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Abstract. We initiate the study of Simultaneous Graph Embedding
with Fixed Edges in the beyond planarity framework. In the QuaSEFE

problem, we allow edge crossings, as long as each graph individually is
drawn quasiplanar, that is, no three edges pairwise cross. We show that
a triple consisting of two planar graphs and a tree admit a QuaSEFE.
This result also implies that a pair consisting of a 1-planar graph and a
planar graph admits a QuaSEFE. We show several other positive results
for triples of planar graphs, in which certain structural properties for
their common subgraphs are fulfilled. For the case in which simplicity is
also required, we give a triple consisting of two quasiplanar graphs and a
star that does not admit a QuaSEFE. Moreover, in contrast to the planar
SEFE problem, we show that it is not always possible to obtain a QuaSEFE

for two matchings if the quasiplanar drawing of one matching is fixed.
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1 Introduction

Simultaneous Graph Embedding is a family of problems where one is given a set
of graphs G1, . . . , Gk with shared vertex set V and is required to produce draw-
ings Γ1, . . . , Γk of them, each satisfying certain readability properties, so that
each vertex has the same position in every Γi. The readability property that is
usually pursued is the planarity of the drawing, and a large body of research has
been devoted to establish the complexity of the corresponding decision problem,
or to determine whether such embeddings always exist, given the number and
the types of the graphs; for a survey refer to [9].
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These problems have been studied both from a geometric (Geometric Simul-
taneous Embedding - GSE) [6,16] and from a topological point of view (Simulta-
neous Embedding with Fixed Edges - SEFE) [10,12,19]. In particular, in GSE the
edges are straight-line segments, while in SEFE they are topological curves, but
the edges shared between two graphs Gi and Gj have to be drawn in the same
way in Γi and Γj . Unless otherwise specified, we focus on the topological setting.

We study a relaxation of the SEFE problem, where the graphs can be drawn
with edge crossings. However, we prohibit certain crossing configurations in the
drawings Γ1, . . . , Γk, to guarantee their readability, i.e., we require that they
satisfy the conditions of a graph class in the area of beyond-planarity ; see [15]
for a survey on this topic. We initiate this study with the class of quasiplanar
graphs [2,3,18], by requiring that no Γi contains three mutually crossing edges.

Definition 1 (QuaSEFE). Given a set of graphs G1 = (V,E1), . . . , Gk = (V,Ek)
with shared vertex set V , we say that 〈G1, . . . , Gk〉 admits a QuaSEFE if there
exist quasiplanar drawings Γ1, . . . , Γk of G1, . . . , Gk, respectively, so that each
vertex of V has the same position in every Γi and each edge shared between two
graphs Gi and Gj is drawn in the same way in Γi and Γj. Further, the QuaSEFE

problem asks whether an instance 〈G1, . . . , Gk〉 admits a QuaSEFE.

It may be worth mentioning that the problem of computing quasiplanar
simultaneous embeddings of graph pairs has been studied in the geometric set-
ting [13,14]. Also, simultaneous embeddings have been considered in relation to
another beyond-planarity geometric graph class, namely RAC graphs [7,8,17,20].

We prove in Sect. 2 that any triple of two planar graphs and a tree admits a
QuaSEFE, which also implies that any pair consisting of a 1-planar graph1 and
a planar graph admits a QuaSEFE. Recall that, for the original SEFE problem,
there exist even negative instances composed of two outerplanar graphs [19].
Further, we investigate triples of planar graphs in which the common subgraphs
have specific structural properties. Finally, we show negative results in more
specialized settings in Sect. 3 and conclude with open problems in Sect. 4.

2 Sufficient Conditions for QuaSEFEs

In this section, we provide several sufficient conditions for the existence of a
QuaSEFE, mainly focusing on instances composed of three planar graphs G1, G2,
and G3. We start with a theorem relating the existence of a SEFE of two of the
input graphs to the existence of a QuaSEFE of the three input graphs.

Theorem 1. Let G1 = (V,E1), G2 = (V,E2), and G3 = (V,E3) be planar
graphs with shared vertex set V . If 〈G1 \ G3, G2 \ G3〉 admits a SEFE, then
〈G1, G2, G3〉 admits a QuaSEFE, in which the drawing of G3 is planar.

