthand for

|P[GA(λ, 0) = 1] − P[GA(λ, 1) = 1]| ∈ negl(λ).

The above naturally generalizes to statistical distance (in case of unbounded
adversaries). We recall a useful lemma from [12,16].

Lemma 1 ([12], Lemma 4). Let Oleak(x, g) be an oracle that upon input a
value x and a function g outputs g(x), and let X and Y be two independently
distributed random variables. For any adversary A, and for any value z, the dis-
tributions

(
X|z = AOleak(X,·),Oleak(Y,·)) and

(
Y|z = AOleak(X,·),Oleak(Y,·)) are inde-

pendently distributed.

Average Min-entropy. The min-entropy of a random variable X with domain
X is H∞(X) := − log maxx∈X P[X = x], and intuitively it measures the best
chance to predict X (by a computationally unbounded algorithm). For condi-
tional distributions, unpredictability is measured by the conditional average min-
entropy [14]: H̃∞(X|Y) := − logEy[2−H∞(X|Y=y)]. The lemma below is some-
times known as the “chain rule” for conditional average min-entropy.
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Lemma 2 ([14], Lemma 2.2). Let X,Y,Z be random variables. If Y has at
most 2� possible values, then H̃∞(X|Y,Z) ≥ H̃∞(X,Y|Z) − � ≥ H̃∞(X|Z) − �.
In particular, H̃∞(X|Y) ≥ H̃∞(X,Y) − � ≥ H̃∞(X) − �.

2.1 Secret Sharing Schemes

An n-party secret sharing scheme Σ in the common reference string (CRS) model
consists of polynomial-time algorithms (Init,Share,Rec) specified as follows: (i)
The randomized initialization algorithm Init takes as input the security param-
eter 1λ, and outputs a CRS ω ∈ {0, 1}∗; (ii) The randomized sharing algorithm
Share takes as input a CRS ω ∈ {0, 1}∗ and a message m ∈ M, and outputs
n shares s1, . . . , sn where each si ∈ Si; (iii) The deterministic algorithm Rec
takes as input a CRS ω ∈ {0, 1}∗ and a certain number of candidate shares, and
outputs a value in M ∪ {⊥}. Given s = (s1, . . . , sn) and a subset I ⊆ [n], we
often write sI to denote the shares (si)i∈I .

The subset of parties allowed to reconstruct the secrets by pulling their shares
together form the so-called access structure.

Definition 1 (Access structure). We say A is an access structure for n par-
ties if A is a monotone class of subsets of [n], i.e., if I1 ∈ A and I1 ⊆ I2,
then I2 ∈ A. We call sets I ∈ A authorized or qualified, and unauthorized or
unqualified otherwise.

Intuitively, a secure secret sharing scheme must be such that all qualified
subsets of players can efficiently reconstruct the secret, whereas all unqualified
subset have no information (possibly in a computational sense) about the secret.

Definition 2 (Secret sharing scheme). Let n ∈ N, and A be an access
structure for n parties. We say that Σ = (Init,Share,Rec) is a secret sharing
scheme realizing access structure A in the CRS model, with message space M
and share space S = S1 × · · · × Sn, if it is an n-party secret sharing in the CRS
model with the following properties.

(i) Correctness: For all λ ∈ N, all ω ∈ Init(1λ), all messages m ∈ M, and
for all subsets I ∈ A, we have that Rec(ω, (Share(ω,m))I) = m, with over-
whelming probability over the randomness of the sharing algorithm.

(ii) Privacy: For all PPT adversaries A = (A1,A2), we have

{PrivacyΣ,A(λ, 0)}λ∈N ≈c {PrivacyΣ,A(λ, 1)}λ∈N,

where the experiment PrivacyΣ,A(λ, b) is defined by

PrivacyΣ,A(λ, b) :=
{

ω ←$ Init(1λ); (m0,m1,U �∈ A, α1) ←$ A1(ω)
s ←$ Share(ω,mb); b′ ←$ A2(α1, sU )

}

.

If the above ensembles are statistically close (resp. identically distributed),
we speak of statistical (resp. perfect) privacy.
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Moreover, we say that Σ is a secret sharing scheme realizing access structure A
in the plain model, if for all λ ∈ N algorithm Init simply returns ω = 1λ.

Remark 1. In the plain model, the above definition of privacy is equivalent to
saying that for all pairs of messages m0,m1 ∈ M, and for all unqualified subsets
U �∈ A, it holds that {(Share(1λ,m0))U}λ∈N ≈c {(Share(1λ,m1))U}λ∈N.

2.2 Non-interactive Commitments

A non-interactive commitment scheme Π = (Gen,Com) is a pair of polynomial-
time algorithms specified as follows: (i) The randomized algorithm Gen takes
as input 1λ and outputs a public key pk ∈ K; (ii) The randomized algorithm
Com takes as input the public key pk and a message m ∈ M, and outputs a
commitment c = Com(pk ,m; r) ∈ C using random coins r ∈ R. The pair (m, r)
is called the opening. In the plain model, we omit the algorithm Gen and simply
set pk = 1λ.

Intuitively, a secure commitment satisfies two properties called binding and
hiding. The first property says that it is hard to open a commitment in two
different ways. The second property says that a commitment hides the underlying
message. The formal definitions follow.

