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Abstract. In recent years, there has been a proliferation of algebraically
structured Learning With Errors (LWE) variants, including Ring-LWE,
Module-LWE, Polynomial-LWE, Order-LWE, and Middle-Product LWE,
and a web of reductions to support their hardness, both among these
problems themselves and from related worst-case problems on structured
lattices. However, these reductions are often difficult to interpret and
use, due to the complexity of their parameters and analysis, and most
especially their (frequently large) blowup and distortion of the error dis-
tributions.

In this paper we unify and simplify this line of work. First, we give
a general framework that encompasses all proposed LWE variants (over
commutative base rings), and in particular unifies all prior “algebraic”
LWE variants defined over number fields. We then use this framework to
give much simpler, more general, and tighter reductions from Ring-LWE
to other algebraic LWE variants, including Module-LWE, Order-LWE,
and Middle-Product LWE. In particular, all of our reductions have easy-
to-analyze and frequently small error expansion; in some cases they even
leave the error unchanged. A main message of our work is that it is
straightforward to use the hardness of the original Ring-LWE problem
as a foundation for the hardness of all other algebraic LWE problems
defined over number fields, via simple and rather tight reductions.

1 Introduction

1.1 Background

Regev’s LearningWith Errors (LWE) problem [15] is a cornerstone of lattice-based
cryptography, serving as the basis for countless cryptographic constructions (see,
for example, the surveys [12,16]). One primary attraction of LWE is that it can be
supported by worst-case to average-case reductions from conjectured hard prob-
lems on general lattices [4,11,14,15]. But while constructions based on LWE can
have reasonably good asymptotic efficiency, they are often not as practically effi-
cient as one might like, especially in terms of key and ciphertext sizes.

Inspired by the early NTRU cryptosystem [6] and Micciancio’s initial worst-
case to average-case reductions for “algebraically structured” lattices over poly-
nomial rings [10], Lyubashevsky, Peikert, and Regev [9] introduced Ring-LWE to
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improve the asymptotic and practical efficiency of LWE (see also [19]). Ring-LWE
is parameterized by the ring of integers in a number field, and [9] supported the
hardness of Ring-LWE by a reduction from conjectured worst-case-hard prob-
lems on lattices corresponding to ideals in the ring (see also [14]). Since then,
several works have introduced and studied a host of other algebraically struc-
tured LWE variants—including Module-LWE [1,3,7], Polynomial-LWE [18,19],
Order-LWE [2], and Middle-Product LWE [17]—relating them to each other and
to various worst-case problems on structured lattices. Of particular interest is
the work on Middle-Product LWE (MP-LWE) [17,18], which, building on ideas
from [8], gave a reduction from Ring- or Poly-LWE over a huge class of rings to
a single MP-LWE problem. This means that breaking the MP-LWE problem in
question is at least as hard as breaking all of huge number of Ring-/Poly-LWE
problems defined over unrelated rings.

Thanks to the above-described works, we now have a wide assortment of
algebraic LWE problems to draw upon, and a thick web of reductions to sup-
port their respective hardness. However, these reductions are often difficult to
interpret and use due to the complexity of their parameters, and most espe-
cially their effect on the error distributions of the problems. In particular, some
reductions incur a rather large blowup and distortion in the error, which is often
quite complicated to analyze and bounded loosely by large or even unspecified
polynomials. Some desirable reductions, like the one from Ring-LWE to MP-
LWE, even require composing multiple hard-to-analyze steps. Finally, some of
the reductions require non-uniform advice in the form of special short ring ele-
ments that in general do not seem easy to compute.

All this makes it rather challenging to navigate the state of the art, and espe-
cially to draw conclusions about precisely which problems and parameters are
supported by reductions and proofs. The importance of having a clear, precise
view of the landscape is underscored by the fact that certain seemingly rea-
sonable parameters of algebraic LWE problems have turned out to be insecure
(ultimately for prosaic reasons); see, e.g., [5,13] for an overview. This work aims
to provide such a view.

1.2 Contributions and Technical Overview

Here we give an overview of our contributions and how they compare to prior
works. At a high level, we provide a general framework that encompasses all the
previously mentioned LWE variants, and in particular unifies all prior “algebraic”
LWE variants defined over number fields. We then use this framework to give
much simpler, more general, and tighter reductions from Ring-LWE to other alge-
braic LWE variants, including Module-LWE, Order-LWE, and Middle-Product
LWE. A main message of our work is that it is possible to use the hardness of
Ring-LWE as a foundation for the hardness of all prior algebraic LWE problems
(and some new ones), via simple and easy-to-analyze reductions.

Generalized (Algebraic) LWE. In Sect. 3 we define new forms of LWE that
unify and strictly generalize all previously mentioned ones.
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Generalized LWE. First, in Sect. 3.1 we describe a single general framework that
encompasses all the previously mentioned forms of LWE, including plain, Ring-,
Module-, Poly-, Order-, and Middle-Product LWE (in both “dual” and “primal”
forms, where applicable), as well as the unified algebraic LWE we describe below.
The key observation is that in all such problems, the secret s, public multipli-
ers a, and their (noiseless) products s ·a respectively belong to some free modules
Ms,Ma,Mb over some commutative ring R. Moreover, the products are deter-
mined by a fixed R-bilinear map T : Ms ×Ma → Mb. An LWE problem involves
some fixed choices of these parameters, along with an error distribution. By fix-
ing some R-bases of the modules, the map T can be represented as an order-three
tensor (i.e., a three-dimensional array) where Tijk is the kth coordinate of the
product of the ith and jth basis elements of Ms and Ma, respectively.

For example, plain LWE uses the Zq-modules Ms = Ma = Z
n
q and Mb =

Zq, with the ordinary inner product as the bilinear map, which corresponds to
the n × n × 1 “identity matrix” tensor. Ring-LWE uses the rank-1 Rq-modules
Ms = Mb = R∨

q and Ma = Rq where R = OK is the ring of integers in a number
field K, with field multiplication as the bilinear map, which corresponds to the
scalar unity tensor.

We also show how Middle-Product LWE straightforwardly fits into this
framework. Interestingly, by a judicious choice of bases, the matrix “slices” Ti··
of the middle-product tensor are seen to form the standard basis for the space
of all Hankel matrices. (In a Hankel matrix, the (j, k)th entry is determined by
j + k.) This formulation is central to our improved reduction from Ring-LWE
over a wide class of number fields to Middle-Product LWE, described in Sect. 1.2
below.

LWE over Number Field Lattices. Next, in Sect. 3.2 we define a unified class of
problems that strictly generalizes prior “algebraic” LWE variants defined over
number fields, including Ring-, Module-, Poly-, and Order-LWE. A member L-
LWE of our class is parameterized by any (full-rank) lattice (i.e., discrete additive
subgroup) L of a number field K. Define

OL := {x ∈ K : xL ⊆ L}

to be the set of field elements by which L is closed under multiplication; this set
is known as the coefficient ring of L. Letting L∨ = {x ∈ K : TrK/Q(xL) ⊆ Z}
denote the dual lattice of L, it turns out that OL = (L · L∨)∨, and it is an order
of K, i.e., a subring with unity that is also a lattice. Note that if L itself is an
order O of K or its dual O∨, then OL = O, but in general L can be any lattice,
and OL is just the largest order of K by which L is closed under multiplication.1

1 We caution that OL is not “monotonic” in L under set inclusion, i.e., L′ ⊆ L does
not imply any inclusion relationship between OL′

and OL, in either direction. In
particular, L and cL have the same coefficient ring for any integer c > 1, but there
can exist L′ with cL � L′

� L that has a different coefficient ring.
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In all that follows, let Lq denote the quotient group L/qL for any lattice L
of K and positive integer q. In L-LWE, there is a secret s ∈ L∨

q , and we are given
noisy random products

(a ← OL
q , b = s · a + e mod qL∨),

where a is uniformly random, and e is an error term that is drawn from a specified
distribution (see below for discussion). Observe that the reduction modulo qL∨

is well defined because the (noiseless) product s · a ∈ L∨
q , since L∨ · OL ⊆ L∨

due to Tr(L∨ · OL · L) ⊆ Tr(L∨ · L) ⊆ Z.
We now explain how L-LWE strictly generalizes Ring-, Poly-, and Order-

LWE. As already noted, when L = O or L = O∨ for an order O of K, we have
OL = O, so L-LWE specializes to:

1. Ring-LWE [9] when L = OK is the full ring of integers of K;
2. Poly-LWE [18] when L = Z[α]∨ for some α ∈ OK ; and
3. Order-LWE [2] when L = O∨ for some arbitrary order O of K.

