
Level-Planar Drawings with Few Slopes

Guido Brückner(B), Nadine Davina Krisam, and Tamara Mchedlidze

Karlsruhe Institute of Technology, Karlsruhe, Germany
brueckner@kit.edu, nadine.krisam@student.kit.edu, mched@iti.uka.de

Abstract. We introduce and study level-planar straight-line drawings
with a fixed number λ of slopes. For proper level graphs, we give an
O(n log2 n/ log log n)-time algorithm that either finds such a drawing or
determines that no such drawing exists. Moreover, we consider the par-
tial drawing extension problem, where we seek to extend an immutable
drawing of a subgraph to a drawing of the whole graph, and the simul-
taneous drawing problem, which asks about the existence of drawings
of two graphs whose restrictions to their shared subgraph coincide. We
present O(n4/3 log n)-time and O(λn10/3 log n)-time algorithms for these
respective problems on proper level-planar graphs.

We complement these positive results by showing that testing whether
non-proper level graphs admit level-planar drawings with λ slopes is NP-
hard even in restricted cases.

1 Introduction

Directed graphs explaining hierarchy naturally appear in multiple industrial and
academic applications. Some examples include PERT diagrams, UML compo-
nent diagrams, text edition networks [1], text variant graphs [19], philogenetic
and neural networks. In these, and many other applications, it is essential to
visualize the implied directed graph so that the viewer can perceive the hierar-
chical structure it contains. By far the most popular way to achieve this is to
apply the Sugyiama framework – a generic network visualization algorithm that
results in a drawing where each vertex lies on a horizontal line, called layer, and
each edge is directed from a lower layer to a higher layer [14].

The Sugyiama framework consists of several steps: elimination of directed
cycles in the initial graph, assignement of vertices to layers, vertex ordering and
coordinate assignement. During each of these steps several criteria are optimized,
by leading to more readable visualizations, see e.g. [14]. In this paper we con-
centrate on the last step of the framework, namely coordinate assignment. Thus,
the subject of our study are level graphs defined as follows. Let G = (V,E) be
a directed graph. A k-level assignment of G is a function � : V → {1, 2, . . . , k}
that assigns each vertex of G to one of k levels. We refer to G together with � as
to a (k-)level graph. The length of an edge (u, v) is defined as �(v)− �(u). We say
that G is proper if all edges have length one. The level graph shown in Fig. 1(a)
is proper, whereas the one shown in (b) is not. For a non-proper level graph G
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D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 559–572, 2019.
https://doi.org/10.1007/978-3-030-35802-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_42&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_42


560 G. Brückner et al.

there exists a proper subdivision obtained by subdividing all edges with length
greater than one which result in a proper graph.

A level drawing Γ of a level graph G maps each vertex v ∈ V to a point
on the horizontal line with y-coordinate �(v) and a real x-coordinate Γ (v), and
each edge to a y-monotone curve between its endpoints. A level drawing is called
level-planar if no two edges intersect except in common endpoints. It is straight-
line if the edges are straight lines. A level drawing of a proper (subdivision of a)
level graph G induces a total left-to-right order on the vertices of a level. We say
that two drawings are equivalent if they induce the same order on every level.
An equivalence class of this equivalence relation is an embedding of G. We refer
to G together with an embedding to as embedded level graph G. The third step
of Sugyiama framework, vertex ordering, results in an embedded level graph.

The general goal of the coordinate assignment step is to produce a final
visualization while further improving its readability. The criteria of readability
that have been considered in the literature for this step include straightness and
verticality of the edges [14]. Here we study the problem of coordinate assignment
step with bounded number of slopes. The slope of an edge (u, v) in Γ is defined
as (Γ (v) − Γ (u))/(�(v) − �(u)). For proper level graphs this simplifies to Γ (v) −
Γ (u). We restrict our study to drawings in which all slopes are non-negative; such
drawings can be transformed into drawings with negative slopes by shearing; see
Fig. 1. A level drawing Γ is a λ-slope drawing if all slopes in Γ appear in the
set {0, 1, . . . , λ−1}. We study embedding-preserving straight-line level-planar λ-
slope drawings, or λ-drawings for short and refer to the problem of finding these
drawings as λ-Drawability. Since the possible edge slopes in a λ-drawing are
integers all vertices lie on the integer grid.