1 A graph is k-planar if it admits a drawing where each edge has at most k crossings.
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Proof. First construct a SEFE of 〈G1 \G3, G2 \G3〉, and then construct a planar
drawing of G3, whose vertices have already been placed, but whose edges have
not been drawn yet, using the algorithm by Pach and Wenger [23].

The drawing of G3 is planar, by construction. The drawing of G1 is quasipla-
nar, as it is partitioned into two subgraphs, G1 \ G3 and G1 ∩ G3, each of which
is drawn planar. Analogously, the drawing of G2 is quasiplanar. ��

Since every pair composed of a planar graph and a tree admits a SEFE [19],
we derive from Theorem 1 the following positive result for the QuaSEFE problem.

Corollary 1. Let G1 = (V,E1) and G3 = (V,E3) be planar graphs and T2 =
(V,E2) be a tree with shared vertex set V . Then 〈G1, T2, G3〉 admits a QuaSEFE,
in which the drawing of G3 is planar.

Corollary 1 already shows that allowing quasiplanarity significantly enlarges
the set of positive instances. We further strengthen this result, by additionally
guaranteeing that even the tree is drawn planar. For this, we use a result on
the partially embedded planarity [5] problem (PEP): Given a planar graph G, a
subgraph H of G, and a planar embedding H of H, is there a planar embedding
of G whose restriction to H coincides with H? In particular, we will exploit the
following characterization, which is the core of a linear-time algorithm for PEP.

Lemma 1 ([5]). Let (G,H,H) be an instance of PEP. A planar embedding G of
G is a solution for (G,H,H) if and only if the following conditions hold: (C.1)
for every vertex v ∈ V , the edges incident to v in H appear in the same cyclic
order in the rotation schemes of v in H and in G; and (C.2) for every cycle C
of H, and for every vertex v of H \ C, we have that v lies in the interior of C
in G if and only if it lies in the interior of C in H.

Theorem 2. Let G1 = (V,E1) and G3 = (V,E3) be planar graphs and T2 =
(V,E2) be a tree with shared vertex set V . Then 〈G1, T2, G3〉 admits a QuaSEFE,
in which the drawings of G1 and T2 are planar.

Proof. Consider planar embeddings G1 and G∗
3 of G1 and G3 \ G1, respectively.

We draw G1 according to G1. This fixes the embedding of the subgraph T2 ∩ G1

of T2, thus resulting in an instance of the PEP problem. Since T2 is acyclic,
Condition C.1 of Lemma 1 is trivially fulfilled. Also, since every rotation scheme
of T2 is planar, we choose for the edges of (T2∩G3)\G1 an order compatible with
G∗
3 , still satisfying Condition C.1. Finally, we draw the remaining edges of G3 by

considering the instance of PEP defined by its embedded subgraph (T2∩G3)\G1.
Condition C.1 is trivially satisfied, and Condition C.1 is satisfied by construction,
if we add the edges of G3 according to G∗

3 . Since crossings edges of the same graph
belong to G3 \ G1 and G3 ∩ G1, the drawing of G3 is quasiplanar. ��

The additional property guaranteed by Theorem 2 is crucial to infer the first
result in the simultaneous embedding setting for a class of beyond-planar graphs.

Theorem 3. Let G1 = (V,E1) be a 1-planar graph and G2 = (V,E2) be a planar
graph. Then 〈G1, G2〉 admits a QuaSEFE.
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Proof. As G1 is 1-planar, it is the union of a planar graph G′
1 and a forest F1 [1].

We augment F1 to a tree T1. By Theorem 2, there is a QuaSEFE of 〈G′
1, T1, G2〉

where G′
1 and T1 are drawn planar. Thus, G1 is drawn quasiplanar. ��

We now study properties of the subgraphs induced by the edges that belong
to one, to two, or to all the input graphs. We denote by Hi the subgraph induced
by the edges only in Gi; by Hi,j the subgraph induced by the edges only in Gi

and Gj ; and by H the subgraph induced by the edges in all graphs; see Fig. 1a.
The following two corollaries of Theorem 1 list sufficient conditions for G1\G3

and G2\G3 to have a SEFE. In the first case, H1,2 has a unique embedding, which
fulfills the conditions of Lemma 1 with respect to any planar embedding of G1

and of G2. In the second case, this is because G1 \ G3 is a subgraph of G2 \ G3.

