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Abstract. In this paper, we study arrangements of orthogonal circles,
that is, arrangements of circles where every pair of circles must either be
disjoint or intersect at a right angle. Using geometric arguments, we show
that such arrangements have only a linear number of faces. This implies
that orthogonal circle intersection graphs have only a linear number of
edges. When we restrict ourselves to orthogonal unit circles, the resulting
class of intersection graphs is a subclass of penny graphs (that is, contact
graphs of unit circles). We show that, similarly to penny graphs, it is NP-
hard to recognize orthogonal unit circle intersection graphs.

1 Introduction

For the purpose of this paper, an arrangement is a (finite) collection of curves
such as lines or circles in the plane. The study of arrangements has a long
history; for example, Grünbaum [15] studied arrangements of lines in the pro-
jective plane. Arrangements of circles and other closed curves have also been
studied extensively [1,2,13,19,22]. An arrangement is simple if no point of the
plane belongs to more than two curves and every two curves intersect. A face
of an arrangement A in the projective or Euclidean plane P is a connected
component of the subdivision induced by the curves in A, that is, a face is a
component of P \ ⋃ A.

For a given type of curves, people have investigated the maximum number of
faces that an arrangement of such curves can form. In 1826, Steiner [23] showed
that a simple arrangement of straight lines can have at most
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)
+
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faces while an arrangement of circles can have at most 2
((

n
2

)
+

(
n
0

))
faces.

Alon et al. [2] and Pinchasi [22] studied the number of digonal faces, that
is, faces that are bounded by two edges, for various kinds of arrangements of
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Fig. 1. Circles α and β are orthogonal if and only if �CαXCβ is orthogonal.

circles. For example, any arrangement of n unit circles has O(n4/3 log n) digonal
faces [2] and at most n + 3 digonal faces if every pair of circles intersects [22],
whereas arrangements of circles with arbitrary radii have at most 20n−2 digonal
faces if every pair of circles intersects [2].

The same arrangements can, however, have quadratically many triangular
faces, that is, faces that are bounded by three edges. A lower bound exam-
ple with quadratically many triangular faces can be constructed from a simple
arrangement A of lines by projecting it on a sphere (disjoint from the plane con-
taining A) and having each line become a great circle. This is always possible
since the line arrangement is simple; for more details see [12, Section 5.1]. In
this process we obtain 2p3 triangular faces, where p3 is the number of triangular
faces in the line arrangement. The great circles on the sphere can then be trans-
formed into a circle arrangement in a different plane using the stereographic
projection. This gives rise to an arrangement of circles with 2p3 triangular faces
in this plane. Füredi and Palásti [14] provided simple line arrangements with
n2/3+O(n) triangular faces. With the argument above, this immediately yields
a lower bound of 2n2/3+O(n) on the number of triangular faces of arrangements
of circles. Felsner and Scheucher [13] showed that this lower bound is tight by
proving that an arrangement of pseudocircles (that is, closed curves that can
intersect at most twice and no point belongs to more than two curves) can have
at most 2n2/3 + O(n) triangular faces.

One can also specialize circle arrangements by fixing an angle (measured as
the angle between the two tangents at either intersection point) at which each
pair of intersecting circles intersect; this was recently discussed by Eppstein [10].
In this paper, we consider arrangements of circles with the restriction that each
pair of circles must intersect at a right angle. An arrangement of circles in which
each intersecting pair intersect at a right angle is called orthogonal. We make
the following simple observation regarding orthogonal circles; see Fig. 1.

Observation 1. Let α and β be two circles with centers Cα, Cβ and radii rα,
rβ, respectively. Then α and β are orthogonal if and only if r2α + r2β = |CαCβ |2.

We discuss further basic properties of orthogonal circles in Sect. 2. In par-
ticular, in an arrangement of orthogonal circles no two circles can touch and no
three circles can intersect at the same point.