Definition 3 (Binding). We say that a non-interactive commitment scheme
Π = (Gen,Com) is computationally binding if the following probability is negli-
gible for all PPT adversaries A:

P

[

m0 �= m1 ∧ Com(pk ,m0; r0) = Com(pk ,m1; r1) : pk ←$ Gen(1λ)
(m0, r0,m1, r1) ←$ A(pk)

]

.

In case the above definition holds for all unbounded adversaries, we say that Π
is statistically binding. Finally, in case the above probability is exactly 0 (i.e.,
each commitment can be opened to at most a single message), then we say that
Π is perfectly binding.

Definition 4 (Hiding). We say that a non-interactive commitment scheme
Π = (Gen,Com) is computationally hiding if the following holds for all PPT
adversaries A:

{
pk ←$ Gen(1λ); (m0,m1, α1) ←$ A1(pk)

c ←$ Com(pk ,m0); b′ ←$ A2(α1, c)

}

≈c

{
pk ←$ Gen(1λ); (m0,m1, α1) ←$ A1(pk)

c ←$ Com(pk ,m1); b′ ←$ A2(α1, c)

}

.

In case the above ensembles are statistically close (resp. identically distributed),
we speak of statistical (resp. perfect) hiding.

Note that in the plain model the above definition of hiding is equivalent to
saying that for all pairs of messages m0,m1 ∈ M the following holds:

{
c : c ←$ Com(1λ,m0)

}
λ∈N

≈c

{
c : c ←$ Com(1λ,m1)

}
λ∈N

.
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2.3 Non-interactive Zero Knowledge

Let R be a relation, corresponding to an NP language L. A non-interactive zero-
knowledge (NIZK) proof system for R is a tuple of efficient algorithms Π =
(CRSGen,Prove,Ver) specified as follows. (i) The randomized algorithm CRSGen
takes as input the security parameter and outputs a common reference string ω;
(ii) The randomized algorithm Prove(ω, φ, (x,w)), given (x,w) ∈ R and a label
φ ∈ {0, 1}∗, outputs a proof π; (iii) The deterministic algorithm Ver(ω, φ, (x, π)),
given an instance x, a proof π, and a label φ ∈ {0, 1}∗, outputs either 0 (for
“reject”) or 1 (for “accept”). We say that a NIZK for relation R is correct if
for every λ ∈ N, all ω as output by Init(1λ), any label φ ∈ {0, 1}∗, and any
(x,w) ∈ R, we have that Ver(ω, φ, (x,Prove(ω, φ, (x,w)))) = 1.

We define two properties of a NIZK proof system. The first property says
that honest proofs do not reveal anything beyond the fact that x ∈ L.

Definition 5 (Adaptive multi-theorem zero-knowledge). A NIZK with
labels Π for a relation R satisfies adaptive multi-theorem zero-knowledge if there
exists a PPT simulator S := (S0,S1) such that the following holds:

(i) S0 outputs ω, a simulation trapdoor ζ and an extraction trapdoor ξ.
(ii) For all PPT distinguishers D, we have that

∣
∣
∣P[DProve(ω,·,(·,·))(ω) = 1 : ω ←$ Init(1λ)]

− P[DOsim(ζ,·,·,·)(ω) = 1 : (ω, ζ) ←$ S0(1λ)]
∣
∣
∣

is negligible in λ, where the oracle Osim(ζ, ·, ·, ·) takes as input a tuple
(φ, x,w) and returns S1(ζ, φ, x) iff R(x,w) = 1 (and otherwise it returns
⊥).

Groth [26] introduced the concept of simulation-extractable NIZK, which
informally states that knowledge soundness should hold even if the adversary can
see simulated proofs for possibly false statements of its choice. For our purpose,
it will suffice to consider the weaker notion of true simulation extractability, as
defined by Dodis et al. [13].

Definition 6 (True simulation extractability). Let Π be a NIZK proof
systems for a relation R, that satisfies adaptive multi-theorem zero-knowledge
w.r.t. a simulator S := (S0,S1). We say that Π is true simulation extractable if
there exists a PPT algorithm K such that every PPT adversary A has a negligible
probability of winning in the following game:

– The challenger runs (ω, ζ, ξ) ←$ S0(1λ), and gives ω to A.
– Adversary A can ask polynomially many queries of the form (φ, x,w), upon

which the challenger returns S1(ζ, φ, x) if (x,w) ∈ R and ⊥ otherwise.
– Adversary A outputs a tuple (φ∗, x∗, π∗).
– The challenger runs w ←$ K(ξ, φ∗, (x∗, π∗)).

We say that A wins iff: (a) (φ∗, x∗) was not queried in the second step; (b)
Ver(ω, φ∗, (x∗, π∗)) = 1; (c) (x∗, w) �∈ R.
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3 Continuous Tampering Under Selective Partitioning

In this section we define a new notion of non-malleability against joint memory
tampering and leakage for secret sharing. Our definition generalizes the one
in [19] which was tailored to threshold access structures and to independent
leakage/tampering from the shares.

Very roughly, in our model the attacker is allowed to partition the set of
share holders into β (non-overlapping) blocks with size at most k, covering the
entire set [n]. This is formalized through the notion of a k-partition.

Definition 7 (k-partition). Let n, k, β ∈ N. We call B = (B1, . . . ,Bβ) a k-
partition of [n] when: (i)

⋃β
i=1 Bi = [n]; (ii) ∀i1, i2 ∈ [β], with i1 �= i2, we have

Bi1 ∩ Bi2 = ∅; (iii) ∀i = 1, . . . , β : |Bi| ≤ k.