Notice that in the latter two cases, L is the dual of some order, so the secret s
and product s · a belong to the order itself (modulo q). But as we shall see, for
reductions it turns out to be more natural and advantageous to let L itself be an
order, not its dual. Furthermore, L-LWE also captures other cases that are not
covered by the ones above, namely, those for which L is not an order or its dual.
For L-LWE, we just need the OL-module structure of L∨, not any ring structure.

As mentioned above, L-LWE is also parameterized by an error distribution.
For consistency across problems and with prior work, and without loss of gen-
erality, we always view the error distribution in terms of the canonical embed-
ding of K. For concreteness, and following worst-case hardness theorems for
Ring-LWE [9,14], the reader can keep in mind a spherical Gaussian distribution
of sufficiently large width r = ω(

√
log deg(K)) over the canonical embedding.

While this differs syntactically from the kind of distribution often considered for
Poly-LWE—namely, a spherical Gaussian over the coefficient vector of the error
polynomial—the two views are interchangeable via some fixed linear transfor-
mation. For Gaussians, this transformation just changes the covariance, and
if desired we can also add some independent compensating error to recover a
spherical Gaussian. However, our results demonstrate some advantages of work-
ing exclusively with the canonical embedding, even for Poly-LWE.

Error-Preserving Reduction for L-LWE. In Sect. 4 we give a simple reduc-
tion from L-LWE to L′-LWE for any lattices L′ ⊆ L of K for which OL′ ⊆ OL and
the index |L/L′| is coprime with the modulus q. Essentially, the reduction trans-
forms samples of the former problem (for an unknown secret s) to samples of the
latter problem (for a related secret s′). Importantly, and unlike prior reductions of
a similar flavor, our reduction is error preserving : the error distribution over the
number field is exactly the same for the two problems. In addition, the reduction
is sample preserving : it produces as many samples as it consumes.

The only loss associated with the reduction, which seems inherently nec-
essary, is that when L �= L′, the lattice q(L′)∨ by which the resulting noisy
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products b′ ≈ s′ · a′ are reduced is “denser” than the lattice qL∨
� q(L′)∨ by

which the original noisy products b ≈ s ·a are reduced. One can alternatively see
this as the (unchanging) error distribution being “larger” relative to the target
lattice than to the original one. This can have consequences for applications,
where we typically need the accumulated error from some combined samples to
be decodable modulo q(L′)∨. That is, we need to be able to efficiently recover e′

(or at least a large portion of it) from the coset e′ + q(L′)∨; standard decoding
algorithms require sufficiently short elements of q−1L′ to do this. So in general,
the “sparser” we take L′ ⊆ L to be, the denser (L′)∨ is, and the larger we need q
to be to compensate. This weakens both the theoretical guarantees and concrete
hardness of the original L-LWE problem, and is reason to prefer denser L′.

Implications and Comparison to Prior Work. Here we describe some of the
immediate implications of our reduction, and compare to prior related reduc-
tions. Take L = OK to be the full ring of integers of K, which corresponds to
the “master” problem of Ring-LWE, for which we have worst-case hardness theo-
rems [9,14]. Then these same hardness guarantees are immediately inherited by
Order-LWE (and in particular, Poly-LWE) in its “dual” form, by taking L′ to be
an arbitrary order O of K, as long as |L′/L| is coprime with q. These guarantees
are qualitatively similar to the ones established in [2,18], but are obtained in a
much simpler and more straightforward way; in particular, we do not need to
replicate all the technical machinery of the worst-case to average-case reductions
from [9,14] for arbitrary orders O, as was done in [2].

Our reduction can also yield hardness for the “primal” form of Poly-LWE
and Order-LWE via a different choice of L′ (see the next paragraph); however,
it is instructive to see why it is preferable to reduce to the “dual” form of these
problems. The main reason is that the dual form admits quite natural reductions,
both from Ring-LWE and to Middle-Product LWE and Module-LWE, whose
effects on the error distribution are easy to understand and bound entirely in
terms of certain known short elements of O. (See Sect. 1.2 below for further
details.)

By contrast, the reduction and analysis for “primal” Order-LWE over
order O—including Poly-LWE for O = Z[α], as in [18]—is much more com-
plex and cumbersome. Because O∨ �⊆ OK (except in the trivial case K = Q),
we cannot simply take L′ = O∨. Instead, we need to apply a suitable “tweak”
factor t ∈ K, so that L′ = tO∨ ⊆ OK and hence (L′)∨ = t−1O. Reducing to
L′-LWE preserves the error distribution, but to finally convert the samples to
primal Order-LWE samples we need to multiply by t, which distorts the error
distribution. It can be shown that t must lie in the product of the different ideal
of OK and the conductor ideal of O (among other constraints), so the reduction
requires non-uniform advice in the form of such a “short” t that does not distort
the error too much. The existence proof for such a t from [18] is quite involved,
requiring several pages of rather deep number theory. Finally, the decodability
of the (distorted) error modulo qO is mainly determined by the known short
vectors in O∨, which also must be analyzed. (All these issues arise under slightly
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different guises in [18]; in fact, there the error is distorted by t2, yielding an even
lossier reduction.)

Reduction from O-LWE to MP-LWE. In Sect. 5 we give a simple reduction
fromO-LWE, for awide class of number fields K and ordersO including polynomial
rings of the form O = Z[α] ∼= Z[x]/f(x), to a single Middle-Product LWE prob-
lem. Together with the error-preserving reduction described above, this yields a
Ring/MP-LWE connection similar to the one obtained in [17,18], which implies
that breaking the MP-LWE problem in question is at least as hard as breaking all
of a wide class of Ring-LWE problems over unrelated number fields. However, our
result subsumes the prior one by being simpler, more general, and tighter: it drops
certain technical conditions on the order, and the overall distortion in the error
distribution (starting from Ring-LWE) is given entirely by the spectral norm ‖�p‖
of a certain known basis �p of O. In particular, spherical Gaussian error over the
canonical embedding of O translates to spherical Gaussian MP-LWE error (over
the reals) that is just a ‖�p‖ factor wider. These advantages arise from the error-
preserving nature of our L-LWE reduction (described above), and the judicious use
of dual lattices in the definition of O-LWE.

At heart, what makes our reduction work is the hypothesis that the order O
has a “tweaked” power basis �p = t · (xi) for some t, x ∈ O; clearly any monogenic
order O = Z[α] has such a basis (with tweak factor t = 1), but it seems plausible
that some non-monogenic orders may have such bases as well.2 Using our gener-
alized LWE framework from Sect. 3.1 (described above in Sect. 1.2), we show that
when using a tweaked power basis �p and its dual �p∨ for O and O∨ respectively,
all the “slices” Ti·· of the tensor T representing multiplication O∨ ×O → O∨ are
Hankel matrices. So, using the fact that the slices Mi·· of the middle-product
tensor M form the standard basis for the space of all Hankel matrices, we can
transform O-LWE samples to MP-LWE samples. The resulting MP-LWE error
distribution is simply the original error distribution represented in the �p∨ basis,
which is easily characterized using the geometry of �p.