The main result of our paper is that arrangements of n orthogonal circles have
at most 14n intersection points and at most 15n + 2 faces; see Theorem 1 (in
Sect. 3). This is different from arrangements of orthogonal circular arcs, which
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can have quadratically many quadrangular faces; see the arcs inside the blue
square in Fig. 5. In Sect. 3.2 we also consider small (that is, digonal and trian-
gular) faces and provide bounds on the number of such faces in arrangements of
orthogonal circles.

Given a set of geometric objects, their intersection graph is a graph whose
vertices correspond to the objects and whose edges correspond to the pairs of
intersecting objects. Restricting the geometric objects to a certain shape restricts
the class of graphs that admit a representation with respect to this shape. For
example, graphs represented by disks in the Euclidean plane are called disk inter-
section graphs. The special case of unit disk graphs—intersection graphs of unit
disks—has been studied extensively. Recognition of such graphs as well as many
combinatorial problems restricted to these graphs such as coloring, independent
set, and domination are all NP-hard [6]; see also the survey of Hliněný and Kra-
tochv́ıl [17]. Instead of restricting the radii of the disks, people have also studied
restrictions of the type of intersection. If the disks are only allowed to touch, the
corresponding graphs are called coin graphs. Koebe’s classical result says that
the coin graphs are exactly the planar graphs. If all coins have the same size,
the represented graphs are called penny graphs. These graphs have been studied
extensively, too [4,8,11]. For example, they are NP-hard to recognize [3,7].

As with the arrangements above, we again consider a restriction on the inter-
section angle. We define the orthogonal circle intersection graphs as the inter-
section graphs of arrangements of orthogonal circles. In Sect. 4, we investigate
properties of these graphs. For example, similar to the proof of our linear bound
on the number of intersection points for arrangements of orthogonal circles (The-
orem 1), we observe that such graphs have only a linear number of edges.

We also consider orthogonal unit circle intersection graphs, that is, orthogonal
circle intersection graphs with a representation that consists only of unit circles.
We show that these graphs are a proper subclass of penny graphs. It is NP-hard
to recognize penny graphs [9]. We modify the NP-hardness proof of Di Battista
et al. [7, Section 11.2.3], which uses the logic engine, to obtain the NP-hardness
of recognizing orthogonal unit circle intersection graphs (Theorem4).

2 Preliminaries

We will use the following type of Möbius transformation [20]. Let α be a circle
having center at Cα and radius rα. The inversion with respect to α is a mapping
that maps any point P �= Cα to a point P ′ on the ray CαP so that |CαP ′| ·
|CαP | = r2α. Inversion maps each circle not passing through Cα to another circle
and a circle passing through Cα to a line; see Fig. 2. Inversion and orthogonal
circles are closely related. For example, in order to construct the image P ′ of
some point P that lies inside the inversion circle α, consider the intersection
points X and Y of α and the line that is orthogonal to the line through Cα and P
in P ; see Fig. 2c. The point P ′ then is simply the center of the circle β that is
orthogonal to α and goes through X and Y . This follows from the similarity of
the orthogonal triangles �CαXP ′ and �CαXP . A useful property of inversion,
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Fig. 3. (a) Three pairwise intersecting circles,
the red inversion circle is centered at X; (b)
image of the inversion. (Color figure online)
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Fig. 4. Illustration for the proof
of Lemma 2

as of any other Möbius transformation, is that it preserves angles. Using inversion
we can easily show several properties of orthogonal circles.

Lemma 1. No orthogonal circle intersection graph contains a K4. In other
words, in an arrangement of orthogonal circles there cannot be four pairwise
orthogonal circles.

Proof. Assume that there are four pairwise orthogonal circles α, β, γ, and δ.
Let X and Y be the intersection points of α and β. Consider the inversion with
respect to a circle σ centered at X. The images of α and β are orthogonal lines
α′ and β′ that intersect at Y ′, which is the image of Y ; see Fig. 3. The image
of γ is a circle γ′ centered at Y ′ but so is the image δ′ of δ. Thus γ′ and δ′ are
either disjoint or equal, but not orthogonal to each other, a contradiction. ��

Lemma 2. No orthogonal circle intersection graph contains an induced C4. In
other words, in an arrangement of orthogonal circles there cannot be two pairs of
circles such that each circle of one pair is orthogonal to each circle of the other
pair and the circles within the pairs are not orthogonal.