Corollary 2. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs
with shared vertex set V . If H1,2 is acyclic and has maximum degree 2, then
〈G1, G2, G3〉 admits a QuaSEFE.

Corollary 3. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs
with shared vertex set V . If H1 = ∅, then 〈G1, G2, G3〉 admits a QuaSEFE.

Contrary to the previous corollaries, Theorem 1 has no implication for the
graph H, as there are instances with H = ∅ where no pair of graphs has a SEFE.
However, we show that a simple structure of H is still sufficient for a QuaSEFE.

Theorem 4. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs
with shared vertex set V . If H has a planar embedding that can be extended to a
planar embedding Gi of each graph Gi, then 〈G1, G2, G3〉 admits a QuaSEFE.

Proof. We draw the graph G1 \ H1,3 = H1 ∪ H1,2 ∪ H with embedding G1, the
graph G2 \H1,2 = H2 ∪H2,3 ∪H with embedding G2, and the graph G3 \H2,3 =
H3 ∪ H1,3 ∪ H with embedding G3. Then, the edges of G1 are partitioned into
two sets, one belonging to G1 \H1,3 and one to G3 \H2,3, each of which is drawn
planar. As the same holds for the edges of G2 and G3, the statement follows. ��
Corollary 4. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs
with shared vertex set V . If H is acyclic and has maximum degree 2, then
〈G1, G2, G3〉 admits a QuaSEFE.

The above discussion shows that, if one of the seven subgraphs in Fig. 1a
is empty, or has a sufficiently simple structure, 〈G1, G2, G3〉 admits a QuaSEFE.
Most notably, this is always the case in the sunflower setting [4,21,24], in which
every edge belongs either to a single graph or to all graphs, i.e., H1,2 = H1,3 =
H2,3 = ∅. We extend this result to any set of planar graphs. We remark that
SEFE is NP-complete in the sunflower setting for three planar graphs [4,24].

Theorem 5. Let G1 = (V,E1), . . . , Gk = (V,Ek) be planar graphs with shared
vertex set V in the sunflower setting. Then 〈G1, . . . , Gk〉 admits a QuaSEFE.
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Fig. 1. (a) Subgraphs induced by the edges in one, two, or three graphs. (b) A simple
quasiplanar drawing of Q1 in Theorem 6, obtained by adding w to the drawing of K10

by Brandenburg [11]. (c) Theorem 7: Edge (v18, v20) crosses either all dotted blue or
all dashed red edges, making (v5, v6) and (v7, v8) uncrossable (Color figure online).

Proof. Let H be the graph induced by the edges belonging to all graphs. We
independently draw planar the graph H and every subgraph Gi \ H, for i =
1, . . . , k. This guarantees that each Gi is drawn quasiplanar. ��

We remark that all our proofs are constructive. Moreover, the corresponding
algorithms run in linear time, as they exploit linear-time algorithms for con-
structing planar embeddings of graphs [22], for extending their partial embed-
dings [5], and for partitioning 1-planar graphs into planar graphs and forests [1].

3 Counterexamples for QuaSEFE

In this section we complement our positive results, by providing negative
instances of the QuaSEFE problem in two specific settings. We start with a neg-
ative result about the existence of a simple QuaSEFE for two quasiplanar graphs
and one star. Here simple means that a pair of independent edges in the same
graph is allowed to cross at most once and a pair of adjacent edges in the same
graph is not allowed to cross. Note that our algorithms in Sect. 2 may produce
non-simple drawings. Also, the maximum number of edges in a quasiplanar graph
with n vertices depends on whether simplicity is required or not [2].

Theorem 6. There exist two quasiplanar graphs Q1 = (V,E1), Q2 = (V,E2)
and a star S3 = (V,E3) with shared vertex set V such that 〈Q1, Q2, S3〉 does not
admit a simple QuaSEFE.