The above perspective is helpful for finding other reductions from wide classes
of LWE problems to a single LWE problem. Essentially, it suffices that all the
slices Ti·· of all the source-problem tensors T over a ring R lie in the R-span
of the slices of the target-problem tensor. We use this observation in our final
reduction, described next.

Reduction from O′-LWE to O-Module-LWE. Finally, in Sect. 6 we give a
reduction establishing the hardness of Module-LWE over an order O of a number
field K, based on the hardness of Ring-LWE over any one of a wide class of

2 For example, consider the ring of integers OK where K = Q(α) for α3−α2−2α−8 =
0. In a classical result, Dedekind showed that this order is non-monogenic, but it has
�p = (t, tx, tx2) as a basis, where x = (α2 − α − 2)/4 and t = 1− 2x. We caution that
x �∈ OK , so this is actually not a tweaked power basis according to our definition,
but it still suffices for a special case of our reduction that does not extend �p by more
powers of x.
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orders O′ of a number field extension K ′/K. This is qualitatively analogous
to what is known for Middle-Product LWE, but is potentially more beneficial
because Module-LWE is easier to use in applications, and is indeed much more
widely used in theory and in practice.

A bit more precisely, we give a simple reduction from O′-LWE, for a wide
class of orders O′, to a single O-LWEk problem, i.e., rank-k Module-LWE over
an order O. (In O-LWEk, the secret �s and public multipliers �a are simply k-
dimensional vectors over their respective domains from O-LWE, and we are given
their noisy inner products.) The only technical condition we require is that O′

should be a rank-k free O-module. For example, this is easily achieved by defining
O = O[α] ∼= O[x]/f(x) for some root α of an arbitrary degree-k monic irreducible
polynomial f(x) ∈ O[x]. Once again, due to the use of duality in the definition
of the problems, the reduction’s effect on the error distribution is very easy
to characterize: the output error is simply the trace (from K ′ to K) of the
input error. In particular, the typical example of spherical Gaussian error in the
canonical embedding of K ′ maps to spherical Gaussian error in the canonical
embedding of K, because the trace just sums over a certain partition of the
coordinates.

We point out that our result is reminiscent of, but formally incomparable to,
the kind of worst-case hardness theorem given in [7]: there the worst-case prob-
lem involves arbitrary rank-k module lattices over O, whereas here our source
problem is an average-case Order-LWE problem for an order that is a rank-k
module over O.

2 Preliminaries

In this work, by “ring” we always mean a commutative ring with identity.

2.1 Algebraic Number Theory

Number Fields. An (algebraic) number field K is a finite-dimensional field exten-
sion of the rationals Q. More concretely, it can be written as K = Q(ζ), by
adjoining to Q some element ζ that satisfies the relation f(ζ) = 0 for some
irreducible polynomial f(x) ∈ Q[x]. The polynomial f is called the minimal
polynomial of ζ, and the degree of f is called the degree of K, which is denoted
by n in what follows.

Trace and Norm. The (field) trace Tr = TrK/Q : K → Q and (field) norm
N = NK/Q : K → Q of x ∈ K are the trace and determinant, respectively, of
the Q-linear transformation on K (viewed as a vector space over Q) representing
multiplication by x. More concretely, fixing any Q-basis of K lets us uniquely
represent every element of K as a vector in Q

n, and multiplication by any x ∈ K
corresponds to multiplication by a matrix Mx ∈ Q

n×n; the trace and norm of x
are respectively the trace and determinant of this matrix.
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Lattices and Duality. For the purposes of this work, a lattice L in K is a discrete
additive subgroup of K for which spanQ(L) = K. A lattice is generated as
the integer linear combinations of n basis elements �b = (b1, . . . , bn) ∈ Kn, as
L = {∑n

i=1 Z·bi}; in other words, L is a free Z-module of rank n. For convenience,
we let Lq denote the quotient group L/qL for any positive integer q.

For any two lattices L,L′ ⊂ K, their product L · L′ is the set of all integer
linear combinations of terms x · x′ for x ∈ L, x′ ∈ L′. This set is itself a lattice,
and given bases for L,L′ we can efficiently compute a basis for L · L′ via the
Hermite normal form.

For a lattice L, its dual lattice L∨ (which is indeed a lattice) is defined as

L∨ := {x ∈ K : Tr (xL) ⊆ Z}.

It is easy to see that if L ⊆ L′ are lattices in K, then (L′)∨ ⊆ L∨, and if �b is
a basis of L, then its dual basis �b∨ = (b∨

1 , . . . , b∨
n) is a basis of L∨, where �b∨ is

defined so that Tr(bi · b∨
j ) is 1 when i = j, and is 0 otherwise. Observe that by

definition, x = �bt · Tr(�b∨ · x) for every x ∈ K.

Orders. An order O of K is a lattice that is also a subring with unity, i.e.,
1 ∈ O and O is closed under multiplication. An element α ∈ K is an algebraic
integer if there exists a monic integer polynomial f such that f(α) = 0. The
set of algebraic integers in K, denoted OK , is called the ring of integers of K,
and is its maximal order: every order O ⊆ OK . For any order O of K, we have
O·O∨ = O∨ because O∨ = 1·O∨ ⊆ O·O∨ and Tr((O·O∨)·O) = Tr(O∨ ·O) ⊆ Z,
since O · O = O.

The Space KR. In order to formally define Gaussian distributions (see Sect. 2.2
below) we define the field tensor product KR = K ⊗Q R, which is essentially the
“real analogue” of K/Q, obtained by generalizing rational scalars to real ones.
In general this is not a field, but it is a ring; in fact, it is isomorphic to the
ring product R

s1 × C
s2 , where K has s1 real embeddings and s2 conjugate pairs

of complex ring embeddings, and n = s1 + 2s2. Therefore, there is a “complex
conjugation” involution τ : KR → KR, which corresponds to the identity map on
each R component, and complex conjugation on each C component.

We extend the trace to KR in the natural way, writing TrKR/R for the resulting
R-linear transform. It turns out that under the ring isomorphism with R

s1 × C
s2 ,

this trace corresponds to the sum of the real components plus twice the sum of the
real parts of the complex components. From this it can be verified that KR is an n-
dimensional real inner-product space, with inner product 〈x, y〉 = TrKR/R(x·τ(y)).
In particular, KR has some (non-unique) orthonormal basis�b, and hence�b∨ = τ(�b).

Extension Fields. For the material in Sect. 6 we need to generalize some of our
definitions to number field extensions K ′/K, where possibly K �= Q. The (field)
trace Tr = TrK′/K : K ′ → K and (field) norm N = NK′/K : K ′ → K of x ∈ K ′

are the trace and determinant, respectively, of the K-linear transformation on K ′

(viewed as a vector space over K) representing multiplication by x. We extend
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the trace to the real inner-product spaces K ′
R and KR in the natural way, writing

TrK′
R
/KR

for the resulting R-linear transform.
Let �b = (b1, . . . , bk) be a K-basis of K ′. Its dual basis �b∨ = (b∨

1 , . . . , b∨
k ) is

defined so that TrK′/K(bi · b∨
j ) is 1 when i = j, and is 0 otherwise.