Proof. Assume there are two pairs (α, β) and (γ, δ) of circles such that the circles
within each pair do not intersect each other and each circle of one pair intersects
both circles of the other pair. Consider an inversion via a circle σ centered at
one of the intersection points of the circles α and δ. In the image they will
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Fig. 5. Apollonian circles con-
sisting of two parabolic pen-
cils of circles (one in black, the
other in gray). (Color figure
online)

Fig. 6. (a) Apollonian circles consisting of an elliptic
(in gray) and hyperbolic (in black) pencil of circles;
(b) its inversion via a circle centered at A (in red).
(Color figure online)

become lines α′ and δ′. The image β′ of the circle β must intersect δ′ but not
α′, therefore, its center must lie on the line δ′ and it should be to one side of the
line α′; see Fig. 4. Similarly the center of the image γ′ of the circle γ must lie
on the line α′ and γ′ should be to one side of the line δ′. Shift the drawing so
that the intersection of α′ and δ′ is at the origin O and observe that the triangle
�Cβ′OCγ′ is orthogonal, where Cβ′ and Cγ′ are the centers of the circles β′ and
γ′. Let X be the intersection point of these circles that is closer to the origin.
This point X is contained in the triangle �Cβ′OCγ′ . Therefore the triangle
�Cβ′XCγ′ cannot be orthogonal—a contradiction. ��

A pencil is a family of circles who share a certain characteristic. In a parabolic
pencil all circles have one point in common, and thus are all tangent to each
other; see Fig. 5. In an elliptic pencil all circles go through two given points; see
the gray circles in Fig. 6a. In a hyperbolic pencil all circles are orthogonal to a
set of circles that go through two given points, that is, to some elliptic pencil;
see the black circles in Fig. 6a.

For an elliptic pencil whose circles share two points A and B and the corre-
sponding hyperbolic pencil, the circles in the hyperbolic pencil possess several
properties useful for our purposes [20]. Their centers are collinear and they con-
sist of non-intersecting circles that form two nested structures of circles, one
containing A, the other one containing B in its interior; see Fig. 6a.

Two pencils of circles such that each circle in one pencil is orthogonal to
each circle in the other are called Apollonian circles. There can be two such
combinations of pencils, that is, one with two parabolic pencils and one with an
elliptic and a hyperbolic pencil. We focus on the latter since such Apollonian
circles contain arbitrarily large arrangements of orthogonal circles, that is, two
orthogonal circles from the elliptic pencil and arbitrary many circles from the
hyperbolic pencil. Equivalently, such Apollonian circles are an inversion image
of a family of concentric circles centered at some point X and concurrent lines
passing through X; see Fig. 6b. We use this equivalence in the next proof.
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Lemma 3. Three circles such that one is orthogonal to the two others belong to
the same family of Apollonian circles. Two sets of circles such that each circle
in one set is orthogonal to each circle in the other set and each set has at least
two circles belong to the same family of Apollonian circles. In particular the set
belonging to the elliptic pencil can contain at most two circles.

Proof. Consider three circles such that one is orthogonal to two others. If all
three are pairwise orthogonal, then their inversion via a circle centered at one
of their intersection points (see Fig. 3a) is two perpendicular lines and a circle
centered at their intersection point (see Fig. 3b), therefore, they belong to the
same family of Apollonian circles. If two circles do not intersect, then by [20,
Theorem 13], it is always possible to invert them into two concentric circles. Since
inversion preserves angles, the image of the third circle must be orthogonal to
both concentric circles and therefore it must be a straight line passing through
the center of both circles. Therefore, the three circles belong to the same family
of Apollonian circles.