3.1 The Definition

To define non-malleability, we consider an attacker A playing the following game.
At the beginning of the experiment, A chooses two messages m0,m1 possibly
depending on the CRS ω of the underlying secret sharing scheme, and a k-
partition (B1, . . . ,Bβ) of the set [n]. Hence, the adversary interacts with a target
secret sharing s = (s1, . . . , sn) of either m0 or m1, via the following queries:

– Leakage queries. For each j ∈ [β], the attacker can leak jointly from the
shares sBj

. This can be done repeatedly and in an adaptive fashion, the only
limitation being that the overall amount of leakage on each block is at most
� ∈ N bits.

– Tampering queries. For each j ∈ [β], the attacker can tamper jointly the
shares sBj

. Each such query yields mauled shares (s̃1, . . . , s̃n), for which the
adversary is allowed to see the corresponding reconstructed message w.r.t. an
arbitrary reconstruction set T ∈ A that is also chosen adversarially. This can
be done for at most p ∈ N times, and in an adaptive fashion.

The above naturally yields a notion of joint bounded-leakage and tampering
admissible adversary, as defined below. Note that, in order to rule out trivial
attacks, we must require that the partition B chosen by the attacker be such
that no block of the partition is an authorized set for the underlying access
structure.

Definition 8 (Joint bounded-leakage and tampering admissible adver-
saries). Let n, k, �, p ∈ N, and fix an arbitrary message space M, sharing
domain S = S1 × · · · × Sn and access structure A for n parties. We say that
a (possibly unbounded) adversary A = (A1,A2) is k-joint �-bounded-leakage and
p-tampering admissible ((k, �, p)-BLTA for short) if it satisfies the following con-
ditions:

(i) A1 outputs two messages m0,m1 ∈ M and a k-partition B = (B1, . . . ,Bβ)
of [n] such that ∀j ∈ [β] we have Bj �∈ A.
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JSTamperΣ,A(λ, b):
ω ←$ Init(1λ)
(B = (B1, . . . , Bβ), m0, m1, α1) ←$ A1(ω)
s := (s1, . . . , sn) ←$ Share(ω, mb)
stop ← false

(α2, i
∗ ∈ [β]) ←$ AOnmss(s,·,·),Oleak(s,·)

2 (α1)
Return A3(α2, sBi∗ )
Oracle Oleak(s, (g1, . . . , gβ)):
Return g1(sB1), . . . , gβ(sBβ )

Oracle Onmss(s, T , (f1, . . . , fβ)):
If stop = true

Return ⊥
Else

∀i ∈ [β] : s̃Bi := fi(sBi)
s̃ = (s̃1, . . . , s̃n)
m̃ = Rec(ω, s̃T )
If m̃ ∈ {m0, m1}

Return
If m̃ = ⊥

Return ⊥
stop ← true

Else return m̃

Fig. 1. Experiment defining leakage-resilient (continuously) non-malleable secret shar-
ing under adaptive concurrent reconstruction. The instructions boxed in red are con-
sidered only for continuous non-malleability, in which case the oracle Onmss is implicitly
parameterized by the flag stop. (Color figure online)

(ii) A2 outputs a sequence of poly-many leakage queries, chosen adaptively,
(g(q)1 , . . . , g

(q)
β )q∈poly(λ) such that ∀j ∈ [β] it holds that

∑
q |g(q)j (·)| ≤ �,

where g
(q)
j :×i∈Bj

Si → {0, 1}∗.
(iii) A2 outputs a sequence of p tampering queries, chosen adaptively,

(T (q), (f (q)
1 , . . . , f

(q)
β ))q∈[p] such that T (q) ∈ A, and ∀j ∈ [β] it holds that

f
(q)
j :×i∈Bj

Si →×i∈Bj
Si.

Very roughly, leakage-resilient non-malleability states that no admissible
adversary as defined above can distinguish whether it is interacting with a secret
sharing of m0 or of m1. In the definition below, the attacker is further allowed to
obtain in full the shares belonging to one of the partitions, at the end of the exper-
iment. This is reminiscent of augmented (leakage-resilient) non-malleability, as
considered in [1,11,20,25].

Definition 9 (Leakage-resilient non-malleability under selective par-
titioning). Let n, k, �, p ∈ N be parameters, and A be an access structure
for n parties. We say that Σ = (Init,Share,Rec) is an augmented �-bounded
leakage-resilient p-time non-malleable secret sharing scheme realizing A against
selective k-joint leakage and tampering in the CRS model (resp., in the plain
model)—augmented (k, �, p)-BLR-CNMSS for short—if it is an n-party secret
sharing scheme realizing A in the CRS model (resp., in the plain model) as per
Definition 2, and additionally for all (k, �, p)-BLTA adversaries A = (A1,A2) we
have: {

JSTamperΣ,A(λ, 0)
}

λ∈N
≈s

{
JSTamperΣ,A(λ, 1)

}
λ∈N

,

where, for b ∈ {0, 1}, experiment JSTamperΣ,A(λ, b) is depicted in Fig. 1.
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In case the above definition holds for all p(λ) ∈ poly(λ), but w.r.t. all PPT
adversaries A (i.e., ≈s is replaced with ≈c in the above equation), we call Σ
(augmented, bounded leakage-resilient) continuously non-malleable. As shown
by [19], already for the simpler case of independent tampering, it is impossible
to achieve this notion without assuming self-destruct (i.e., the oracle Onmss must
stop answering tampering queries after the first such query yielding an invalid
reconstructed message).