Lemma 1. Let K ′/K be a number field extension with K-basis �b, and let x =
〈�b∨, �x〉, y = 〈�b, �y〉 for some �x, �y over K. Then TrK′/K(x · y) = 〈�x, �y〉.
Proof. Letting Tr = TrK′/K , by K-linearity of Tr we have

Tr(x · y) = Tr(〈�b∨, �x〉 · 〈�b, �y〉) = Tr(�xt · (�b∨ ·�bt) · �y) = �xt · Tr(�b∨ ·�bt) · �y = �xt · I · �y = 〈�x, �y〉.

We also will need the following standard fact, whose proof is straightforward.

Lemma 2. Let K ′/K be a number field extension, O be an order of K, and O′

be an order of K ′ that is a free O-module with basis �b. Then �b∨ is an O∨-basis
of (O′)∨.

2.2 Gaussians

Here let H be an n-dimensional real inner-product space (e.g., H = R
n or

H = KR) and fix an orthonormal basis, so that any element x ∈ H may be
uniquely represented as a real vector x ∈ R

n relative to that basis.

Definition 1. For a positive definite Σ ∈ R
n×n, called the covariance matrix,

the Gaussian function ρ√
Σ : H → (0, 1] is defined as ρ√

Σ(x) := exp(−πxt ·Σ−1 ·
x), and the Gaussian distribution D√

Σ on H is the one having the normalized
probability density function det(Σ)−1 · ρ√

Σ.3

When Σ = r2 · I for some r > 0, we often write ρr and Dr instead, and
refer to these as spherical Gaussians with parameter r. In this case, the choice
of orthonormal basis for H is immaterial, i.e., any orthonormal basis yields the
same Σ = r2 · I.

It is well known that the sum of two independent Gaussians having covari-
ances Σ1, Σ2 (respectively) is distributed as a Gaussian with covariance Σ1+Σ2.
Therefore, a Gaussian of covariance Σ can be transformed into one of any desired
covariance Σ′ � Σ, i.e., one for which Σ′−Σ is positive definite, simply by adding
an independent compensating Gaussian of covariance Σ′ − Σ.

3 Generalized (Algebraic) Learning with Errors

In this section we define new forms of LWE that unify and strictly generalize pre-
vious ones. First, in Sect. 3.1 we give an overarching framework that encompasses

3 Note that the covariance of D√
Σ is actually Σ/(2π), due to the normalization factor

in the definition of ρ√
Σ .
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all LWE variants (over commutative rings) that we are aware of. We employ this
framework only in our reductions to MP-LWE and Module-LWE, but expect
that it may be useful for other purposes in the future. Then, in Sect. 3.2 we
generalize and unify algebraic forms of LWE like Ring-, Order-, and Poly-LWE
into a single problem that is merely parameterized by a lattice in a number field.

3.1 Generalized LWE

Here we describe a general framework that captures all variants of Learning
With Errors (over commutative rings) that we are aware of, and will be helpful
in linking some of them together. Our starting point is the observation that
in all such problems, the secret s, public multipliers a, and their “products”
s · a (without noise) all belong to some respective free modules over a particular
finite commutative ring R. Moreover, the products are determined by a fixed R-
bilinear map from (the direct product of) the former two modules to the latter
one. As a few examples:

– Ordinary LWE uses the inner-product map 〈·, ·〉 : Z
n
q × Z

n
q → Zq, where Z

n
q

and Zq are Zq-modules of ranks n and 1, respectively.
– Ring-LWE uses the multiplication map R∨

q × Rq → R∨
q where R = OK is a

number ring; here R∨
q and Rq can be seen as Rq-modules of rank one, or as

Zq-modules of rank n = deg(R/Z).
– Module-LWE interpolates between the above two cases, using the inner-

product map (R∨
q )

d × Rd
q → R∨

q , where here the input modules are of rank d
over Rq, or rank dn over Zq.

In general, an LWE variant involves: (1) a finite commutative ring R, (2) some
finite-rank free R-modules Ms,Ma,Mb, and (3) an R-bilinear map T : Ms ×
Ma → Mb. The associated LWE problem is concerned with “noisy products”
(a ← Ma, b ≈ T (s, a)) for some fixed s ∈ Ms. Clearly, each bilinear map T (and
choice of error distribution) potentially yields a different distribution of noisy
products.

By fixing bases for the modules, the map T can be represented via a third-
order tensor Tijk over R. Specifically, if we fix bases �s,�a,�b for Ms,Ma,Mb

(respectively), then Tijk is the coefficient of bk in T (si, aj) ∈ Mb. By bilinearity,
the coefficient vector of T (a, s) is the product of the tensor T with the coefficient
vectors of a, s along the appropriate dimensions. This naturally generalizes to
fixed generating sets in place of bases for Ms and Ma (and even Mb, if we do
not need a unique representation of the output).

Due to the generality of R and (often desirable) possibility of error distri-
butions over supersets of Mb

∼= Rl (for some l), we do not give a fully general
formal definition of LWE problems in this framework. However, we remark that
frequently R = Oq for an order O of some number field K, in which case one
would usually consider an error distribution over Kl

R.
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Middle-Product LWE. The Middle-Product LWE (MP-LWE) problem from [17]
can be seen as an instance of the above framework, as follows. The middle-
product operation �d takes two polynomials of fixed degree bounds, multiplies
them together, and outputs only the “middle” d coefficients of the product.
More specifically, the product of two polynomials respectively having degrees
< n + d − 1 and < n has degree < 2n + d − 2; the middle-product discards
the lowest and highest n − 1 coefficients, and outputs the remaining d coeffi-
cients. Middle-Product LWE is concerned with random noisy middle products
of a secret polynomial over Zq.

To see this in the above framework, define Ms = Z
n+d−1
q and Ma = Z

n
q , which

we respectively identify with the Zq-modules Z
<n+d−1
q [x] and Z

<n
q [x] of polyno-

mials of degrees < n + d − 1 and < n, via the bases �s = (1, x, . . . , xn+d−2) and
�a = (xn−1, xn−2, . . . , 1), respectively. (Basis �a is in decreasing order by degree
for reasons that will become clear shortly.) Define Mb = Z

d
q , which we identify

with the Zq-module xn−1 · Z
<d
q [x] via the basis �b = (xn−1, xn, . . . , xn+d−2).

The middle-product bilinear form Ms ×Ma → Mb is then represented by the
third-order tensor M (which is indexed from zero in all dimensions) defined by

Mijk =

{
1 if i = j + k

0 otherwise.
(1)

This is because si · aj = xi · xn−1−j = x(n−1)+(i−j), which equals bi−j if 0 ≤
i − j < d, and vanishes under the middle product otherwise. Therefore, the
“slice” matrix Mi··, obtained by fixing the i coordinate arbitrarily, is the n × d
rectangular Hankel matrix defined by the standard basis vector ei ∈ Z

n+d−1,
which is 1 in the ith coordinate and zero elsewhere (again indexing from zero).4
Importantly, these Mi·· slices form the standard basis of all n×d Hankel matrices.

For the following definitions, let M be the third-order tensor defined above
in Eq. (1).

Definition 2 (MP-LWE distribution). Let n, d, q be positive integers and ψ be
a distribution over R

d. For s ∈ Z
n+d−1
q , a sample from the MP-LWE distribution

Cn,d,q,ψ(s) over Z
n
q × (R/qZ)d is generated by choosing a ← Z

n
q uniformly at

random, choosing e ← ψ, and outputting (a,b = M(s,a) + e mod qZ).

Definition 3 (MP-LWE problem, decision). The decision MP-LWEn,d,q,ψ,�

problem is to distinguish between � samples from Cn,d,q,ψ(s) for s ← U(Zn+d−1
q ),

and � samples from U(Zn
q × (R/qZ)d).

Definition 4 (MP-LWE problem, search). The search MP-LWEn,d,q,ψ,� prob-
lem is, given � samples from Cn,d,q,ψ(s) for some arbitrary s ∈ Z

n+d−1
q , find s.

