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Abstract. The SPQR-tree is a data structure that compactly represents
all planar embeddings of a biconnected planar graph. It plays a key role
in constrained planarity testing.

We develop a similar data structure, called the UP-tree, that com-
pactly represents all upward planar embeddings of a biconnected single-
source directed graph. We demonstrate the usefulness of the UP-tree by
solving the upward planar embedding extension problem for biconnected
single-source directed graphs.

1 Introduction

A natural extension of planarity to directed graphs (digraphs) is to consider
planar drawings where each edge is drawn as a y-monotone curve. Such draw-
ings are called upward planar, and a graph admitting an upward planar drawing
is upward planar. A planar (combinatorial) embedding E of a graph G is an
upward planar embedding if G has an upward planar drawing whose (combina-
torial) embedding is E . Whereas undirected graphes can be tested for planarity
in linear time, upward planarity testing is NP-complete in general, though there
are efficient algorithms for graphs with a single source [4,24] and graphs with a
fixed embedding [3]. In the special case of st-graphs, i.e., graphs with a single
source s and a single sink t with s and t on the same face, planar embeddings
are the same as the upward planar embeddings [28], and hence upward planarity
and planarity are equivalent.

A related but different planarity notion for digraphs is level planarity, where
the vertices of the graph have fixed levels that correspond to horizontal lines in
the drawing. The task is to order the vertices on each level so that the drawing
is planar. Level planarity can be tested in linear time [26] by a quite involved
algorithm, or in quadratic time by several simpler algorithms [11,20,29].

In a constrained embedding problem, one seeks a planar embedding of a given
graph that satisfies additional constraints. Typical examples are simultaneous
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embeddings with fixed edges [5], cluster planarity [19], constraints on the face
sizes [13,14], optimizing the depth of the embedding [2] and optimizing the bends
in an orthogonal drawing [6,7,18]. One of the most prominent examples of the
last years is the partial drawing extension problem, which asks whether a given
drawing of a subgraph can be extended to a planar drawing of the whole graph.
The partial embedding extension problem is strongly related, here the input is a
planar embedding of a subgraph and the question is whether it can be extended
to a planar embedding of the whole graph. For undirected planar graphs the two
problems are equivalent and can be solved in linear time [1,25].

One of the key tools for all of these applications is the SPQR-tree, which
compactly represents all planar embeddings of a biconnected planar graph G
and breaks down the complicated task of choosing a planar embedding of G
into simpler independent embedding choices of its triconnected components [15–
17,23,27,30]. In fact, these embeddings are either uniquely determined up to
reversal, or they consist in arbitrarily choosing a permutation of parallel edges
between two pole vertices. The common approach for attacking the above-
mentioned constrained embedding problems is to project the constraints on the
global embedding to local constraints on the skeleton embeddings that can then
be satisfied by consistent local choices. While the implementation details are
often highly technical and non-trivial, the approach has proven to be extremely
successful.

In comparison, relatively little is known about constrained planarity problems
for planarity notions of digraphs. Brückner and Rutter [10] study the problem
of extending a given partial drawing of a level graph and Da Lozzo et al. [12]
study the same question for upward planarity. In general, extending a given par-
tial upward planar drawing requires to determine an upward planar embedding
that (i) extends the embedding of the partial drawing, and (ii) admits a drawing
that extends the given drawing. Here step (i) requires solving the embedding
extension problem but with additional constraints that ensure that a drawing
extension is feasible. It is worth noting that for upward planarity the embedding
extension problem and the drawing extension problem are distinct; Da Lozzo
et al. show that, generally, even if an upward planar embedding of the whole
graph is given, it is NP-complete to decide whether it can be drawn such that
it extends a given partial drawing [12, Theorem 2]. On the positive side, they
present tractability results for directed paths and cycles with a given upward
planar embedding, and for st-graphs. The restriction to st-graphs allows a rela-
tively simple characterization of the upward planar embeddings that extend the
given partial drawings [12, Lemma 6], which yields an O(n log n)-time algorithm
for step (ii). For step (i), Da Lozzo et al. exploit the fact that for st-graphs, the
choice of an upward planar embedding is equivalent to choosing a planar embed-
ding, and hence the SPQR-tree allows to efficiently search for an upward planar
embedding satisfying the additional constraints required by condition (ii).