Fig. 1. Shearing drawings to change the slopes. In (a), the left drawing with slopes 0
and 1 is transformed into the right orthogonal drawing, i.e., one with slopes −1 and 1.
In (b), the left drawing with slopes 0, 1 and 2 is transformed into a drawing with
slopes −1, 0 and 1.

Related Work. The number of slopes used for the edges in a graph drawing
can be seen as an indication of the simplicity of the drawing. For instance, the
measure edge orthogonality, which specifies how close a drawing is to an orthog-
onal drawing, where edges are polylines consisting of horizontal and vertical
segments only, has been proposed as a measure of aesthetic quality of a graph
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drawing [31]. In a similar spirit, Kindermann et al. studied the effect reducing the
segment complexity on the aesthetics preference of graph drawings and observed
that in some cases people prefer drawings using lower segment complexity [22].
More generally, the use of few slopes for a graph drawing may contribute to the
formation of “Prägnanz” (“good figure” in German) of the visualization, that
accordingly to the Gestalt law of Prägnanz, or law of simplicity, contributes to
the perceived quality of the visualizations. This is design principle often guides
the visualization of metro maps. See [28] for a survey of the existing approaches,
most of which generate octilinear layouts of metro maps, and [27] for a recent
model for drawing more general k-linear metro maps.

Level-planar drawing with few slopes have not been considered in the liter-
ature but drawings of undirected graphs with few slopes have been extensively
studied. The (planar) slope number of a (planar) graph G is the smallest num-
ber s so that G has a (planar) straight-line drawing with edges of at most s dis-
tinct slopes. Special attention has been given to proving bounds on the (planar)
slope number of undirected graph classes [4,9–12,20,21,23,24,29]. Determining
the planar slope number is hard in the existential theory of reals [16].

Several graph visualization problems have been considered in the partial and
simultaneous settings. In the partial drawing extension problem, one is presented
with a graph and an immutable drawing of some subgraph thereof. The task is
to determine whether the given drawing of the subgraph can be completed to
a drawing of the entire graph. The problem has been studied for the planar
setting [25,30] and also the level-planar setting [8]. In the simultaneous drawing
problem, one is presented with two graphs that may share some subgraph. The
task is to draw both graphs so that the restrictions of both drawings to the shared
subgraph are identical. We refer the reader to [5] for an older literature overview.
The problem has been considered for orthogonal drawings [2] and level-planar
drawings [3]. Up to our knowledge, neither partial nor simultaneous drawings
have been considered in the restricted slope setting.

Contribution. We introduce and study the λ-Drawability problem. To solve
this problem for proper level graphs, we introduce two models. In Sect. 3 we
describe the first model, which uses a classic integer-circulation-based approach.
This model allows us to solve the λ-Drawability in O(n log3 n) time and
obtain a λ-drawing within the same running time if one exists. In Sect. 4, we
describe the second distance-based model. It uses the duality between flows
in the primal graph and distances in the dual graph and allows us to solve
the λ-Drawability in O(n log2 n/ log log n) time. We also address the partial
and simultaneous settings. The classic integer-circulation-based approach can
be used to extend connected partial λ-drawings in O(n log3 n) time. In Sect. 5,
we build on the distance-based model to extend not-necessarily-connected par-
tial λ-drawings in O(n4/3 log n) time, and to obtain simultaneous λ-drawings
in O(λn10/3 log n) time if they exist. We finish with some concluding remarks
in Sect. 6 and refer to the full version [7] for a proof that 2-Drawability is
NP-hard even for biconnected graphs where all edges have length one or two.
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2 Preliminaries

Let Γ be a level-planar drawing of an embedded level-planar graph G. The width
of Γ is defined as maxv∈V Γ (v) − minv∈V Γ (v). An integer x̄ is a gap in Γ if
it is Γ (v) �= x̄ for all v ∈ V , Γ (v1) < x̄ and Γ (v2) > x̄ for some v1, v2 ∈ V ,
and Γ (u) < x̄ < Γ (v) for no edge (u, v) ∈ E. A drawing Γ is compact if it has
no gap. Note that a λ-drawing of a connected level-planar graph is inherently
compact. While in a λ-drawing of a non-connected level-planar graph every gap
can be eliminated by a shift. The fact that we only need to consider compact λ-
drawings helps us to limit their width. Thus, any compact λ-drawing has a width
of at most (λ − 1)(n − 1).