Proof. Let V = {v1, . . . , v10, w} and let E10 be the edges of the complete graph
on V \ {w}. Further, let E1 = E10 ∪ {(w, v1), . . . , (w, v6)}, let E2 = E10 ∪
{(w, v7)}, and let E3 = {(w, v1), . . . , (w, v10}. By construction, S3 is the star
on all eleven vertices with center w, while Fig. 1b shows that there is a simple
quasiplanar drawing of Q1 (and of Q2, which is a subgraph of Q1, up to vertex
relabeling).
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Suppose that 〈Q1, Q2, S3〉 has a simple QuaSEFE, and let Γ1,2 be the drawing
of the union of Q1 and Q2 that is part of it. Since the union of Q1 and Q2 has 52
edges, which exceeds the upper bound of 6.5n−20 edges in a simple quasiplanar
graph [2], Γ1,2 is not simple or not quasiplanar. Since (w, v7) is the only edge
in Γ1,2 that is not in Q1, edge (w, v7) is involved in every crossing violating
simplicity or quasiplanarity. Analogously, one of (w, v1), . . . , (w, v6), say (w, v1),
is involved in every crossing violating simplicity or quasiplanarity; in particular,
(w, v1) crosses (w, v7). Since both (w, v1) and (w, v7) belong to S3, the drawing
of S3 that is part of the simple QuaSEFE is not simple, a contradiction. ��

The second special setting is the one in which one of the input graphs is
already drawn in a quasiplanar way, and the goal is to draw the other input
graphs so that the resulting simultaneous drawing is a QuaSEFE. This setting is
motivated by the natural approach, for an instance 〈G1, . . . , Gk〉, of first con-
structing a solution for 〈G1, . . . , Gk−1〉 and then adding the remaining edges
of Gk. Note that, since the drawing of the first graph partially fixes a draw-
ing of the second graph, this can be seen as a version of the PEP problem for
quasiplanarity.

For the original SEFE problem, this setting always has a solution when the
graph that is already drawn (in a planar way) is a general planar graph, and
the other graph is a tree [19]. In a surprising contrast, we construct negative
instances for the QuaSEFE problem that are composed of two matchings only.

Theorem 7. Let M1 = (V,E1) and M2 = (V,E2) be two matchings on the same
vertex set V and let Γ1 be a quasiplanar drawing of M1. Instance 〈M1,M2〉 does
not always admit a QuaSEFE in which the drawing of M1 is Γ1.

Proof. First recall that the edges in E1 ∩ E2 have to be drawn in the quasiplanar
drawing Γ2 of G2 as they are in Γ1. Consider the quasiplanar drawing Γ1 of the
matching (v2i−1, v2i), with i = 1, . . . , 10, in Fig. 1c, and let E2 contain the edges
(v17, v19) and (v18, v20). Since v17 is enclosed in a region bounded by the crossing
edges (v1, v2) and (v3, v4), in any quasiplanar drawing of M2 edge (v17, v19)
crosses exactly one of (v1, v2) and (v3, v4). In the first case, (v17, v19) crosses also
(v13, v14) and (v15, v16) (dotted blue). In the second case, (v17, v19) crosses also
(v9, v10) and (v11, v12) (dashed red). In both cases, (v5, v6) and (v7, v8) cannot
be crossed, and thus (v17, v19) cannot be drawn so that Γ2 is quasiplanar. ��

4 Conclusions and Open Problems

We initiated the study of simultaneous embeddability in the beyond planar set-
ting, which is a fertile and almost unexplored research direction that promises
to significantly enlarge the families of representable graphs when compared with
the planar setting. We conclude the paper by listing a few open problems.

– A natural question is whether two 1-planar graphs, a quasiplanar graph and
a matching, three outerplanar graphs, or four paths admit a QuaSEFE. All
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our algorithms construct drawings with a stronger property than quasipla-
narity, namely that they are composed of two sets of planar edges. Exploiting
quasiplanarity in full generality may lead to further positive results.

– Motivated by Theorem 6, we ask whether some of the constructions presented
in Sect. 2 can be modified to guarantee the simplicity of the drawings.

– Another intriguing direction is to determine the computational complexity of
the QuaSEFE problem, both in its general version and in the two restrictions
studied in Sect. 3. In particular, the setting in which one of the graphs is
already drawn can be considered as a quasiplanar version of the PEP problem,
which is known to be linear-time solvable in the planar case [5].

– Extend the study to other beyond-planarity classes. For example, do any two
planar graphs admit a k-planar SEFE for some constant k?
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