Consider now two sets S1 and S2 of circles such that each circle in one set is
orthogonal to each circle in the other set and each set has at least two circles. By
Lemma 2 there must be two circles α and β in one of the sets, say S1, that are
orthogonal. Consider an inversion via a circle σ centered at one of the intersection
points X of the circles α and β. In the image they will become orthogonal lines
α′ and β′ intersecting at a point Y . Because inversion preserves angles, the image
of each circle in S2 is a circle centered at Y . Since S2 contains at least two circles,
the image of each circle in S1 must be orthogonal to two circles centered at Y ,
therefore, it must be a straight line passing through Y . Thus, the circles in S1

and S2 belong to the same family of Apollonian circles and S1 contains at most
two circles. ��

Because each triangular or quadrangular face consists of either three circles
such that one is orthogonal to two others or two pairs of circles such that each
circle in one pair is orthogonal to each circle in the other pair, we obtain the
following observation from Lemma3.

Observation 2. In any arrangement of orthogonal circles, each triangular and
each quadrangular face is formed by Apollonian circles.

3 Arrangements of Orthogonal Circles

In this section we study the number of faces of an arrangement of orthogonal
circles. In Sect. 3.1, we give a bound on the total number of faces. In Sect. 3.2,
we separately bound the number of faces formed by two and three edges.

Let A be an arrangement of orthogonal circles in the plane. By a slight
abuse of notation, we will say that a circle α contains a geometric object o and
mean that the disk bounded by α contains o. We say that a circle α ∈ A is
nested in a circle β ∈ A if α is contained in β. We say that a circle α ∈ A is
nested consecutively in a circle β ∈ A if α is nested in β and there is no other
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Fig. 7. Deepest circles in bold Fig. 8. ∠CβCαCγ ≥ π/3

circle γ ∈ A such that α is nested in γ and γ is nested in β. Consider a subset
S ⊆ A of maximum cardinality such that for each pair of circles one is nested in
the other. The innermost circle α in S is called a deepest circle in A; see Fig. 7.

Lemma 4. Let α be a circle of radius rα, and let S be a set of circles orthogonal
to α. If S does not contain nested circles and each circle in S has radius at
least rα, then |S| ≤ 6. Moreover, if |S| = 6, then all circles in S have radius rα

and α is contained in the union of the circles in S.

Proof. Let Cα be the center of α. Consider any two circles β and γ in S with
centers Cβ and Cγ and with radii rβ and rγ , respectively. Since rβ ≥ rα and
rγ ≥ rα, the edge CβCγ is the longest edge of the triangle �CβCαCγ ; see Fig. 8.
So the angle ∠CβCαCγ is at least π/3. Thus, |S| ≤ 6.

Moreover, if |S| = 6 then, for each pair of circles β and γ in S that are
consecutive in the circular ordering of the circle centers around Cα, it holds that
∠CβCαCγ = π/3. This is only possible if rβ = rγ = rα. Thus, all the circles in S
have radius rα and α is contained in the union of the circles in S; see Fig. 9b. ��

3.1 Bounding the Number of Faces

Theorem 1. Every arrangement of n orthogonal circles has at most 14n inter-
section points and 15n + 2 faces.

The above theorem (whose formal proof is at the end of the section) follows from
the fact that any arrangement of orthogonal circles contains a circle α with at
most seven neighbors (that is, circles that are orthogonal to α).

Lemma 5. Every arrangement of orthogonal circles has a circle that is orthog-
onal to at most seven other circles.

Proof. If no circle is nested within any other, Lemma 4 implies that the smallest
circle has at most six neighbors, and we are done.

So, among the deepest circles in A, consider a circle α with the smallest
radius. Let rα be the radius of α. Note that α is nested in at least one circle.
Let β be a circle such that α and β are consecutively nested. Denote the set of
all circles in A that are orthogonal to α but not to β by Sα. All circles in Sα are
nested in β. Since α is a deepest circle, Sα contains no nested circles; see Fig. 9a.
Since the radius of every circle in Sα is at least rα, Lemma 4 ensures that Sα
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Fig. 9. Illustrations to the proof of Lemma 5

contains at most six circles. Given the structure of Apollonian circles (Lemma3),
there can be at most two circles that intersect both α and β. This together with
Lemma 4 immediately implies that α cannot be orthogonal to more than eight
circles. In the following we show that there can be at most seven such circles.