Let u and v be two vertices on the same level i. With [u, v]G (or [u, v] when G
is clear from the context) we denote the set of vertices that contains u, v and all
vertices in between u and v on level i in G. We say that two vertices u and v
are consecutive in G when [u, v] = {u, v}. Two edges e = (u,w), e′ = (v, x) are
consecutive in G when the only edges with one endpoint in [u, v]G and the other
endpoint in [w, x]G are e and e′.

A flow network F = (N,A) consists of a set of nodes N connected by a set of
directed arcs A. Each arc has a demand specified by a function d : A → N0 and
a capacity specified by a function c : A → N ∪ {∞} where ∞ encodes unlimited
capacity. A circulation in F is a function ϕ : A → N0 that assigns an integral flow
to each arc of F and satisifies the two following conditions. First, the circulation
has to respect the demands and capacities of the arcs, i.e., for each arc a ∈ A it
is d(a) ≤ ϕ(a) ≤ c(a). Second, the circulation has to respect flow conservation,
i.e., for each node v ∈ N it is

∑
(u,v)∈A ϕ(u, v) =

∑
(v,u)∈A ϕ(v, u). Depending

on the flow network no circulation may exist.

3 Flow Model

In this section, we model the λ-Drawability as a problem of finding a circu-
lation in a flow network. Let G be an embedded proper k-level graph together
with a level-planar drawing Γ . As a first step, we add two directed paths pleft
and pright that consist of one vertex on each level from 1 to k to G. Insert pleft
and pright into Γ to the left and right of all other vertices as the left and right
boundary, respectively. See Fig. 2(a) and (c). From now on, we assume that G
and Γ contain the left and right boundary.

The flow network Fλ
G consists of nodes and arcs and is similar to a directed

dual of G with the difference that it takes the levels of G into account. In par-
ticular, for every edge e of G, Fλ

G contains two nodes eleft and eright, in the left
and the right faces incident to e, and a dual slope arc e� = (eright, eleft) with
demand 0 and capacity λ − 1; see the blue arcs in Fig. 2(b) and (c). The flow
across e� determines the slope of e. Additionally, for every pair of consecutive
vertices u, v we add two nodes [u, v]low and [u, v]high to Fλ

G and connect them by
a space arc [u, v]�; see the red arcs in Fig. 2(b) and (c). The flow across [u, v]�

determines the space between u and v. The space between u and v needs to be
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Fig. 2. (a) An embedded level graph G. (b) The definition of the arcs of the flow
network. (c) The graph G together with the paths pleft and pright in black. The resulting
flow network F λ

G (c) consists of the blue slope arcs and the red space arcs, its nodes
are formed by merging the nodes in the gray areas. The red space arcs have a demand
of 1 and a capacity of (λ − 1)(n − 1) and the blue slope arcs have a demand of zero
and a capacity of λ − 1.

at least one to prevent u and v from colliding and can be at most (λ − 1)(n − 1)
due to the restriction to compact drawings. So, assign to [u, v]� a demand of
one and a capacity of (λ − 1)(n − 1). To obtain the final flow network we merge
certain nodes. Let e = (u,w) and e′ = (v, x) be consecutive edges. Merge the
nodes eright, e

′
left, the nodes {{u′, v′}high : ∀u′, v′ consecutive in [u, v]} and the

nodes {{w′, x′}low : ∀w′, x′ consecutive in [w, x]} into a single node. Next, merge
all remaining source and sink nodes into one source node s and one sink node t,
respectively. See Fig. 2(c), where the gray areas touch nodes that are merged
into a single node. Finally, insert an arc from t to s with unlimited capacity.

The network Fλ
G is designed in such a way that the circulations in Fλ

G corre-
spond bijectively to the λ-drawings of G. Let Γ be a drawing of G and let x be
the function that assigns to each vertex of G its x-coordinate in Γ . We define a
dual circulation x� as follows. Recall that every arc a of Fλ

G is either dual to an
edge of G or to two consecutive vertices in G. Hence, the left and right incident
faces fleft and fright of a in Fλ

G contain vertices of G. Define the circulation x� by
setting x�(a) := x(fright) − x(fleft). We remark the following, although we defer
the proof to the next section.

Lemma 1. Let G be an embedded proper level-planar graph together with a λ-
drawing Γ . The dual x� of the function x that assigns to each vertex of G its x-
coordinate in Γ is a circulation in Fλ

G .