4 Recall that a matrix H is Hankel if each entry Hjk is determined by j + k (equiva-
lently, it is an “upside down” Toeplitz matrix). So, an n×d Hankel matrix is defined
by an (n + d − 1)-dimensional vector whose ith entry defines the entries Hjk for
i = j + k.



12 C. Peikert and Z. Pepin

We remark that MP-LWE becomes no harder as d decreases (and the corre-
sponding final coordinate(s) of the error distribution are dropped), because the
degree-(n + d − 2) monomial of the secret can affect only the monomial of the
same degree in the middle product. Therefore, dropping the latter just has the
effect of dropping the former. In the tensor M , this corresponds to removing
the “slices” M(n+d−2)·· and M··(d−1), which yields the tensor for parameters n
and d − 1.

3.2 LWE over Number Field Lattices

We now define an algebraic form of LWE that strictly generalizes prior ones
including Ring-, Module-, Order-, and Poly-LWE. The key observation is that
all these problems arise simply from parameterizing by a suitable lattice in a
given number field, and taking the public multipliers to be over the lattice’s
coefficient ring (modulo q), which we now define.

Coefficient Ring. For any lattice L in a number field K, an x ∈ K for which
xL ⊆ L is called a coefficient of L. It turns out that the set of coefficients of L is
an order of K, and equals (L · L∨)∨. For elucidation we recall the (easy) proofs
of these facts.

Definition 5 (Coefficient ring). For a lattice L in a number field K, its
coefficient ring is defined as

OL := {x ∈ K : xL ⊆ L}.
Lemma 3. We have OL = (L · L∨)∨. In particular, L and L∨ have the same
coefficient ring OL = OL∨

, and if L is an order O of K or its dual O∨, then
OL = O.

Proof. For any x ∈ K, we have

x ∈ (L · L∨)∨ ⇐⇒ Tr(x(L · L∨)) ⊆ Z ⇐⇒ Tr((xL)L∨) ⊆ Z ⇐⇒ xL ⊆ (L∨)∨ = L.

The final claim follows by recalling that O · O∨ = O∨.

Lemma 4. The coefficient ring OL is an order of K.

Proof. It is clear that OL = (L · L∨)∨ is a lattice in K (because L · L∨ is), thus
we only need to show that it is a subring of K with unity. By definition of OL,
we clearly have 1 ∈ OL. Moreover, for any x, y ∈ OL, we have (xy)L = x(yL) ⊆
xL ⊆ L, so xy ∈ OL, as desired.

An immediate corollary is that OL ⊆ OK , the ring of integers (i.e., maximal
order) of K.5

5 This can also be seen by using one of the characterizations of algebraic integers,
that x is an algebraic integer if and only if xL ⊆ L for some nonzero finitely generated
Z-module L ⊆ C.
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L-LWE Problem. Using the coefficient ring, we now define a general algebraic
LWE problem that is parameterized by an arbitrary number-field lattice L.

Definition 6 (L-LWE distribution). Let L be a lattice in a number field K,
OL be the coefficient ring of L, ψ be a distribution over KR, and q, k be positive
integers. For �s ∈ (L∨

q )
k, a sample from the L-LWE distribution AL,k

q,ψ (�s) over
(OL

q )
k × KR/qL∨ is generated by choosing �a ← (OL

q )
k uniformly at random,

choosing e ← ψ, and outputting (a, b = 〈�s,�a〉 + e mod qL∨).

Definition 7 (L-LWE problem, decision). The decision L-LWEk
q,ψ,� problem

is to distinguish between � samples from AL,k
q,ψ (�s) where �s ← U((L∨

q )
k), and �

samples from U((Oq)
k × KR/qL∨).

Definition 8 (L-LWE problem, search). The search L-LWEk
q,ψ,� problem is

given � samples from AL,k
q,ψ (�s) for some arbitrary �s ∈ (L∨

q )
k, find �s

For both of the above definitions, we often omit k when k = 1. Notice that in
this case, we have s ∈ L∨

q , a ∈ OL
q , and a sample from the distribution AL

q,ψ(s)
has the form (a, b = s · a + e mod qL∨).

The above definitions strictly generalize all prior algebraic LWE variants
defined over number fields or polynomial rings. For simplicity, take k = 1 (taking
k > 1 simply yields “Module” analogues of what follows). Recall that if L is an
order O of K or its dual O∨, then OL = O. Therefore, by taking L = OK to
be the full ring of integers, we get the Ring-LWE problem as originally defined
in [9]. Alternatively, by taking L = O∨ we get the “primal” form of Order-LWE
over O [2], which corresponds to the Poly-LWE problem [18] when O = Z[α] for
some α ∈ OK . By instead taking L = O, we get a natural “dual” variant of Order-
LWE, where the secret s and products s ·a are in O∨/qO∨; this formulation has
advantages in terms of simplicity and tightness of reductions. Finally, by taking L
to be neither an order nor the dual of an order, we get other problems that are
not covered by any of the prior ones.

4 Error-Preserving Reduction from L-LWE to L′-LWE

In this section, we present an efficient, deterministic reduction from L-LWEq,ψ,�

to L′-LWEq,ψ,�, where L′ ⊆ L are lattices in a number field K such that OL′ ⊆
OL and the index |L/L′| is coprime with q. We stress that the reduction preserves
the error distribution ψ and the number of samples � exactly.

4.1 Helpful Lemmas

Before presenting the main theorem in Sect. 4.2 below, we introduce a couple
of helpful lemmas. For any lattices L′ ⊆ L in K, the natural inclusion map
L′

q → Lq sends x + qL′ to x + qL. (This can be seen as the composition of
a natural homomorphism and an inclusion map.) The following lemmas give
conditions under which maps of this kind are bijections.
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Lemma 5. Let L′ ⊆ L be lattices in a number field K and let q be a positive
integer. Then the natural inclusion map h : L′

q → Lq is a bijection if and only
if q is coprime with the index |L/L′|; in this case, h is efficiently computable and
invertible given an arbitrary basis of L′ relative to a basis of L.

Because |L/L′| = |(L′)∨/L∨|, the same conclusions hold for the natural inclusion
map L∨

q → (L′)∨q .

Proof. Let �b,�b′ respectively be some Z-bases of L,L′ (and hence Zq-bases of
Lq,L′

q). Then�b′ = T·�b for some given square matrix T. This T is integral because
L′ ⊆ L, and we have |det(T)| = |L/L′|. Letting x′ be the coefficient vector
(over Zq) of some arbitrary x′ = 〈�b′,x〉 ∈ L′

q, we have x′ = 〈T·�b,x′〉 = 〈�b,Tt ·x′〉,
so x = Tt · x′ is the coefficient vector (over Zq) of h(x′) ∈ Lq relative to �b.
Moreover, x and x′ are in bijective correspondence if and only if T is invertible
modulo q, i.e., if |det(T)| = |L/L′| is coprime with q, and we can efficiently
evaluate and invert this bijection given T.

Lemma 6. Let L′ ⊆ L be lattices in a number field K, and let q be a positive
integer that is coprime with the index |L/L′|. If OL′ ⊆ OL, then the natural
inclusion map g : OL′

q → OL
q is a bijection.

Proof. Let h : L′
q → Lq be the natural inclusion map, which by Lemma 5 is a

bijection. First, notice that for any a ∈ OL′
q and x ∈ L′

q, we have h(a · x) =
g(a) · h(x). This is because

g(a) · h(x) = (a + qOL) · (x + qL) = a · x + q(OL · x + a · L + OL · L) = a · x + qL = h(a · x).

Now, let a, b ∈ OL′
q satisfy g(a) = g(b). Then for all x ∈ L′, we have

h(a · x) = g(a) · h(x) = g(b) · h(x) = h(b · x).