In this paper, we seek to generalize the approach of Da Lozzo et al. to bicon-
nected single-source graphs. The key difficulty in this case is that neither do we
have access to all the upward planar embeddings of such graphs, nor is it known
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what the necessary and sufficient conditions are for an upward planar embedding
to admit a drawing that extends a given subdrawing.

Contribution and Outline. We construct a novel SPQR-tree-like embedding
representation, called the UP-tree, that represents exactly the upward planar
embeddings of a biconnected single-source graph. As in SPQR-trees, the embed-
ding choices in the UP-tree are broken down into independent embedding choices
of skeleton graphs that are either unique up to reversal or allow to arbitrarily
permute parallel edges between two poles. As such, UP-trees can take the role
of SPQR-trees for constrained embedding problems in upward planarity, making
them a powerful tool with a broad range of applications. We demonstrate this by
giving an quadratic-time algorithm for the upward planar embedding extension
problem for biconnected single-source graphs.

After introducing some preliminaries in Sect. 2, we review the results on
decomposing upward planar single-source digraphs due to Hutton and Lubiw [24]
in Sect. 3. We proceed to extend this idea from a single decomposition to decom-
position trees. Proofs of statements marked with a star (�) can be found in the
full version [9]. In Sect. 4, we define the UP-tree and in Sect. 5 we use it to solve
the partial upward embedding extension problem.

2 Preliminaries

Let G = (V,E) be a connected simple undirected graph. A cutvertex of G is a
vertex whose removal disconnects G. We say that G is biconnected if it has no
cutvertex. We say that {u, v} is a cutpair if there are connected subgraphs H1,H2

of G with H1 ∪ H2 = G and H1 ∩ H2 = {u, v}. If a graph has no cutpair it is
triconnected.

Decomposition Trees. Assume that G is biconnected. A decomposition along a
cutpair {u, v} of G is defined as follows. Let μ1, μ2 be two nodes connected
by an undirected arc (μ1, μ2). Node μi is equipped with a multigraph Hi ∪
{(u, v)} called its skeleton denoted by skel(μi). The newly added edge (u, v) is
a virtual edge and corresponds to μ2 in μ1 and to μ1 in μ2, respectively. This
is formalized as functions corrμ1 : (u, v) �→ μ2 and corrμ2 : (u, v) �→ μ1. If there
exists a cutpair {u′, v′} in skel(μi) and we may once again decompose along that
cutpair. By repeating this process we obtain an unrooted decomposition tree T .

Let a = (μ, ν) be an arc of T . Then skel(μ) and skel(ν) share two vertices u, v
and the existence of a can be traced back to a decomposition along u, v. We then
say that the poles of μ in ν are u and v. When ν is clear from the context we
also simply refer to u and v as the poles of μ.

A decomposition can be reverted by contracting an arc (μ, ν) of T and merg-
ing the skeletons of μ and ν. To merge skel(μ) and skel(ν), remove from skel(μ)
the virtual edge e with corrμ(e) = ν and from skel(ν) the virtual edge e′

with corrν(e′) = μ and set the union of these two graphs as the skeleton of
the node obtained by contracting (μ, ν) in T . This is a composition along (μ, ν).
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Consider an arc a = (μ, ν) of T . Removing a from T separates T into two
subtrees Tμ and Tν containing μ and ν, respectively. Define the pertinent graph
of μ in ν as the skeleton of the single node obtained by contracting all arcs
in Tμ. Again, when ν is clear from the context we simply refer to this graph as
the pertinent graph of μ and denote it by G(μ).