In the reverse direction, given a circulation ϕ in Fλ
G we define a dual func-

tion ϕ� that, when interpeted as assigning an x-coordinate to the vertices of G,
defines a λ-drawing of G. Refer to the level-1-vertex pright as vright. Start by
setting ϕ�(vright) = 0, i.e., the x-coordinate of vright is 0. Process the remaining
vertices of the right boundary in ascending order with respect to their levels.
Let (u, v) be an edge of the right boundary so that u has already been pro-
cessed and v has not been processed yet. Then set ϕ�(v) = ϕ�(u) + ϕ((u, v)�),
where (u, v)� is the slope arc dual to (u, v). Let w, x be a pair of consecutive
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vertices so that x has already been processed and w has not yet been processed
yet. Then set ϕ�(w) = ϕ�(x) + ϕ([w, x]�), where [w, x]� is a space arc. It turns
out that ϕ� defines a λ-drawing of G.

Lemma 2. Let G be an embedded proper level-planar graph, let λ ∈ N and let ϕ
be a circulation in Fλ

G . Then the dual ϕ�, when interpeted as assigning an x-
coordinate to the vertices of G, defines a λ-drawing of G.

While both Lemmas 1 and 2 can be proven directly, we defer their proofs to
Sect. 4 where we introduce the distance model and prove Lemmas 3 and 4, the
stronger versions of Lemmas 1 and 2, respectively. Combining Lemmas 1 and 2
we obtain the following.

Theorem 1. Let G be an embedded proper level-planar graph and let λ ∈ N.
The circulations in Fλ

G correspond bijectively to the λ-drawings of G.

Theorem 1 implies that a λ-drawing can be found by applying existing flow
algorithms to Fλ

G . For that, we transform our flow network with arc demands to
the standard maximum flow setting without demands by introducing new sources
and sinks. We can then use the O(n log3 n)-time multiple-source multiple-sink
maximum flow algorithm due to Borradaile et al. [6] to find a circulation in Fλ

G
or to determine that no circulation exists.

Corollary 1. Let G be an embedded proper level-planar graph and let λ ∈ N.
It can be tested in O(n log3 n) time whether a λ-drawing of G exists, and if so,
such a drawing can be found within the same running time.

3.1 Connected Partial Drawings

Recall that a partial λ-drawing is a tuple (G,H,Π), where G is an embedded
level-planar graph, H is an embedded subgraph of G and Π is a λ-drawing
of H. We say that (G,H,Π) is λ-extendable if G admits a λ-drawing Γ whose
restriction to H is Π. Here Γ is referred to as a λ-extension of (G,H,Π).

In this section we show that in case H is connected, we can use the flow
model to decide whether (G,H,Π) is λ-extendable. Observe that when H is
connected Π is completely defined by the slopes of the edges in H up to horizontal
translation. Let Fλ

G be the flow network corresponding to G. In order to fix the
slopes of an edge e of H to a value �, we fix the flow across the dual slope arc e�

in H to �. Checking whether a circulation in the resulting flow network exists
can be reduced to a multiple-source multiple-sink maximum flow problem, which
once again can be solved by the algorithm due to Borradaile et al. [6].

Corollary 2. Let (G,H,Π) be a partial λ-drawing where H is connected. It can
be tested in O(n log3 n) time whether (G,H,Π) is λ-extendable, and if so, a
corresponding λ-extension can be constructed within the same running time.
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4 Dual Distance Model

A minimum cut (and, equivalently, the value of the maximum flow) of an st-
planar graph G can be determined by computing a shortest (s�, t�)-path in a
dual of G [17,18]. Hassin showed that to construct a flow, it is sufficient to
compute the distances from s� to all other vertices in the dual graph [13]. To
the best of our knowledge, this duality has been exploited only for flow networks
with arc capacities, but not with arc demands. In this section, we extend this
duality to arcs with demands. The resulting dual distance model improves the
running time for the λ-Drawability, lets us test the existence of λ-extensions
of partial λ-drawings for non-connected subgraphs, and allows us to develop an
efficient algorithm for testing the existence of simultaneous λ-drawings.

We define Dλ
G to be the directed dual of Fλ

G as follows. Let a = (u, v) be an
arc of Fλ

G with demand d(a) and capacity c(a). Further, let fleft and fright denote
the left and the right faces of a in Fλ

G , respectively. The dual Dλ
G contains fleft

and fright as vertices connected by one edge (fleft, fright) with length c(a) and
another edge (fright, fleft) with length −d(a); see Fig. 3.