Since h is a bijection, it follows that a · x = b · x (mod qL′) for all x ∈ L′.
Therefore,

(a − b) · L′ ⊆ qL′ ⇒ a − b ∈ qOL′ ⇒ a = b (mod qOL′
).

Thus, g is injective. Since the sets OL′
q and OL

q have the same cardinal-
ity qdeg(K/Q), g must bijective.

4.2 Reduction

Theorem 1. Let L′ ⊆ L be lattices in a number field K, ψ be a distribution
over KR, and q be a positive integer. If OL′ ⊆ OL and the natural inclusion
map g : OL′

q → OL
q is an efficiently invertible bijection, then there is an efficient

deterministic transform which:

1. maps distribution U(OL
q ×KR/qL∨) to distribution U(OL′

q ×KR/q(L′)∨), and
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2. maps distribution AL
q,ψ(s) to distribution AL′

q,ψ(s
′), where s′ = s mod q(L′)∨ ∈

(L′)∨/q(L′)∨.

Proof. The claimed transform is as follows: for each given sample (a, b) ∈ OL
q ×

KR/qL∨, output

(a′ = g−1(a) , b′ = b mod q(L′)∨).

It is clear that this transform sends uniformly random a to uniformly random
a′, because g is a bijection. Also, since L′ ⊆ L, we know that qL∨ ⊆ q(L′)∨.
Therefore, the transform sends uniformly random b to uniformly random b′.

It remains to show that if b = a·s+e mod qL∨, then b′ = a′ ·s′+e mod q(L′)∨.
To see this, observe that a = a′ (mod qOL), because g is the natural inclusion
map. Therefore,

a · s = a′ · s + q(OL · s)
⊆ a′ · s + qL∨

⊆ a′ · (s′ + q(L′)∨) + qL∨

⊆ a′ · s′ + q(L′)∨,

where in the first and third containments we have used OL · L∨ ⊆ L∨ and
OL′ · (L′)∨ ⊆ (L′)∨, respectively. The claim follows by adding e to both sides.

Corollary 1. Adopt the notation from Theorem 1, and assume that |L/L′| is
coprime with q, that OL′ ⊆ OL, and that bases of L′,OL′

relative to bases
of L,OL (respectively) are known. Then there is an efficient deterministic reduc-
tion from L-LWEq,ψ,� to L′-LWEq,ψ,� for both the search and decision versions.

A main case of interest is when L = OL and L′ = OL′
are themselves orders, in

which case the above coprimality hypothesis is implied by the conductor of L′

in L being coprime with qL, as ideals of L. The latter hypothesis is used in [18],
so our hypothesis is no stronger.

Proof. We first note that by Lemmas 5 and 6, the natural inclusion maps
h : L′

q → Lq and g : OL′
q → OL

q are efficiently computable and invertible bijec-
tions. For the decision problems, use the deterministic transform from Theorem
1 to transform the input samples of the L-LWEq,ψ,� problem. This will produce
the same number of samples for the L′-LWEq,ψ,� problem, where uniform samples
map to uniform ones, and samples from AL

q,ψ(s) map to samples from AL′
q,ψ(s

′)
for s′ = s mod q(L′)∨. Also, because h is a bijection, the uniformly random
secret s ∈ L∨

q maps to a uniformly random secret s′ ∈ (L′)∨q , as needed. For the
search problems, it suffices to also note that we can recover the original secret s
from s′ by computing h−1(s′).

5 Reduction from O-LWE to MP-LWE

Rosca et al. [17] introduced the Middle-Product LWE (MP-LWE) problem and
gave a hardness theorem for it, by showing a reduction from a wide class of
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Poly-LWE instantiations—and by extension, Ring-LWE instantiations [18]—
over various polynomial rings of the form Z[α] ∼= Z[x]/f(x) for f(x) satisfying
mild conditions. Here we give a reduction that, when combined with our error-
preserving reduction from Sect. 4, subsumes the prior Ring/MP-LWE connection
in the simplicity of its descriptions and analysis, and the tightness of its error
distortion (or expansion). These advantages arise from our use of O-LWE as an
intermediate problem, and in particular its use of dual lattices (in contrast to
the entirely “primal” nature of Poly-LWE).

5.1 Reduction

We start with a slight generalization of the notion of a power basis, by allowing
a “tweak” factor.

Definition 9. For an order O of a number field, a tweaked power basis of L is
a Z-basis �p of O of the form t · (1, x, x2, . . . , xd−1) for some t, x ∈ O.

For simplicity, in the rest of this section the reader may wish to focus initially
on the case d = n.

Theorem 2. Let d ≤ n be positive integers, O be an order of a degree-d number
field K with a tweaked power basis �p, ψ be a distribution over KR, and q be a
positive integer. There is an efficient randomized transform which:

1. maps distribution U(Oq × KR/qO∨) to distribution U(Zn
q × (R/qZ)d), and

2. maps the O-LWE distribution AO
q,ψ(s) to the MP-LWE distribution

Cn,d,q,ψ′(s′), where s′ is some fixed linear function (depending only on �p)
of s, and ψ′ = TrKR/R(ψ · �p).

In particular, there is an efficient randomized reduction from (search or decision)
O-LWEq,ψ,� to (search or decision, respectively) MP-LWEn,d,q,ψ′,�.

Proof. First, we extend the tweaked power basis �p = t · (xi)i=0,...,d−1 of O into
a tweaked power generating set �p′ = t · (xi)i=0,...,n−1 in the natural way, by
including more powers of x (if necessary).

The transform, given a sample (a, b) ∈ Oq ×KR/qO∨, computes and outputs
the (coefficient) vectors

(a , b = TrKR/R(b · �p)) ∈ Z
n
q × (R/qZ)d.

where a is a uniformly random solution to 〈�p′,a〉 = a. This can be generated by
adding to any particular solution (e.g., the unique one using just the elements
of �p) a uniformly random element of the subgroup G = {z ∈ Z

n
q : 〈�p′, z〉 ∈

qO} ⊆ Z
n
q (for which we can find a Zq-basis using standard methods). This

transform sends uniformly random a to uniformly random a, since a corresponds
to a uniformly random coset of G. In addition, the transform sends uniformly
random b to uniformly random b, because TrKR/R(b · �p) is the coefficient vector
of b with respect to �p∨, which is a Z-basis of O∨, and thus an R-basis of KR.
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It remains to show that if b = s ·a+ e mod qO∨ for some s ∈ O∨
q and e ← ψ,

then (a,b) is a properly distributed MP-LWE sample for secret s′. To do this
we use definition of MP-LWE in the generalized LWE framework from Sect. 3.1.
Specifically, consider the Zq-bilinear multiplication map T : O∨

q × Oq → O∨
q ,

and consider the generating sets �p∨, �p′ for the Zq-modules O∨
q ,Oq, respectively.

Then letting Tr = TrK/Q, the third-order tensor representing T relative to �p∨, �p′

is given by

Tijk := Tr(p∨
i · p′

j · pk) mod q = Tr(p∨
i · gj+k) mod q,

where gj+k = p′
j · pk = t2 · xj+k depends only on j + k.

In particular, each “slice” Ti·· for fixed i is a Hankel matrix, so it can be written
as a Zq-linear combination of the slices Mi·· of the tensor for the middle-product
bilinear form M : Z

n+d−1
q ×Z

n
q → Z

d
q , because these slices form the standard basis

for the set of n × d Hankel matrices over Zq. In other words, there exists a matrix
P ∈ Z

(n+d−1)×d
q such that Ti·· =

∑
i′ Mi′··Pi′i for all i; specifically, the ith column

of P is simply the vector defining the Hankel matrix Ti··. Therefore,

Tr((s · a) · �p) = Tr(T (s, a) · �p) = M(Ps,a),

where s = Tr(s · �p) ∈ Z
d
q is the coefficient vector of s with respect to �p∨.