Rooted Decomposition Trees and Planar Embeddings. Throughout this paper
let an embedding of a graph denote a rotation system together with an outer
face. Decomposition trees can be used to decompose not only a graph, but also
an embedding of it. Consider a biconnected graph G together with a planar
embedding E . Let e� be an edge of G incident to the outer face of E . Further, let T
be a decomposition tree of G rooted at a node whose skeleton contains e�. Equip
the skeleton of each node μ of T with an embedding as follows. The embedding
of skel(μ) is obtained from E by contracting for each virtual edge (u, v) of skel(μ)
the pertinent graph G(corrμ(u, v)) into a single edge. These embeddings of the
skeletons of the nodes of T are referred to as a configuration. The fact that e�

is incident to the outer face gives two properties. First, the edge e� lies on the
outer face of the skeleton of the root node of T . Second, every non-root node ν
of T has some parent node μ and the virtual edge e with corrν(e) = μ lies on
the outer face of skel(ν). We extend our notion of a configuration to any set of
embeddings of the skeletons of the nodes of T that fulfills these two properties.

Recall that decomposition trees allow for (graph) composition along arcs. We
can also compose embeddings. When contracting an arc (μ, ν), we merge skel(μ)
and skel(ν) as described above. Obtain the embedding of the merged skeleton by
replacing the occurrences of the virtual edge in the rotation system around its
poles by the appropriate rotation system in the embedding of the other skeleton.
This means that G together with a planar embedding can be decomposed into
a decomposition tree T together with a configuration. And symmetrically, T
together with any configuration can be composed into a planar embedding of G.

SPQR-Trees. As described in the previous paragraph, decomposition trees sepa-
rate independent choices in finding planar embeddings of a graph. We may either
choose an embedding of the entire graph, which is generally very complex, or we
may decompose the graph into smaller skeletons, independently choose embed-
dings of these skeletons and compose them into an embedding of the entire
graph. In this sense decomposition trees implement a tradeoff between making
few complex choices or many simple choices.

The SPQR-tree is a decomposition tree that makes this tradeoff in favor of
many simple choices. SPQR-trees have four kinds of nodes, all of whose skeletons
offer only few and well-structured embedding choices. (i) R-nodes are nodes
whose skeleton is triconnected. Such skeletons have a unique planar embedding
up to flipping. (ii) S-nodes are nodes whose skeleton is a simple cycle. Such
skeletons offer no embedding choice (recall that the outer face is fixed by the
rooting). Adjacent S-nodes are contracted into one larger S-node, i.e., an S-node
whose skeleton is a larger simple cycle. This means that in SPQR-trees no two
S-nodes are adjacent. (iii) P-nodes are nodes whose skeleton is a multigraph that



An SPQR-Tree-Like Embedding Representation for Upward Planarity 521

ws u v u u
v

wtvwtu v
Ms Mt Muv Muvt

Fig. 1. The four markers used by Hutton and Lubiw. The markers are digraphs; in the
figure, all edges are directed upward.

consists of two vertices connected by three or more edges. The order of these
edges may be arbitrarily permuted. Again, adjacent P-nodes are contracted into
one larger P-node, i.e., no two P-nodes are adjacent. (iv) Q-nodes are nodes
whose skeleton consists of two vertices connected by two edges, namely one
virtual edge and one non-virtual edge. They offer no embedding choice. Note that
only the skeletons of Q-nodes contain non-virtual edges. See Fig. 3(a) and (b)
for a graph and its SPQR-tree decomposition.

3 Decomposition Trees and Upward Planar Embeddings

Recall from the previous section that for biconnected graphs we can decompose
any planar embedding into planar embeddings of the skeletons of a decomposi-
tion tree; and symmetrically, we can compose a planar embedding of the whole
graph from planar embeddings of the skeletons. In this section we find a similar
relationship between upward planar embeddings of a biconnected single-source
digraph G and upward planar embeddings of the skeletons of a suitably-defined
decomposition tree of G.

3.1 Decompositions and Upward Planar Embeddings

In this section we review the decomposition result of Hutton and Lubiw and
formulate the interface between their result and our results.

Let G be a biconnected single-source digraph together with an upward planar
embedding E . Further, let e� denote the edge around the source of G that is
leftmost in E . Now let H1,H2 be two subgraphs of G with (i) H1 ∪ H2 = G, (ii)
H1 ∩ H2 = {u, v}, (iii) e� ∈ H1 and (iv) H1 \ {u, v} or H2 \ {u, v} is connected.