Observe that to obtain Fλ
G from G (with left and right paths pleft and pright)

we added dual arcs to edges of G and dual arcs to the space between two consec-
utive vertices on one level. Consider for a moment the graph G′ obtained from G
by adding edges (u, v) for all consecutive vertices u v, where u is to the right
of v. Graph G′ and Dλ

G are identical and therefore Dλ
G has the vertex set V of G

and contains a subset of its edges. Recall that the dual slope arcs in Fλ
G have

demand 0 and capacity λ − 1, therefore the edges of Dλ
G that connect vertices

on different layers have non-negative length. While the edges of Dλ
G between

consecutive vertices on the same level have length −1.

Fig. 3. Definition of the dual edges for a flow network arc a = (u, v) with demand d(a)
and capacity c(a). Let fleft and fright denote the vertices corresponding to the faces to
the left and right of a in F λ

G . Then add the edge (fleft, fright) with length c(a) and the
reverse edge (fright, fleft) with length −d(a). Edges with infinite length are not created
because they do not add constraints.

A distance labeling is a function x : V → Z that for every edge (u, v) of Dλ
G

with length l satisfies x(v) ≤ x(u)+l. We also say that (u, v) imposes the distance
constraint x(v) ≤ x(u)+ l. A distance labeling for Dλ

G is the x-coordinate assign-
ment for a λ-drawing: For an edge (u, v) of Dλ

G where u, v are consecutive vertices
in G, the distance labeling guarantees x(v) ≤ x(u) − 1, i.e., the consecutive ver-
tices are in the correct order and do not overlap. If an edge (u, v) between layers
has length λ−1, then the distance labeling ensures x(v) ≤ x(u)+λ−1, i.e., (u, v)
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Fig. 4. The distance network D2
G obtained from the flow network F 2

G shown in Fig. 2(c).
The x-coordinate of every vertex is its distance from vright in D2

G . All red arcs have
length −1, all blue arcs pointing up have length 1 and all blue arcs pointing down have
length 0. For every red arc there exists an arc in the reverse direction with length ∞.
We omit these arcs because they do not impose any constraints on the shortest distance
labeling.

has a slope in {0, . . . , λ−1}. Computing the shortest distances from vright in Dλ
G

to every vertex (if they are well-defined) gives a distance labeling that we refer to
as the shortest distance labeling. A distance labeling of Dλ

G does not necessarily
exist. This is the case when Dλ

G contains a negative cycle, e.g., when the in- or
out-degree of a vertex in G is strictly larger than λ. For a distance labeling x
of Dλ

G we define a dual circulation x� by setting x�(a) := x(fright) − x(fleft) for
each arc a of Fλ

G with left and right incident faces fleft and fright (Fig. 4).

Lemma 3. Let G be an embedded level-planar graph and Γ be a λ-drawing of G.
The function x that assigns to each vertex of G its x-coordinate in Γ is a distance
labeling of Dλ

G and its dual x� is a circulation in Fλ
G .

Proof. Since Γ preserves the embedding of G, for each consecutive vertices v, u,
with v preceeding u in G it holds that Γ (v) < Γ (u). Since Γ is a grid drawing
Γ (v) ≤ Γ (u) − 1, which implies x(v) ≤ x(u) + �, where � = −1 is the length
of (u, v). Since Γ is a λ-drawing, i.e. every edge (u, v) between the two levels
has a slope in {0, . . . λ − 1}, it holds that Γ (u) ≤ Γ (v) ≤ Γ (u) + λ − 1, which
implies x(u) ≤ x(v) + 0, for the edge (v, u) of Dλ

G with length zero and x(v) <
x(u) + λ − 1 for the edge (u, v) of Dλ

G with length λ − 1. Hence, x is a distance
labeling of Dλ

G .
We now show that x� is a circulation in Fλ

G . Let f1, f2, . . . , ft, ft+1 = f1 be
the faces incident to some node v of Fλ

G in counter-clockwise order. Let a be the
arc incident to v and dual to the edge between fi and fi+1 with 1 ≤ i ≤ t. If a
is an incoming arc, it adds a flow of x(fi+1) − x(fi) to v. If a is an outgoing
arc, it removes a flow of x(fi) − x(fi+1) from v, or, equivalently, it adds a flow
of x(fi+1) − x(fi) to v. Therefore, the flow through v is

∑
i (x(fi+1) − x(fi)).