Finally, we address the error term. By linearity and the above, we have
b = M(Ps,a) + e mod qZ

d where e = Tr(e · �p), which has distribution ψ′

because e has distribution ψ over KR.
Notice that for the search and decision reductions, we cannot simply apply

the claimed transformation to each input sample, because the resulting distri-
bution on s′ is not uniform. However, this is easily addressed by the standard
technique of re-randomizing the secret, choosing a uniformly random r ∈ Z

n+d−1
q

and transforming each given sample (a,b) to (a,b + M(r,a)). This preserves
the uniform distribution in the random case, and maps secret s to a uniformly
random secret s′ + r in the LWE case.

To obtain the claimed search reduction, first apply the above transforms to
each input sample of the O-LWEq,ψ,� problem. This produces the same number
of samples for the MP-LWEn,d,q,ψ′,� problem. We can then compute the original
secret s from the transformed secret s′+r via s = P−1

L ·s′, and s = 〈�p∨, s〉 where
P−1

L is a left inverse of P. For the claimed decision reduction, it suffices that the
transform also maps uniform samples to uniform samples.

Corollary 2. Adopt the notation from Theorem 2, and let O′ ⊆ O be a subor-
der which has a known tweaked power basis �p and for which |O/O′| is coprime
with q. There is a randomized sample-preserving reduction from O-LWEq,ψ,� to
MP-LWEn,d,q,ψ′,�, where ψ′ = TrKR/R(ψ · �p).

Proof. We can reduce O-LWEq,ψ,� to O′-LWEq,ψ,� by Corollary 1, and then to
MP-LWEn,d,q,ψ′,� by Theorem 2.

5.2 Managing the Error Distribution

The reduction described in Theorem 2 reduces O-LWE with error distribution ψ
to MP-LWE with error distribution ψ′ = TrKR/R(ψ · �p) where �p is some tweaked
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power basis of O. However, we ultimately want a reduction from many O-LWE
problems to a single MP-LWE problem, so we need to further control the resulting
error distribution. To this end, we consider the usual case where ψ is a Gaussian
distribution over KR, in which case it turns out that ψ′ is a Gaussian over R

n

whose covariance is related to the Gram matrix of �p. Moreover, by a standard
technique we can add some independent Gaussian error having a compensating
covariance to arrive at any desired target covariance that is sufficiently large.

Throughout this section, we use the following notation. Let Tr = TrKR/R,
and given a tweaked basis �p of O, let P = Tr(�p · τ(�p)t) denote the (positive
definite) Gram matrix of �p, whose (i, j)th entry is 〈pi, pj〉 = Tr(pi · τ(pj)). Fix
some orthonormal R-basis �b = τ(�b∨) of KR, and let Pb = Tr(�b · �pt). Then by
R-linearity of τ and trace, we have

P = Tr(�p · τ(�p)t) = Tr
(
�p · τ

(
(�b∨)t · Tr(�b · �pt)

))
= Tr(�p ·�bt) · Tr(�b · �pt) = Pt

b · Pb .

For a real matrix A, let

‖A‖ = max
‖u‖2=1

‖Au‖2

denote the spectral (or operator) norm of A; observe that by the above, we have
‖P‖ = ‖Pb‖2.
Corollary 3. Let d ≤ n be positive integers, O be an order of a degree-d number
field K with a tweaked power basis �p, Σ ∈ R

d×d be a positive definite matrix, and
q be a positive integer. For any Σ′ � Pt

b · Σ · Pb, there is an efficient random-
ized reduction from (search or decision) O-LWEq,D√

Σ ,� to (search or decision,
respectively) MP-LWEn,d,q,D√

Σ′ ,�.
In particular, for any r′ > r · √‖P‖, there is an efficient randomized reduc-

tion from (search or decision) O-LWEq,Dr,� to (search or decision, respectively)
MP-LWEn,d,q,Dr′ ,�.

Proof. By applying Theorem 2 we obtain an efficient randomized reduction from
O-LWEq,D√

Σ ,� to MP-LWEn,d,q,ψ′,�, where ψ′ is a distribution over R
d and is

analyzed as follows. Let D = D√
Σ be the original error distribution over KR,

which (because �b is an orthonormal basis of KR) has the form D = �bt · C where
the coefficient distribution C = D√

Σ is a Gaussian over R
n. Then by R-linearity

of the trace,

ψ′ = Tr(�p · D) = Tr(�p ·�bt · C) = Tr(�p ·�bt) · C = Pt
b · C = D√

Σ1
,

where Σ1 = Pt
b · Σ · Pb.

Since Σ′ � Σ1 by assumption, we may transform the error distribution D√
Σ1

to D√
Σ′ by adding (to the b-part of each MP-LWE sample) a fresh error term

from the compensating Gaussian distribution of covariance Σ′ − Σ1. This yields
the desired error distribution and completes the proof of the first claim.

For the second claim, notice that if Σ = r2 ·I, then Σ′ = (r′)2I � Pt
b ·Σ ·Pb =

r2 ·P, because (r′)2I−r2P is positive definite, since xtPx ≤ ‖P‖·‖x‖22 for any x.
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5.3 Example Instantiations

Corollary 3 bounds the expansion of the error distribution by the square root of
the spectral norm of the Gram matrix P of a tweaked power basis �p of O. Here
we show that there are large families of orders with well-behaved power bases
(with tweak factor t = 1).

Let α be an algebraic integer with minimal polynomial f(x) ∈ Z[x] of degree
d, and consider the order O = Z[α] ⊂ K = Q(α), which has power basis �p =
(1, α, . . . , αd−1). Consider the Vandermonde matrix

V =

⎛

⎜
⎜⎜⎜⎜
⎝

1 α1 α2
1 αd−1

1

1 α2 α2
2 · · · αd−1

2

1 α3 α2
3 αd−1

3
...

. . .
...

1 αd α2
d · · · αd−1

d

⎞

⎟
⎟⎟⎟⎟
⎠

where the αi are the d distinct roots of f , i.e., the conjugates of α. This V
represents the linear transform σ that maps coefficient vectors with respect to �p
to the canonical (or Minkowski) embedding.

It is easy to see that the Gram matrix of �p is P = V∗V, where V∗ denotes
the conjugate transpose of V, so

√‖P‖ = ‖V‖. Therefore, we immediately have
the bound

√‖P‖ ≤ ‖V‖2 ≤ √
d · maxi‖σ(αi)‖, where the maximum is taken

over i ∈ {0, 1, . . . , d − 1}. That is, the Frobenius and Euclidean norms of the
power-basis elements (in the canonical embedding) yield bounds on the error
expansion. The following lemma gives an alternative bound directly in terms of
the minimal polynomial f(x).

Lemma 7. Adopt the above notation, and assume that the minimal polynomial
f(x) = xd − g(x) ∈ Z[x], where g(x) = akxk + · · · + a1x + a0 has degree at
most k < d. Then

√‖P‖ ≤ d · Ad/(d−k) where A =
∑k

i=0|ai|. In particular, if
k = (1 − c)d for some c ∈ (0, 1), then

√‖P‖ ≤ d · A1/c.

For example, if all the |ai| = poly(d) and c < 1 is any positive constant, then√‖P‖ = poly(d). This enlarges the set of moduli f(x) yielding polynomial error
expansion from those considered in [17].