Hutton and Lubiw construct two graphs H ′
1 and H ′

2 from H1 and H2 by
including one of the markers shown in Fig. 1. Markers are simple digraphs with
two vertices u, v that connect the marker to the remaining graph. The marker
in H ′

1 is designed to represent H2 and the marker in H ′
2 is designed to repre-

sent H1. If there exists a directed path from u to v we say that u dominates v
and write u < v for short. Otherwise u and v are incomparable. The vertex v is
a source if it has no incoming edges in G, a sink if it has no outgoing edges in G
and an internal vertex if it has both incoming and outgoing edges in G. Markers
are determined based on whether u < v and whether v is a source, sink or inter-
nal vertex in H1 and H2: If u and v are incomparable in G, set H ′

1 = H1 ∪ Mt

and H ′
2 = H2 ∪ Ms. Otherwise, assume u < v. Define H ′

1 as follows. If v is a
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source in H2 set H ′
1 = H1 ∪ Mt. If v is a sink in H2 set H ′

1 = H1 ∪ Muv. Oth-
erwise v is an internal vertex in H2 and we set H ′

1 = H1 ∪ Muvt. Define H ′
2 as

follows. If v is a source in H1 set H ′
2 = H2 ∪ Mt, otherwise set H ′

2 = H2 ∪ Muv.
See Fig. 4 in the full version for example decompositions.

Recall that decomposition trees of planar graphs allow for (de-)composition
of planar embeddings. Hutton and Lubiw provide a similar property for the
graphs G,H ′

1 and H ′
2.

Theorem 1 (�, implicit in [24]). Let E be an upward planar embedding of G
with e� as the leftmost edge around s. Then E induces upward planar embed-
dings F1,F2 of H ′

1,H
′
2, respectively with the following properties. In F1, e� is

the leftmost edge around the source of H ′
1. In F2, the edges of the marker are

leftmost around the source of H ′
2. Conversely, if F1 and F2 are upward planar

embeddings of H ′
1 and H ′

2 such that e� is the leftmost edge around the source
of H ′

1 and the edges of the marker are leftmost around the source of H ′
2, then

the composition of these embeddings is upward planar.

Hutton and Lubiw do not explicitly state Theorem1. Instead, Theorems 6.5,
6.7, 6.8 and 6.9 in [24] discuss the same situation as Theorem 1, but are only
concerned with upward planarity, not with the embeddings involved. See the full
version for a detailed discussion.

3.2 Decomposition Trees and Upward Planar Embeddings

The approach of Hutton and Lubiw is to decompose a single-source digraph G
into two smaller single-source digraphs G1, G2 and use Theorem 1 to trans-
late upward-planarity testing of G to upward-planarity testing of two smaller
instances H ′

1,H
′
2. Observe that the markers and the replacement rules are defined

so that both H ′
1 and H ′

2 are single-source digraphs. This means that H ′
1 and H ′

2

can be recursively decomposed. Note that in the context of connectivity markers
are treated simply as edges, i.e., markers are not decomposed further. When a
graph cannot be further decomposed it is triconnected and therefore has a unique
planar embedding which can be tested for upward planarity in linear time using
the algorithm of Bertolazzi et al. [4]. In the context of upward planarity testing
the full marker graph is considered. Upward planar embeddings of H ′

1 and H ′
2

can then be composed to an upward planar embedding of G. In the context of
embedding composition markers are again treated simply as edges. In particular,
it does not matter whether the clockwise order of the edges incident to u in Muvt

is (u, v), (u, x), (u,wt) or (u,wt), (u, x), (u, v).
We use a different approach. Instead of testing H ′

1 and H ′
2 for upward-

planarity separately, we manage them as the skeletons of two nodes in a decom-
position tree T . Note that Theorem 1 requires H1 \ {u, v} or H2 \ {u, v} to
be connected. We call such a decomposition maximal. We then decompose these
skeletons further, which grows the decomposition tree. A maximal-decomposition
tree is a decomposition tree obtained by performing only maximal decompo-
sitions. A configuration equips the skeleton of each node in the tree with an
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upward planar embedding. In this embedding, e� or the marker that represents
the component that contains e� must be incident to the outer face and leftmost
around the source of the skeleton. See Fig. 3(c) for an example of a maximal-
decomposition tree. Applying Theorem 1 at each decomposition step gives the
following.