This sum cancels to zero, i.e., the flow is preserved at v. Recall that the
edge (fleft, fright) with length c(a) in Dλ

G ensures x(fright) ≤ x(fleft) + c(a),
which gives x�(a) ≤ c(a). So, no capacities are exceeded. Analogously, the
edge (fright, fleft) with length −d(a) in Dλ

G ensures x(fleft) ≤ x(fright) − d(a),
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which gives x�(a) ≥ d(a). Hence, all demands are fulfilled and x� is indeed a
circulation in Fλ

G . 
�
Recall from Sect. 3 that for a circulation ϕ in Fλ

G we define a dual drawing ϕ�

by setting the x-coordinates of the vertices of G as follows. For the lowest vertex
of the right boundary set ϕ�(vright) = 0. Process the remaining vertices of the
right boundary in ascending order with respect to their levels. Let (u, v) be an
edge of the right boundary so that u has already been processed and v has
not been processed yet. Then set ϕ�(v) = ϕ�(u) + ϕ((u, v)�), where (u, v)�

is the slope arc dual to (u, v). Let w, x be a pair of consecutive vertices so
that x has already been processed and w has not yet been processed yet. Then
set ϕ�(w) = ϕ�(x)+ϕ([w, x]�), where [w, x]� is a space arc. It turns out that ϕ�

is a distance labeling of Dλ
G and a λ-drawing of G.

Lemma 4. Let G be an embedded level-planar graph, let λ ∈ N, and let ϕ be
a circulation in Fλ

G . The dual ϕ� is a distance labeling of Dλ
G and the drawing

induced by interpreting the distance label of a vertex as its x-coordinate is a λ-
drawing of G.

Proof. We show that ϕ� is a distance labeling in Dλ
G . The algorithm described

above assings a value to every vertex of Dλ
G . We now show that ϕ� is indeed a

distance labeling by showing that every edge satisfies a distance constraint.
Observe that the distance constraints imposed by edges dual to the space arcs

are satisfied by construction. To show that the distance constraints imposed by
edges dual to the slope arcs are also satisfied, we prove that for every edge (u, v),
it holds that ϕ�(v) = ϕ�(u)+ϕ((u, v)�). We refer to this as condition C for short.
Since ϕ((u, v)�) ≤ λ − 1 and the length � of (u, v) is λ − 1 we obtain ϕ�(v) =
ϕ�(u) + �, which implied that φ� is a distance labeling of Dλ

G .
The proof is by induction based on the bottom to top and right to left

order among the edges of Dλ
G . We say that (a, b) precedes (c, d) if either �(a) <

�(c), or �(a) = �(c) and a is to the right of c, or �(a) = �(c) and b is to the
right of d (in case a = c). For the base case observe that the edges with both
end-vertices on the first level and the edges of pright satisfy condition C by the
definition of ϕ�. Now let (u, v) be an edge not addressed in the base case and
assume that for every edge (u′, v′) preceding edge (u, v) condition C holds. For
the inductive step we show that condition C also holds for (u, v). Let (u′, v′)
denote the edge to the right of (u, v) so that (u, v) and (u′, v′) are consecutive;
see Fig. 5. Because v is not the rightmost vertex on its level this edge exists. Let A
denote the set of space arcs v1v

�
2 in Fλ

G with v1, v2 ∈ [v′, v]. Analogously, let B
denote the set of space arcs u1u

�
2 in Fλ

G with u1, u2 ∈ [u′, u]. It is ϕ�(v) = ϕ�(v′)+∑
a∈A ϕ(a) by definition of ϕ�. Further, by induction hypothesis and since (u′, v′)

precedes (u, v) it holds that ϕ�(v′) = ϕ�(u′) + ϕ((u′, v′)�). Inserting the latter
into the former equation, we obtain ϕ�(v) = ϕ�(u′) + ϕ((u′, v′)�) +

∑
a∈A ϕ(a).

Again, by definition of ϕ�, it is ϕ�(u) = ϕ�(u′)+
∑

b∈B ϕ(b). By subtracting ϕ�(u)
from ϕ�(v) we obtain

ϕ�(v) = ϕ�(u) −
∑

b∈B

ϕ(b) + ϕ((u′, v′)�) +
∑

a∈A

ϕ(a) (1)
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Flow conservation on the vertex of Fλ
G to which edges of A and B are incident

gives ϕ((u, v)�)−∑
a∈A ϕ(a)−ϕ((u′, v′)�)+

∑
b∈B ϕ(b) = 0. Solving this equation

for ϕ(u, v) and inserting it into (1) yields ϕ�(v) = ϕ�(u) + ϕ((u, v)�), i.e. the
condition C holds for (u, v). Therefore ϕ� is a distance labeling, which we have
shown to define a λ-drawing of G. 
�

Fig. 5. Proof of Lemma 4. Sets A and B contain the outgoing and incoming red flow
network arcs incident to the gray oval, respectively.