Proof. We bound ‖V‖ as follows. Let α∗ = maxi|αi| ≥ 1 be the maximum
magnitude of any root of f . Then ‖V‖ ≤ dmax|Vi,j | ≤ d · αd

∗. Now, because
the αi satisfy αd

i = g(αi), by the triangle inequality we have αd
∗ ≤ αk

∗ · A and
hence αd−k

∗ ≤ A. The claim follows by raising to the d/(d − k) power.

6 Reduction from O′-LWE to O-LWEk

In this section we give a simple reduction from O′-LWE, for a wide class of
orders O′, to a single rank-k Module-LWE problem over an order O.
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6.1 Reduction

Theorem 3. Let K ′/K be a number field extension; O be an order of K; O′

be an order of K ′ that is a rank-k free O-module with known basis �b; ψ′ be a
distribution over K ′

R; and q be a positive integer. Then there is an efficient,
deterministic transform which:

1. maps distribution U(O′
q × K ′

R/q(O′)∨) to U(Ok
q × KR/qO∨), and

2. maps distribution AO′
q,ψ′(s′) to AO,k

q,ψ (�s), for �s = TrK′/K(s′ ·�b) mod qO∨ and
ψ = TrK′

R
/KR

(ψ′).

It immediately follows that there is an efficient, deterministic reduction from
(search or decision) O′-LWE1

q,ψ′,� to (search or decision, respectively) O-
LWEk

q,ψ,�.

Proof. Let Tr = TrK′
R
/KR

, which coincides with TrK′/K on K ′. The claimed
transform is as follows. Given a sample (a′, b′) ∈ O′

q × K ′
R/q(O′)∨, output

(�a = Tr(a′ ·�b∨) , b = Tr(b′) mod qO∨) ∈ Ok
q × KR/qO∨.

Clearly, this transform sends uniformly random a′ ∈ O′
q to uniformly random

�a ∈ Ok
q , because �b is an Oq-basis of O′

q, and Tr(a′ ·�b∨) is the coefficient vector
of a with respect to this basis. Also, the transform sends uniformly random
b′ ∈ K ′

R/q(O′)∨ to uniformly random b ∈ KR/qO∨, because Tr: K ′
R → KR is a

surjective KR-linear map and Tr((O′)∨) ⊆ O∨, since Tr((O′)∨ · O) ⊆ Tr((O′)∨ ·
O′) ⊆ O∨

K .
What remains to show is that if b′ = s′ · a′ + e′ then b = 〈�s,�a〉 + e for

�s = Tr(s′ ·�b) and e = Tr(e′). Observe that s′ = 〈�b∨, �s〉 and a′ = 〈�b,�a〉. Therefore,
by Lemma 1, we know that Tr(s′ ·a′) = 〈�s,�a〉. The claim then follows by linearity
of Tr.

To obtain the claimed search reduction, simply apply the above transform to
the input samples for the O′-LWE1

q,ψ′,� problem. This produces the same number
of samples for the O-LWEk

q,ψ,� problem. It is clear that this maps the uniformly
random secret s′ ∈ (O′)∨q to uniformly random �s ∈ (O∨

q )
k, because �b∨ is an

O∨
q -basis of (O′)∨q by Lemma 2, and Tr(s′ ·�b) is the coefficient vector of s with

respect to this basis. Furthermore, we can compute the original secret s from
the transformed secret �s, as s = 〈�b∨, �s〉. For the claimed decision reduction, it is
suffices that the transform also maps uniform samples to uniform ones.

6.2 Managing the Error Distribution

Similarly to our reduction from O-LWE to MP-LWE in Sect. 5, we want a reduc-
tion from many O′-LWE problems to a single O-LWEk problem. To control the
resulting error distribution, we consider the usual case where the original error
distribution ψ′ is a Gaussian, in which case it turns out that the resulting error
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distribution ψ is also a Gaussian. As in Sect. 5.2, we can add some indepen-
dent Gaussian error with a compensating covariance to obtain any large enough
desired target covariance. Alternatively, when ψ′ is a spherical Gaussian, then ψ
is one as well, with a covariance that is a k factor larger, so no compensating
error is needed. (Also note that (O′)∨ can be much denser than O∨—or seen
another way, O can have shorter vectors than O′—so the increase in covariance
does not necessarily represent a real loss.)

In what follows, let K ′/K be a number field extension, fix some orthonormal
R-bases �c′ = τ((�c′)∨) and �c = τ(�c∨) of K ′

R and KR (respectively) for defining
Gaussian distributions, and let A = TrK′

R
/R(�c′ · τ(�c)t) be the real matrix whose

(i, j)th entry is 〈c′
i, cj〉. The proof below shows that At · A = kI where k =

deg(K ′/K); by choosing the bases appropriately we can obtain, e.g., A = 1k ⊗ I
where 1k ∈ Z

k is the all-ones vector.

Corollary 4. Adopt the notation and hypotheses of Theorem 3, with ψ′ = D√
Σ′

over K ′
R for some positive definite matrix Σ′. For any Σ � At · Σ′ · A, there is

an efficient, randomized reduction from (search or decision) O′-LWE1
q,D√

Σ′ ,� to

(search or decision, respectively) O-LWEk
q,D√

Σ ,�.

Moreover, for r = r′√k, there is an efficient deterministic reduction
from (search or decision) O′-LWE1

q,Dr′ ,� to (search or decision, respectively)
O-LWEk

q,Dr,�.

Proof. By Theorem 3, there exists an efficient, deterministic reduction from
O′-LWE1

q,D√
Σ′ ,� to O-LWEk

q,ψ,� where ψ is a distribution over KR and is ana-
lyzed as follows. Let D′ = D√

Σ′ be the original error distribution over K ′
R,

which has the form D′ = �c′t · C ′ where the coefficient distribution C ′ = D√
Σ′ is

a Gaussian over R
kn. Further, let Σ1 = At ·Σ′ ·A and let D = D√

Σ1
be a Gaus-

sian over KR, which has the form D = �ct · C where the coefficient distribution
C = D√

Σ1
is a Gaussian over R

n. Then by linearity,

ψ = TrK′
R
/KR

(D′) = �ct · TrK′
R
/R(τ(�c) · �c′t · C ′) = �ct · At · C ′ = �ct · C = D.

Since Σ � Σ1 by assumption, we can transform the error distribution D√
Σ1

to D√
Σ′ by adding (to the b-part of each Module-LWE sample) a fresh error

term from the compensating Gaussian distribution of covariance Σ′ − Σ1. This
yields the desired error distribution and completes the proof of the first claim.

For the second claim, observe that because �c′ and �c are orthonormal,

At · A = TrK′
R

/R(�c · τ(�c)t) = TrKR/R(TrK′
R

/KR
(1) · �c · τ(�c)t) = TrKR/R(k · �c · τ(�c)t) = k · I.

Therefore, if Σ′ = (r′)2 · I and Σ = r2 · I, then Σ1 = At · Σ′ · A = k(r′)2 · I =
r2 ·I = Σ, so no compensating error is needed, yielding a deterministic reduction.

6.3 Instantiations

It is straightforward to instantiate Theorem 3 and Corollary 4 to get reductions
from a huge class of Order-LWE problems to a single Module-LWE problem.
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Let O be an arbitrary order of a number field K, and let α denote some root
of an arbitrary monic irreducible degree-k polynomial f(X) ∈ O[X]. Then we
can satisfy the hypotheses of Theorem 3 by letting K ′ = K(α) and O′ = O[α],
so that (1, α, . . . , αk−1) is an O-basis of O′. (We emphasize that there are no
restrictions on the choice of the algebraic integer α, other than its degree over O.)
Letting, e.g., ψ′ = Dr be a spherical Gaussian over K ′

R and ψ = Dr
√

k be the
corresponding spherical Gaussian over KR, we have an efficient, deterministic
reduction from O′-LWE1

q,ψ′,� to O-LWEk
q,ψ,�.
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