Theorem 2. Let G be a biconnected graph with a single source s, let e� be an
edge of G incident to s and let T denote a maximal-decomposition tree of G. Then
the upward-planar embeddings of G in which e� is the leftmost edge around s
correspond bijectively to the configurations of T .

We could use Theorem 2 directly to represent all upward planar embeddings
of a graph. But we also show that decomposition trees are uniquely defined by the
decompositions that are executed, but not by the order of these decompositions.
This means that just like we can talk about the SPQR-tree decomposition for
a graph we will be able to talk about the UP-tree decomposition. The benefit
of this is that we can use a UP-tree decomposition to determine that some
constrained representation problem has no solution without having to consider
other conceivable UP-tree decompositions.

To prove uniqueness, we show that the order of the decompositions is irrele-
vant. We then apply the decompositions as defined by the SPQR-tree decompo-
sition, which is unique, and obtain the unique UP-tree decomposition. To this
end, we prove that the marker replacement rules do not depend on the order of
the decompositions. Recall that the marker replacement rules depend on vertex
dominance and the local neighborhood of certain vertices. We prove Lemma1,
which states that decompositions preserve vertex dominance and Lemma 2,
which states that decompositions preserve the local neighborhood of certain
vertices.

Lemma 1 (�). Let G be a biconnected single-source digraph and let H ′
1,H

′
2

denote the result of decomposing along a cutpair {u, v} of G. For i = 1, 2 and
any two vertices x, y in H ′

i it is x < y in H ′
i if and only if x < y in G.

Lemma 2 (�). Let G be a biconnected single-source digraph and let H ′
1,H

′
2

denote the result of decomposing along a cutpair {u, v} of G. For i = 1, 2
let {x, y} denote a cutpair of H ′

i that separates H ′
i into F1 and F2 and G into D1

and D2. Then y is a source in F1 if and only if y is a source in D1. Moreover, y
is a source, sink or internal vertex in F2 if and only if y is a source, sink or
internal vertex in D2, respectively.

Lemmas 1 and 2 immediately give the following.

Lemma 3. Let G be a biconnected graph with a single source s, let e� be an edge
of G incident to s and let T denote a decomposition tree of G. Then T relative
to e� is uniquely defined by the decompositions regardless of their order.

A configuration of T can be computed as follows. Recall that all skele-
tons are single-source digraphs. We may therefore run the algorithm due to
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Bertolazzi et al. [4] on each skeleton. Observe that in a configuration of T rel-
ative to e� the skeleton of each node μ of T must be embedded so that e� or
the marker that corresponds to the component that contains e� must appear
leftmost around the source of skel(μ). We can enforce this by rooting the decom-
position tree constructed by the algorithm of Bertolazzi et al. at the Q-node
corresponding to e� or an edge of the marker that corresponds to the component
that contains e�.

4 UP-Trees

We are ready to construct the UP-tree, a maximal-decomposition tree designed
to mimic the SPQR-tree. Let G be a biconnected directed single-source graph.
The base of the construction is the decomposition tree obtained by perform-
ing the same set of decompositions as in the construction of the SPQR-tree
decomposition of the underlying undirected graph of G. We then perform two
additional steps. The first step is to split P-nodes into chains of smaller nodes.
The second step is to determine whether skeletons of R-nodes can be reversed
and to contract some arcs of the decomposition tree. In both steps, we reason
about upward planarity of fixed embeddings with the following lemma due to
Bertolazzi et al. [4].

Let G be a biconnected single-source graph together with a planar embed-
ding. The face-sink graph F of G has the vertices and faces of G as its vertices.
It contains an undirected edge {f, v} if f is a face of G and v is a vertex of G
that is incident to f and both edges incident to v and f are directed towards v.
The following lemma implies a linear-time algorithm that tests an embedding
for upward planarity and outputs for each face whether it can be the outer face.