It is also well-known that computational security is inherent for obtain-
ing continuously non-malleable secret sharing realizing threshold access struc-
tures [6]. Unless stated otherwise, when we refer to non-malleable secret sharing
in this paper we implicitly assume security holds in the computational setting
(both for privacy and non-malleability).

On Augmented Non-malleability. When dropping the adversary A3 from
the above definition, we obtain the standard (non-augmented) notion of (leakage-
resilient, continuous) non-malleability. The theorem below, however, says that
augmented security is essentially for free whenever non-malleability is considered
together with leakage resilience. Intuitively, this is because in the reduction we
can simply simulate all leakage queries, and then ask a final leakage query which
reveals the output guess of an hypothetical distinguisher attacking augmented
non-malleability.6 A similar proof strategy was used in [29, Lemma 7]. The formal
proof appears in the full version [8].

Theorem 3. Let Σ be a (k, � + 1, p)-BLR-CNMSS realizing access structure A
for n parties in the CRS model (resp. plain model). Then, Σ is an augmented
(k, �, p)-BLR-CNMSS realizing A in the CRS model (resp. plain model).

3.2 Related Notions

We finally argue that known definitions from the literature can be cast by either
restricting, or slightly tweaking, Definition 9.

Independent Leakage and Tampering. The definition below restricts the adver-
sary to leak/tamper from/with each of the shares individually; this is sometimes
known as local or independent leakage/tampering. The condition on leakage
admissibility, though, is more general, in that the attacker can leak an arbitrary
amount of information as long as the total leakage reduces the uncertainty on
each share (conditioned on the other shares) by at most � bits.

Definition 10 (Independent noisy-leakage and tampering admissible
adversaries). Let n, �, p ∈ N, and fix an arbitrary message space M, sharing
domain S = S1 × · · · × Sn and access structure A for n parties. We say that
a (possibly unbounded) adversary A = (A1,A2) is independent �-noisy-leakage
and tampering admissible ((n, �, p)-NLTA for short) if it satisfies the following
conditions:
6 While we state the theorem for the case of bounded leakage, an identical statement

holds in the noisy-leakage setting.
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(i) A1 outputs two messages m0,m1 ∈ M and the partition B = ({1}, . . . , {n}).
(ii) A2 outputs a sequence of poly-many leakage queries (chosen adaptively)

(g(q)1 , . . . , g
(q)
n )q∈poly(λ) such that ∀i ∈ [n] we have g

(q)
i : Si → {0, 1}∗, and

∀m ∈ M it holds that:

H̃∞
(
Si|(Sj)j �=i, g

(1)
i (Si), · · · , g

(p)
i (Si)

)
≥ H̃∞(Si|(Sj)j �=i) − �,

where (S1, . . . ,Sn) is the random variable corresponding to Share(Init
(1λ),m).

(iii) A2 outputs a sequence of tampering queries (chosen adaptively) (T (q), (f (q)
1 ,

. . . , f
(q)
n ))q∈[p] such that T (q) ∈ A, and ∀i ∈ [n] it holds that f

(q)
i : Si → Si.

When restricting Definition 9 to all PPT (n, �, poly(λ))-NLTA adversaries,
we obtain the notion of (augmented) �-noisy leakage-resilient continuously non-
malleable secret sharing against individual leakage and tampering (with adap-
tive concurrent reconstructions) [19]. Finally, if we consider n = 2 and the
threshold access structure with reconstruction parameter � = 2 (i.e., both
shares are required in order to reconstruct the message), we immediately
obtain noisy leakage-resilient continuously non-malleable codes in the split-state
model [20,34]. In what follows, we write Tamper(λ, b) to denote the random
variable in the security experiment of Definition 9 with an (n, �, p)-NLTA adver-
sary.

Leakage-Resilient Secret Sharing. Further, when no tampering is allowed (i.e.,
p = 0), we obtain the notion of leakage-resilient secret sharing [2,12,29,33,36]
as a special case. In particular, we write JSLeak(λ, b) to denote the random
variable in the security experiment of Definition 9 with a (k, �, 0)-BLTA adver-
sary, and Leak(λ, b) to denote the random variable in the security experiment
of Definition 9 with an (n, �, 0)-NLTA adversary.

Recall that, by Theorem 3, the augmented variant is without loss of generality
as long as leakage resilience holds for � ≥ 2.

4 Construction in the CRS Model

4.1 Description of the Scheme

We show how to obtain leakage-resilient continuously non-malleable secret sharing
for arbitrary access structures in the CRS model, with security against selective
joint leakage and tampering. Our construction combines a commitment scheme
(Gen,Com) (cf. Sect. 2.2), a non-interactive proof system (CRSGen,Prove,Ver) for
proving knowledge of a committed value (cf. Sect. 2.3), and an auxiliary n-party
secret sharing scheme Σ = (Share,Rec), as depicted in Fig. 2.