Because Dλ
G is planar we can use the O(n log2 n/ log log n)-time shortest path

algorithm due to Mozes and Wulff-Nilsen [26] to compute the shortest distance
labeling. This improves our O(n log3 n)-time algorithm from Sect. 3.

Theorem 2. Let G be an embedded proper level-planar graph. The distance label-
ings of Dk

G correspond bijectively to the λ-drawings of G. If such a drawing exists,
it can be found in O(n log2 n/ log log n) time.

5 Partial and Simultaneous Drawings

In this section we use the distance model from Sect. 4 to construct partial and
simultaneous λ-drawings. We start with introducing a useful kind of drawing.
Let Γ be a λ-drawing of G. We call Γ a λ-rightmost drawing when there exists
no λ-drawing Γ ′ with Γ (v) < Γ ′(v) for some v ∈ V . In this definition, we
assume x(Γ (vright)) = x(Γ ′(vright)) = 0 to exclude trivial horizontal translations.
Hence, a drawing is rightmost when every vertex is at its rightmost position
across all level-planar λ-slope grid drawings of G. It is not trivial that a λ-
rightmost drawing exists, but it follows directly from the definition that if such
a drawing exists, it is unique. The following lemma establishes the relationship
between λ-rightmost drawings and shortest distance labelings of Dλ

G .

Lemma 5. Let G be an embedded proper level-planar graph. If Dλ
G has a shortest

distance labeling it describes the λ-rightmost drawing of G.

Proof. The shortest distance labeling of Dλ
G is maximal in the sense that for any

vertex v there exists a vertex u and an edge (u, v) with length l so that it is x(v) =
x(u) + l. Recall that the definition of distance labelings only requires x(v) ≤
x(u) + l. The claim then follows by induction over V in ascending order with
respect to the shortest distance labeling. 
�
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5.1 Partial Drawings

Let (G,H,Π) be a partial λ-drawing. In Sect. 3.1 we have shown that the flow
model can be adapted to check whether (G,H,Π) has a λ-extension, in case H is
connected. In this section, we show how to adapt the distance model to extend
partial λ-drawings, including the case H is disconnected. Recall that the distance
label of a vertex v is its x-coordinate. A partial λ-drawing fixes the x-coordinates
of the vertices of H. The idea is to express this with additional constraints
in Dλ

G . Let vref be a vertex of H. In a λ-extension of (G,H,Π), the relative
distance along the x-axis between a vertex v of H and vertex vref should be dv =
Π(vref) − Π(v). This can be achieved by adding an edge (v, vref) with length dv

and an edge (vref , v) with length −dv. The first edge ensures that it is x(vref) ≤
x(v)+dv, i.e., x(v) ≥ x(vref)−dv and the second edge ensures x(v) ≤ x(vref)−d.
Together, this gives x(v) = x(vref) − dv. Let Dλ

G,Π be Dλ
G augmented by the

edges {(v, vref), (vref,v) : ∀v ∈ H} with lengths as described above.
To decide existence of λ-extension and in affirmative construct the corre-

sponding drawing we compute the shortest distance labeling in Dλ
G,Π . Observe

that this network can contain negative cycles and therefore no shortest dis-
tance labeling. Unfortunately, Dλ

G,Π is not planar, and thus we cannot use the
embedding-based algorithm of Mozes and Wulff-Nilsen. However, since all newly
introduced edges have vref as one endpoint, vref is an apex of Dλ

G , i.e., remov-
ing vref from Dλ

G,Π makes it planar. Therefore Dλ
G,Π can be recursively sepa-

rated by separators of size O(
√

n). We can therefore use the shortest-path algo-
rithm due to Henzinger et al. to compute the shortest distance labeling of Dλ

G,Π

in O(n4/3 log n) time [15].

Theorem 3. Let (G,H,Π) be a partial λ-drawing. In O(n4/3 log n) time it can
be determined whether (G,H,Π) has a λ-extension and in the affirmative the
corresponding drawing can be computed within the same running time.