Lemma 4 ([4, Theorem 1]). Let G be an embedded planar single-source digraph
and let h be a face of G. Graph G has an upward planar drawing that preserves
the embedding with outer face h if and only if all of the following is true: (i)
graph F is a forest (ii) there is exactly one tree T of F with no internal vertices
of G, while the remaining trees have exactly one internal vertex; (iii) h is in
tree T ; and (iv) the source of G is in the boundary of h.

4.1 P-Node Splits

In SPQR-trees, the edges of P-nodes may be arbitrarily permuted. In decompo-
sition trees for upward planar graphs there are stricter rules for the ordering of
the markers in P-nodes. In this section, we determine these rules and find that
by breaking up the P-nodes into chains of smaller nodes we obtain a decom-
position tree for upward planarity whose P-nodes exhibit the same behavior as
in SPQR-trees, i.e., their edges may be arbitrarily permuted. The idea is that
certain kinds of markers must appear consecutively.

First, we argue that all Muv markers must appear consecutively. To see this,
note that if Ms appears between two Muv markers then the outer face is not
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Fig. 2. Splitting a P-node λ obtained from the SPQR-tree (a) into a chain of smaller
nodes μ, ν, ξ (b). The bold marker represents the component that contains the edge e�.

incident to the source of the skeleton, which is vertex ws of Ms. If a marker M
with M = Mt or M = Muvt appears between two Muv markers then the face
incident to wt of M and a marker Muv is not connected to the outer face and
not connected to an internal vertex. In all cases the conditions from Lemma 4
are violated.

Moreover, all Muv and Muvt markers must appear consecutively. To see this,
note that if Mt appears between two markers Muv or Muvt the vertex wt of Mt

cannot be connected to an internal vertex or the outer face and apply Lemma4.
These observations motivate the following restructuring of P-nodes. Let λ

denote a P-node obtained from the SPQR-tree. The parent marker in skel(λ)
is the marker that corresponds to the parent node of λ. If the parent marker
in skel(λ) is Ms all other markers must be Mt. In this case these markers can
already be arbitrarily permuted and nothing further needs to be shown. Other-
wise the parent marker is Mt or Mu (recall that by definition of H ′

2 the parent
marker is not Muvt). See Fig. 2(a) where the parent marker is Mt (the case for Mu

is similar). Because all Muv and Muvt markers must appear consecutively, we
create a new P-node μ that contains the parent marker of skel(λ), all Mt mark-
ers of skel(λ) and a single Muvt marker to represent all Muv and Muvt markers
of skel(λ). This marker corresponds to a new node ν that contains all Muvt

markers of skel(λ) and—because all Muv markers must appear consecutively—
a single Muv marker. This marker corresponds to a new node ξ that contains
all Muv markers of skel(λ). If skel(λ) contains no Muvt marker we can include
a Muv marker instead of a Muvt marker in skel(μ) and connect it directly to ξ,
the node ν can then be omitted.

The new node μ has the property that its markers can be arbitrarily per-
muted, i.e., it is a P-node. Observe that there can be at most two Muvt markers
in skel(λ). This means that skel(ν) has at most four markers and its embedding
is fixed up to reversal, i.e., it is an R-node. Finally, the new node ξ also has
the property that its markers can be arbitrarily permuted, i.e., it is also a P-
node. See Fig. 2(b) and Fig. 3(c) and (d) for a larger example. We conclude the
following.

Lemma 5. Let G be a biconnected digraph with a single source s and let e�

denote an edge incident to s. There exists a decomposition tree T that (i) rep-
resents all upward planar embeddings of G in which e� is the leftmost edge
around s, and (ii) the children of all P-nodes in T can be arbitrarily permuted.
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4.2 Arc Contractions

Recall that in SPQR-trees the skeletons of R-nodes are triconnected, i.e., their
planar embedding is fixed up to reversal. So, every R-node offers one degree
of freedom, namely, whether it has some reference embedding or the reversal
thereof. In this section we alter our decomposition tree so that it has this same
property.