The main idea behind the scheme is as follows. The CRS includes the CRS ω
for the proof system and the public key pk for the commitment scheme. Given
a message m ∈ M, the sharing procedure first shares m using Share, obtaining
shares (s1, . . . , sn). Then, it commits to the i-th share si along with the position i
using randomness ri, and finally generates n−1 proofs (πi

j)j �=i for the statement
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Let Σ = (Share,Rec) be an auxiliary secret sharing scheme realizing access struc-
ture A, with message space M and share space S = S1 × · · · × Sn. Let (Gen,Com)
be a commitment scheme with domain {0, 1}∗, and (CRSGen,Prove,Ver) be a non-
interactive argument system for the language Lpk

com = {c ∈ {0, 1}γ : ∃i ∈ [n], s ∈ Si, r ∈
R s.t. Com(pk , i||s; r) = c} that supports labels in {0, 1}γ . Define the following secret
sharing scheme Σ∗ = (Init∗, Share∗,Rec∗) in the CRS model.

Initialization algorithm Init∗: Sample ω ←$ CRSGen(1λ) and pk ←$ Gen(1λ), and
return ω∗ = (ω, pk).

Sharing algorithm Share∗: Upon input ω∗ = (ω, pk) and a value m ∈ M, com-
pute (s1, . . . , sn) ←$ Share(m). For each i ∈ [n], generate ri ←$ R and de-
fine ci = Com(pk , i||si; ri). For each i, j ∈ [n] such that i �= j, define
πj

i ←$ Prove(ω, cj , (ci, i||si, ri)). Return the shares s∗ = (s∗
1, . . . , s

∗
n), where for each

i ∈ [n] we set s∗
i = (si, ri, (cj)j �=i, (πi

j)j �=i).
Reconstruction algorithm Rec∗: Upon input ω∗ = (ω, pk) and shares (s∗

i )i∈I parse
s∗

i = (si, ri, (ci
j)j �=i, (πi

j)j �=i) for each i ∈ I. Hence, proceed as follows:
(a) If ∃i1, i2 ∈ I and j ∈ [n] such that ci1

j �= ci2
j , output ⊥; else let the input

shares be s∗
i = (si, ri, (cj)j �=i, (πi

j)j �=i) for each i ∈ I.
(b) If ∃i ∈ I such that Com(pk , i||si; ri) �= ci, output ⊥.
(c) If ∃i, j ∈ I such that i �= j and Ver(ω, cj , (ci, π

j
i )) = 0, output ⊥.

(d) Else, output Rec((si)i∈I).

Fig. 2. Leakage-resilient continuously non-malleable secret sharing for arbitrary access
structures against selective joint leakage and tampering, in the CRS model.

ci using each time the value cj = Com(pk , j||sj ; rj) as label. The final share
of player i consists of si, along with the randomness ri used to obtain ci and
all the values (cj)j �=i and (πi

j)j �=i. The reconstruction procedure, given a set of
shares s∗

I , first checks that for each i ∈ I the commits (cj)j �=i contained in each
share are all equal, and moreover each ci is indeed obtained by committing i||si

with the randomness ri; further, it checks that all the proofs verify correctly
w.r.t. the corresponding statement and label. If any of the above checks fails,
the algorithm returns ⊥ and otherwise it outputs the same as Rec(sI).

Intuitively, our scheme can be seen as a generalization of the original con-
struction of continuously non-malleable codes in the split-state model from [20].
In particular, when n = 2, the two constructions are identical except for two
differences: (i) We commit to each share, whereas [20] uses a collision-resistant
hash function; (ii) We include the position of each share in the commitment.
Roughly speaking, the first modification is necessary in order to prove privacy
(as hash functions do not necessarily hide their inputs). The second modification
is needed in order to avoid that an attacker can permute the shares within one of
the partitions, which was not possible in the setting of independent tampering.
We establish the following result, whose proof appears in the full version [8].



224 G. Brian et al.

Theorem 4. Let n, k ∈ N, and A be any access structure for n parties. Assume
that:

(i) Σ is an n-party augmented �-bounded leakage-resilient secret sharing
scheme realizing access structure A against selective k-joint leakage in the
plain model;

(ii) (Gen,Com) is a statistically hiding and computationally binding commit-
ment scheme with commitment length γ = O(λ);

(iii) (CRSGen,Prove,Ver) is a true-simulation extractable non-interactive zero-
knowledge argument system for the language Lpk

com = {c ∈ {0, 1}γ : ∃i ∈
[n], s ∈ Si, r ∈ R s.t. Com(pk , i||s; r) = c}.

Then, the secret sharing scheme Σ∗ described in Fig. 2 is an n-party augmented
�∗-bounded leakage-resilient continuously non-malleable secret sharing scheme
realizing access structure A against selective k-joint leakage and tampering in
the CRS model, as long as � = 2�∗ + nγ + O(λ log λ).

4.2 Concrete Instantiation

Finally, we show how to instantiate Theorem4 from generic assumptions, thus
yielding the statement of Theorem 2 as a corollary. It is well known that
true-simulation extractable NIZKs can be obtained from (doubly-enhanced)
trapdoor permutations [13,21,35], whereas statistically hiding non-interactive
commitments—with commitment size O(λ) and 2−Ω(λ)-statistical hiding—can
be instantiated from collision-resistant hash functions [27].

As for the underlying leakage-resilient secret sharing, we can use the recent
construction from [29] which achieves information-theoretic security in the
stronger setting where the attacker can adaptively leak from subsets of shares
of size at most O(log n), in a joint manner. The latter clearly implies leakage
resilience against selective O(log n)-joint leakage.