5.2 Simultaneous Drawings

In the simultaneous λ-drawing problem, we are given a tuple (G1,G2) of two
embedded level-planar graphs that share a common subgraph G1∩2 = G1 ∩ G2.
We assume w.l.o.g. that G1 and G2 share the same right boundary and that the
embeddings of G1 and G2 coincide on G1∩2. The task is to determine whether
there exist λ-drawings Γ1, Γ2 of G1,G2, respectively, so that Γ1 and Γ2 coincide
on the shared graph G1∩2. The approach is the following. Start by computing the
rightmost drawings of G1 and G2. Then, as long as these drawings do not coincide
on G1∩2 add necessary constraints to Dλ

G1
and Dλ

G2
. This process terminates after

a polynomial number of iterations, either by finding a simultaneous λ-drawing,
or by determining that no such drawing exist.

Finding the necessary constraints works as follows. Suppose that Γ1, Γ2 are
the rightmost drawings of G1,G2, respectively. Because both G1 and G2 have the
same right boundary they both contain vertex vright. We define the coordinates
in the distance labelings of Dλ

G1
and Dλ

G2
in terms of this reference vertex.
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Now suppose that for some vertex v of G1∩2 the x-coordinates in Γ1 and Γ2

differ, i.e., it is Γ1(v) �= Γ2(v). Assume Γ1(v) < Γ2(v) without loss of generality.
Because Γ1 is a rightmost drawing, there exists no drawing of G1 where v has
an x-coordinate greater than Γ1(v). In particular, there exist no simultaneous
drawings where v has an x-coordinate greater than Γ1(v). Therefore, we must
search for a simultaneous drawing where Γ2(v) ≤ Γ1(v). We can enforce this con-
straint by adding an edge (vright, v) with length Γ1(v) into Dλ

G2
. We then attempt

to compute the drawing Γ2 of G2 defined by the shortest distance labeling in Dλ
G2

.
This attempt produces one of two possible outcomes. The first possibility is that
there now exists a negative cycle in Dλ

G2
. This means that there exists no draw-

ing Γ2 of G2 with Γ2(v) ≤ Γ (v). Because Γ1 is a rightmost drawing, this means
that no simultaneous drawings of G1 and G2 exist. The algorithm then termi-
nates and rejects this instance. The second possiblity is that we obtain a new
drawing Γ2. This drawing is rightmost among all drawings that satisfy the added
constraint Γ2(v) ≤ Γ1(v). In this case there are again two possibilities. Either
we have Γ1(v) = Γ2(v) for each vertex v in G1∩2. In this case Γ1 and Γ2 are
simultaneous drawings and the algorithm terminates. Otherwise there exists at
least one vertex w in G1∩2 with Γ1(w) �= Γ2(w). We then repeat the procedure
just described for adding a new constraint.

We repeat this procedure of adding other constraints. To bound the number
of iterations, recall that we only consider compact drawings, i.e., drawings whose
width is at most (λ − 1)(n − 1). In each iteration the x-coordinate of at least
one vertex is decreased by at least one. Therefore, each vertex is responsible for
at most (λ − 1)(n − 1) iterations. The total number of iterations is therefore
bounded by n(λ − 1)(n − 1) ∈ O(λn2).

Note that due to the added constraints Dλ
G1

and Dλ
G2

are generally not pla-
nar. We therefore apply the O(n4/3 log n)-time shortest-path algorithm due to
Henzinger et al. that relies not on planarity but on O(

√
n)-sized separators to

compute the shortest distance labellings. This gives the following.

Theorem 4. Let G1,G2 be embedded level-planar graphs that share a common
subgraph G1∩2. In O(λn10/3 log n) time it can be determined whether G1,G2 admit
simultaneous λ-drawings and if so, such drawings can be computed within the
same running time.

6 Conclusion

In this paper we studied λ-drawings, i.e., level-planar drawings with λ slopes. We
model λ-drawings of proper level-planar graphs as integer flow networks. This
lets us find λ-drawings and extend connected partial λ-drawings in O(n log3 n)
time. We extend the duality between integer flows in a primal graph and shortest
distances in its dual to obtain a more powerful distance model. This distance
model allows us to find λ-drawings in O(n log2 n/ log log n) time, extend not-
necessarily-connected partial λ-drawings in O(n4/3 log n) time and find simulta-
neous λ-drawings in O(λn10/3 log n) time.
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In the non proper case, testing the existence of a 2-drawing becomes NP-hard,
even for biconnected graphs with maximum edge length two [7].
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