By definition the marker corresponding to the parent node is leftmost in
any embedding of a skeleton. Hence, this marker is incident to the outer face.
Reversing the embedding of the skeleton is equivalent to choosing the other
face incident to the marker as the outer face. Theorem2 guarantees that any
configuration of T can be composed to an upward planar embedding. This means
that a skeleton can be reversed if and only if both faces incident to the parent
marker can be chosen as the outer face. This can be checked with the upward
planarity test for embedded single-source graphs due to Bertolazzi et al. [4],
which also outputs the set of faces that can be chosen as the outer face. If
both incident faces are candidates for the outer face this node does indeed offer
a degree of freedom and we leave it unchanged. Otherwise, if only one incident
face is a candidate for the outer face this node does not offer a degree of freedom.
We then merge it with its parent node and contract the corresponding arc in the
decomposition tree. This leads to an R-node with a larger skeleton.

See Fig. 5 (a) in the full version for an upward planar graph G and (b) a
decomposition tree thereof. Parts of the face sink graphs of skel(μ) and skel(ν)
are shown in red, namely the two quadratic vertices dual to the faces incident
to the parent marker and the edges incident to those vertices. One criterion for
a face to be a candidate for becoming the outer face due to Bertolazzi et al. is
that there has to be a path from this face to the outer face in the face sink
graph. This holds true for both faces incident to the parent marker in skel(ν),
but not in skel(μ). Therefore the arc (μ, ν) is not contracted but the arc (λ, μ) is
contracted. This leads to the decomposition tree shown in (c). See also Fig. 3(c)
and (d) for a larger example.

Lemma 6. Let G be a biconnected digraph with a single source s and let e�

denote an edge incident to s. There exists a decomposition tree T that (i) rep-
resents all upward planar embeddings of G in which e� is the leftmost edge
around s, and (ii) the children of all P-nodes in T can be arbitrarily permuted.
(iii) the skeletons of all R-nodes in T can be reversed.

We call the decomposition tree T the UP-tree of G relative to e�.

4.3 Computation in Linear Time

Let G be a biconnected digraph with a single source s and let e� denote an
edge incident to s. Recall that the construction of the UP-tree T of G relative
to e� consists of the following seven steps. 1. Construct the SPQR-tree T of G
in linear time [22,23]. 2. For each pair of vertices u, v that are the poles of
a marker in some skeleton of T , we have to determine whether u < v in G.
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Fig. 3. Construction of the UP-tree. An upward planar biconnected single-source
graph (a), the SPQR-tree of its underlying undirected graph (b) with the Q-nodes
omitted, the result of replacing virtual edges with markers (c) and the UP-tree after
splitting P-nodes and contracting arcs (d).

To compute this information for all pairs in linear time, we use a union-find-
based technique described by Bläsius et al. [8]. Process all skeletons of T and
for every pair of poles u, v that is encountered register v as a candidate at u
and register u as a candidate at v. Next, initialize every vertex of G in its own
singleton set. Then, process each vertex u in some reverse topological order of G.
Unify the singleton set of u with the sets of its direct descendants in G. Now
for any candidate v stored at u we can query in whether u and v belong to
the same set, which is equivalent to u < v. Note that the operands to all unify
operations are completely determined by the structure of G. We exploit this fact
to run the linear-time union-find algorithm due to Gabow and Tarjan [21]. 3.
For each arc a = (μ, ν) of T , decide whether the poles of a are sources, sinks
or internal vertices in G(μ) and G(ν). This information can be found using a
simple bottom-up technique. We first compute the indegree and outdegree of
every node of G. We then perform a depth-first traversal of T . We maintain
a list of the number of incoming and outgoing edges for each node seen so
far, which is updated when a Q-node is visited. Upon entering a subtree, we
store these numbers for the poles of the arc leaving the subtree at the root
of the subtree. Upon leaving a subtree, we can now calculate the differences
between the current numbers and the stored numbers, which gives the in- and
outdegree of the poles in the graph G(μ). Using the in- and outdegree of the
poles in G computed earlier, we can also compute the in- and outdegree of the
poles in G(ν). This step clearly takes linear time. 4. In each skeleton, replace
all virtual edges with their respective markers. With the information that was
computed in the previous step and the fact that all markers have constant size
this step is feasible in linear time. 5. Construct a configuration of T by running
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the linear-time upward planar embedding algorithm of Bertolazzi et al. [4] on
every skeleton. Because the size of all skeletons is linear in the size of G this
step takes linear time. 6. Perform P-node splits. The running time spent on
one P-node is clearly linear in the size of its skeleton. This gives linear running
time overall. 7. Perform arc contractions. The upward planarity test for fixed
embeddings due to Bertolazzi et al. runs in linear time. Contracting an arc is
feasible in constant time. This gives linear running time overall.