5 Construction in the Plain Model

5.1 Description of the Scheme

We show how to obtain leakage-resilient continuously non-malleable secret shar-
ing for arbitrary access structures in the plain model, with security against
independent leakage and tampering attacks. Our construction combines a non-
interactive commitment scheme Com with an auxiliary n-party secret sharing
scheme Σ = (Share,Rec), as depicted in Fig. 3. The basic idea is to compute a
commitment c to the message m being shared, using random coins r; hence, we
secret share the string m||r using the underlying sharing function Share, yielding
shares (s1, . . . , sn). Hence, the final share of the i-th player is s∗

i = (c, si).
We establish the following result. Note that when n = 2, we get as a special

case the construction of split-state continuously non-malleable codes in the plain
model that was originally proposed in [34], and later simplified in [19] by relying
on noisy leakage. Our proof can be seen as a generalization of the proof strategy
in [19] to the case n > 2. We refer the reader to the full version [8] for the details.
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Let Com be a non-interactive commitment scheme with message space M, randomness
space R, and commitment space C. Let Σ = (Share,Rec) be an auxiliary secret sharing
scheme realizing access structure A, with message space M × R and share space S =
S1 × · · · × Sn. Define the following secret sharing scheme Σ∗ = (Share∗,Rec∗), with
message space M and share space S∗ = S∗

1 × · · · × S∗
n where for each i ∈ [n] we have

S∗
i = C × Si.

Sharing algorithm Share∗: Upon input a value m ∈ M, sample random coins
r ←$ R and compute c = Com(m; r) and (s1, . . . , sn) ←$ Share(m||r). Return the
shares s∗ = (s∗

1, . . . , s
∗
n), where for each i ∈ [n] we set s∗

i = (c, si).
Reconstruction algorithm Rec∗: Upon input shares (s∗

i )i∈I parse s∗
i = (si, ci) for

each i ∈ I. Hence, proceed as follows:
(a) If ∃i1, i2 ∈ I for which ci1 �= ci2 , return ⊥; else, let the input shares be

s∗
i = (si, c).

(b) Run m||r = Rec((si)i∈I); if the outcome equals ⊥ return ⊥.
(c) If c = Com(m; r) return m, else return ⊥.

Fig. 3. Leakage-resilient continuously non-malleable secret sharing for arbitrary access
structures against independent leakage and tampering in the plain model.

Theorem 5. Let n ∈ N, and let A be an arbitrary access structure for n parties
without singletons. Assume that:

(i) Com is a perfectly binding and computationally hiding non-interactive com-
mitment;

(ii) Σ is an n-party �-noisy leakage-resilient one-time non-malleable secret shar-
ing scheme realizing access structure A against independent leakage and
tampering in the plain model, with information-theoretic security and with
message space M such that |M| ∈ ω(log(λ)).

Then, the secret sharing scheme Σ∗ described in Fig. 3 is an n-party �∗-
noisy leakage-resilient continuously non-malleable secret sharing scheme real-
izing access structure A against independent leakage and tampering with compu-
tational security in the plain model, as long as � = �∗ + 1 + γ + O(log λ) where
γ = log |C| is the size of a commitment.

6 Statistical One-Time Non-Malleability with Noisy
Leakage

Since non-interactive, perfectly binding, commitments can be obtained in the
plain model assuming one-to-one one-way functions [22], all that remains in order
to derive Theorem 1 as a corollary of Theorem 5 is an unconditional construc-
tion of noisy-leakage resilient one-time non-malleable secret sharing for arbitrary
access structures against independent leakage and tampering. The only known
scheme achieving all these properties unconditionally is the one in [29], but
unfortunately that scheme only tolerates bounded leakage, and it is unclear how
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to generalize the proof to the setting of noisy leakage.7 Hence, we take a dif-
ferent approach and we instead show how to generalize a recent transformation
from [7], which is tailored to the case n = 2.

6.1 Asymmetric Noisy-Leakage-Resilient Secret Sharing

Our construction exploits so-called leakage-resilient encryption, as recently intro-
duced by Ball, Guo, and Wichs [7]. To keep the exposition more uniform, we cast
their definition in terms of a special 2-out-of-2 leakage-resilient secret sharing sat-
isfying three additional properties: (i) One of the shares is uniformly random,
and can be sampled independently from the message; (ii) The shares are almost
uncorrelated, namely the distribution of one share in isolation and conditioned
on the other share have very similar min-entropy; (iii) The size of the shares are
asymmetric, namely one share is substantially larger than the other share. Given
a 2-out-of-2 secret sharing scheme Σ = (Share,Rec), abusing notation, for any
fixed s1 ∈ S1 and m ∈ M, we write s2 ←$ Share(m, s1) for the sharing algorithm
that computes share s2 subject to (s1, s2) being a valid sharing of m.

Definition 11 (Asymmetric secret sharing). Let Σ = (Share,Rec) be a 2-
out-of-2 secret sharing scheme. We call Σ (α, σ1, σ2)-asymmetric, if it satisfies
the following properties:

(i) For any s1 ∈ S1, and any m ∈ M, it holds that Rec(s1,Share(m, s1)) = m;
(ii) For any message m ∈ M, and for all i ∈ {1, 2}, it holds that

H̃∞(Si|S3−i) ≥ log |Si| − α, where S1,S2 are the random variables cor-
responding to sampling s1 ←$ S1 and s2 ←$ Share(m, s1);

(iii) It holds that log |S1| = σ1 and log |S2| = σ2.

As for security we consider the same security experiment of a leakage-resilient
secret sharing, however, we consider a more general class of admissible adver-
saries:

Definition 12 (Independent noisy-leakage admissibility for asymmet-
ric secret sharing). Let Σ = (Share,Rec) be a 2-out-of-2 secret sharing
scheme. We say that an unbounded adversary A = (A1,A2) is independent
(�1, �2)-asymmetric noisy-leakage admissible ((�1, �2)-NLA for short) if it satis-
fies Definition 10 without property (iii), and using the following variant of prop-
erty (ii):

(ii) A2 outputs a sequence of leakage queries (chosen adaptively) (g(q))q∈[p], with
p(λ) ∈ poly(λ), such that for all i ∈ {1, 2}, and for all m ∈ M:

H̃∞
(
Si

∣
∣S3−i, g

(1)
i (Si), · · · , g

(p)
i (Si)

)
≥ H̃∞(Si|S3−i) − �i,

where S1 is uniformly random over S1 and S2 is the random variable corre-
sponding to Share(m,S1).

7 This is because [29] relies on lower bounds in communication complexity.
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Let Σ′ = (Share′,Rec′) be a secret sharing scheme realizing access structure A, with
message space M and share space S ′ = S ′

1 × · · · × S ′
n where S ′

i ⊆ M′′. Let Σ′′ =
(Share′′,Rec′′) be a 2-out-of-2 asymmetric secret sharing scheme with message space
M′′ and share space S ′′ = S ′′

1 × S ′′
2 . Define the following secret sharing scheme Σ =

(Share,Rec), with message space M and share space S = S1 × · · · × Sn, where for each
i ∈ [n] we have Si ⊆ (S ′′

1 )n−1 × (S ′′
2 )n−1.

Sharing algorithm Share: Upon input a value m ∈ M, compute
(s′

1, . . . , s
′
n) ←$ Share′(m). For each i ∈ [n] and j ∈ [n] \ {i}, sample a ran-

dom share s′′
i,j,1 ←$ S ′′

1 and compute s′′
i,j,2 ←$ Share′′(s′

i, s
′′
i,j,1). Return the shares

s = (s1, . . . , sn), where for each i ∈ [n] we set si = ((s′′
j,i,1)j �=i, (s′′

i,j,2)j �=i).
Reconstruction algorithm Rec: Upon input shares (si)i∈I with I ∈ A, parse si =

((s′′
j,i,1)j �=i, (s′′

i,j,2)j �=i). Hence, proceed as follows:
(a) Compute s′

i = Rec′′(s′′
i,nxt(i),1, s

′′
i,nxt(i),2) for i ∈ I;

(b) Return Rec′((s′
i)i∈I).

Fig. 4. Noisy-leakage-resilient one-time statistically non-malleable secret sharing for
arbitrary access structures against independent leakage and tampering in the plain
model.

Finally, we say that a 2-out-of-2 secret sharing is augmented (�1, �2)-noisy-
leakage resilient if it is secure as per Definition 9, against the class of all
unbounded adversaries that are (�1, �2)-NLA. The theorem below says that there
is an unconditional construction of such a leakage-resilient secret sharing that is
also asymmetric as per Definition 11. The proof appears in the full version [8].

Theorem 6. For any α ∈ N, and for any large enough �1, �2 ∈ poly(λ, α), there
exists σ1, σ2 ∈ poly(λ, α) and an (α, σ1, σ2)-asymmetric secret sharing scheme
Σ with message space {0, 1}α that is augmented (�1, �2)-noisy leakage resilient.

Construction. Before presenting our scheme, we establish some notation.
Given a reconstruction set I = {i1, . . . , ik}, we always assume that ij ≤ ij+1 for
j ∈ [k]. further, we define the function nxtI : I → I as:

nxtI(ij) :=
{

ij+1 j < k
i1 otherwise

and the function prvI to be the inverse of nxtI . Whenever it is clear from the
context we omit the reconstruction set I and simply write nxt and prv.

Intuitively, our construction (cf. Fig. 4) relies on a one-time non-malleable
(but not leakage resilient) secret sharing Σ′, and on an asymmetric leakage-
resilient secret sharing Σ′. The sharing of a message m is obtained by first
sharing m under Σ′, obtaining n shares (s′

1, . . . , s
′
n), and then sharing each si

independently n−1 times under Σ′′, obtaining pairs of shares (s′′
i,j,1, s

′′
i,j,2)j �=i; the

final share of party i is then set to be the collection of right shares corresponding
to i and all the left shares corresponding to the parties j �= i. We can now state
the main theorem of this section.
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Theorem 7. Let n ∈ N, and let A be an arbitrary access structure for n parties
without singletons. Assume that:

(i) Σ′ is an n-party one-time non-malleable secret sharing scheme realizing
access structure A against independent tampering in the plain model, with
information-theoretic security;

(ii) Σ′′ is an (α, σ1, σ2)-asymmetric augmented (�1, �2)-noisy leakage-resilient
secret sharing scheme.

Then, the secret sharing scheme Σ described in Fig. 4 is an n-party �-noisy
leakage-resilient one-time non-malleable secret sharing scheme realizing access
structure A against independent leakage and tampering with statistical security
in the plain model, as long as �1 = � + (2n − 3)α and �2 = � + (2n − 3)α + σ1.