Theorem 3. Let G be a biconnected digraph with a single source s and let e�

denote an edge incident to s. The UP-tree T of G relative to e� is a decom-
position tree whose internal nodes are (i) S-nodes whose skeletons have a fixed
embedding, (ii) R-nodes whose skeletons have a fixed embedding up to reversal,
or (iii) P-nodes where the markers can be arbitrarily permuted in the skeleton
and whose leaves are Q-nodes that offer no embedding choice. The configura-
tions of T correspond bijectively to the upward planar embeddings of G where e�

appears leftmost around s. Moreover, T can be computed in linear time.

5 Partial Upward Embedding

In this section we apply the UP-tree to solve the partial upward embedding prob-
lem in quadratic time. A partially embedded graph is a tuple (G,H,H), where G
is a planar graph, H is a subgraph of G and H is a planar embedding of H. An
embedding G of G extends the partial embedding H if all edges e, f, g in H that
share a common endpoint v appear in the same cyclic order around v in G and H.
The partial embedding problem asks whether there exists an embedding G of G
that extends H. Angelini et al. solve the partial embedding problem in linear
time [1]. The algorithm considers every triple of edges (e, f, g) in H that share a
common endpoint v and enforces the constraints imposed by these edges in the
SPQR-tree T . Note that e, f, g each correspond to a Q node in T . Because T is
a tree there is exactly one node μ in T so that the paths from μ to these Q nodes
are disjoint. The relative order of e, f, g in the embedding represented by T is
determined by the embedding of skel(μ). If skel(μ) offers no embedding choice
(as in S nodes) determine whether the ordering of e, f, g given by H is the same
as the one given by the unique embedding of skel(μ). If not, reject the instance.
If skel(μ) has two possible embeddings (as in R nodes) the ordering of e, f, g
given by H fixes one of the two embeddings of skel(μ) as the only candidate.
Finally, if μ is a P node the ordering of e, f, g given by H restricts the set of
admissible permutations of the virtual edges in skel(μ). The algorithm collects
all these constraints and checks whether they can be fulfilled at the same time.

A partially embedded upward graph is defined as a tuple (G,H,H), where G
is an upward planar graph, H is a subgraph of H and H is an upward planar
embedding of H. Note that UP-trees have all properties of SPQR-trees that are
needed in the algorithm described above. In particular, the markers in P-nodes
may be arbitrarily permuted, R-nodes may be reversed and all other nodes offer
no embedding choice. Hence, we use the UP-tree as a drop-in replacement for
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the SPQR-tree in the algorithm of Angelini et al. to obtain an algorithm that
solves the partial upward embedding problem. Note that the UP-tree is rooted
at some edge that must be embedded as the leftmost edge around the source of
the graph. We may have to try a linear number of candidate edges in the worst
case. This gives the following.

Theorem 4. The partial upward embedding problem can be solved in quadratic
running time for biconnected single-source digraphs.

6 Conclusion

We have developed the UP-tree, which is an SPQR-tree-like embedding represen-
tation for upward planarity. We expect that the UP-tree is a valuable tool that
makes it possible to translate existing constrained planar embedding algorithms
that use SPQR-trees to the upward planar setting. As an example, we have
demonstrated how to use the UP-tree as a drop-in replacement for the SPQR-
tree in the partial embedding extension problem, solving the previously open
partial upward embedding extension problem for the biconnected single-source
case.
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