The proof to the above theorem appears in the full version [8], here we discuss
the main intuition. Privacy of Σ follows in a fairly straightforward manner from
privacy of Σ′. In fact, recall that the shares s′′

i,j,1, with i, j ∈ [n] and i �= j, are
sampled uniformly at random and independently of s′. Thus, in the reduction
we can sample these values locally and then define the shares (su)u∈U as a
function of the shares (s′

u)u∈U . As for the proof of leakage-resilient one-time
non-malleability, the idea is to reduce to the one-time non-malleability of Σ′

and simulate the leakage by sampling dummy values for the shares s′′
i,j,1, s

′′
i,j,2.

The main challenge is to make sure that the answer to tampering query f =
(f1, . . . , fn) is consistent with the simulated leakage. To this end, in the reduction
we define the tampering function f ′ = (f ′

1, . . . , f
′
n), acting on the shares s′ =

(s′
1, . . . , s

′
n), as follows. Each function f ′

i , upon input s′
i and given the values

(s′′
i,j,1)j �=i, samples (ŝi,j,2)j �=i in such a way that for any j the reconstruction

Rec′′(si,j,1, ŝi,j,2) yields a share s′
i that is consistent with the simulated leakage

using the dummy values. Noisy-leakage resilience of Σ′′ guarantees that the
function f ′

i samples from a valid distribution (namely, a non-empty one). Note
that the function f ′

i might not be efficiently computable; however, as we are
reducing to statistical non-malleability, this is not a problem.

An additional difficulty is that the functions (f ′
t)t∈T need to communicate in

order to produce their outputs. In fact, for any t ∈ T , the function f ′
t returns a

tampered share for Σ′ that depends on the mauled share s̃prv(t),t,1 (generated by
fprv(t)). To overcome this problem, we let the reduction perform an additional
leakage query on the dummy values before tampering. Thanks to this extra
leakage, the reduction learns the values s̃prv(t),t,1 for all t ∈ T , which can be hard-
coded in the description of (f ′

t)t∈T . Here is where we rely on the asymmetric
property of Σ′′, which allows us to leak σ1 bits from the second share.

At this point, a reader familiar with [7] might notice that the two proofs
proceed very similarly. However, our proof requires extra care when bounding
the amount of leakage performed by the reduction. The key ideas are that: (i)
Each of the shares under Σ′ is shared using n − 1 independent invocations of
Σ′′; and (ii) our reconstruction procedure depends only on one of those (chosen
as function of the reconstruction set). Property (i) allows to reduce independent
leakage on n shares under Σ to independent leakage on 2 shares under Σ′′ by
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sampling locally the missing n−2 shares when reducing to noisy-leakage resilience
of Σ′′. Property (ii) allows to bound the amount of information the reduction
needs to simulate the tampering query to a single short leakage from each of the
shares (i.e., the value s̃prv(t),t,1 for t ∈ T ).

7 Conclusions and Open Problems

We have shown new constructions of leakage-resilient continuously non-malleable
secret sharing schemes, for general access structures. Our first scheme is in the
plain model, and guarantees security against independent noisy leakage and tam-
pering with all of the shares. Our second scheme is in the CRS model, and
guarantees security against joint bounded leakage and tampering using a fixed
partition of the n shares into non-overlapping blocks of size O(log n).

The two major questions left over by our work are whether continuous non-
malleability against joint tampering is achievable in the plain model, or against
adaptive (rather than selective) joint tampering with the shares. Interestingly,
our proof strategy breaks down in the case of adaptive tampering, and this
holds true even assuming that the inner leakage-resilient secret sharing is secure
in the presence of adaptive joint leakage. Intuitively, the reason is that in the
reduction we must run different copies of the adversary inside the leakage oracle;
in particular, we use each block of the shares in order to simulate the answer
to all tampering queries asked by each copy of the attacker, and this is clearly
possible only if the adversary does not change the partition within each query.

It would also be interesting to achieve continuous non-malleability under joint
selective partitioning for better values of the parameter k (namely, the attacker
can tamper jointly with blocks of size super-logarithmic in n). Note that this
would follow immediately by our result if we plug in our construction a leakage-
resilient secret sharing scheme tolerating joint leakage from subsets of shares with
size ω(log n). Unfortunately, the only known secret sharing scheme achieving
joint-leakage resilience is the one in [29], and as the authors explain improving
the parameters in their construction would lead to progress on longstanding
open problems in complexity theory. We leave it open to establish whether this
holds true even in the case of selective partitioning (recall that the scheme of [29]
achieves adaptive leakage resilience), or whether the current state of affairs can
be improved in the computational setting (with or without trusted setup).

A further open question is to improve the rate of our constructions. Note
that by applying the rate compiler of [19], we do get rate-one continuously non-
malleable secret sharing for general access structures, against independent tam-
pering in the plain model. However, this is well-known to be sub-optimal in the
computational setting, where the optimal share size would be O(μ/n), with μ
being the size of the message [28]. Note that it is unclear whether the same rate
compiler works also for our construction against joint tampering under selective
partitioning. This is because the analysis in [19] crucially relies on the resilience of
the initial rate-zero non-malleable secret sharing against noisy leakage, whereas
our construction only achieves security in the bounded-leakage model.
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