If there is only one circle intersecting both α and β, then α is orthogonal to
at most seven circles in total, and we are done.

Otherwise, there are two circles orthogonal to both α and β. Let these circles
be γ1 and γ2. We assume that Sα contains exactly six circles. Hence, by Lemma 4,
all circles in Sα have radius rα. Let Sα = (δ0, . . . , δ5) be ordered clockwise around
α so that every two circles δi and δj with i ≡ j + 1 mod 6 are orthogonal.

Let X and Y be the intersection points of γ1 and γ2; see Fig. 9a. Note that, by
the structure of Apollonian circles, one of the intersection points, say X, must be
contained inside α, whereas the other intersection point Y must lie in the exterior
of β. Since the circles in Sα are contained in β, none of them contains Y . Further,
no circle δi in Sα contains X, as otherwise the circles δi, α, γ1, and γ2 would
be pairwise orthogonal, contradicting Lemma1. Recall that, by Lemma 4, α is
contained in the union of the circles in Sα. Since X is not contained in this
union, γ1 intersects two different circles δi and δj , and γ2 intersects two different
circles δk and δl. Note that γ1 and γ2 cannot intersect the same circle ε in Sα,
because ε, α, γ1, and γ2 would be pairwise orthogonal, contradicting Lemma1.
Therefore, the indices i, j, k, and l are pairwise different.

We now consider possible values of the indices i, j, k, and l, and show that
in each case we get a contradiction to Lemma 1 or Lemma 2. If j ≡ i + 1 mod 6,
then γ1, α, δi, and δj would be pairwise orthogonal, contradicting Lemma1; see
Fig. 9b. If j ≡ i + 2 mod 6, then γ1, δi, δi+1, and δj would form an induced C4

in the intersection graph; see Fig. 9c. This would contradict Lemma 2. If j ≡
i+3 mod 6 and k ≡ l +3 mod 6, then either k ≡ i+1 mod 6 or i ≡ l +1 mod 6;
see Fig. 9d. W.l.o.g., assume the latter and observe that then γ2, δi, γ1, δl would
form an induced C4, again contradicting Lemma 2.

We conclude that Sα contains at most five circles. Together with γ1 and γ2,
at most seven circles are orthogonal to α. ��

Using the lemma above and Euler’s formula, we now can prove Theorem1.
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Fig. 10. Region s is a face in the arrangement
of the bold circles

Fig. 11. Angles subtended by
the regions s1 and s2 in the circle
α; ∠(s1, α) = −∠(s2, α)

Proof (of Theorem 1). Let A be an arrangement of orthogonal circles. By
Lemma 5, A contains a circle α orthogonal to at most seven circles. The cir-
cle α yields at most 14 intersection points. By induction, the whole arrangement
has at most 14n intersection points.

Consider the planarization G′ of A, and let n′, m′, f ′, and c′ denote the
numbers of vertices, edges, faces, and connected components of G′, respectively.
Since every vertex in the planarization corresponds to an intersection, the result-
ing graph is 4-regular and therefore m′ = 2n′. By Euler’s formula, we obtain
f ′ = n′ + 1 + c′. This yields f ′ ≤ 15n + 1 since n′ ≤ 14n and c′ ≤ n. ��

3.2 Bounding the Number of Small Faces

In the following we study the number of faces of each type, that is, the number of
digonal, triangular, and quadrangular faces. We begin with some notation. Let A
be an arrangement of orthogonal circles in the plane. Let S be some subset of
the circles of A. A face in S is called a region in A formed by S; see for instance
Fig. 10. Note that each face of A is also a region.

Let s be the region formed by some circular arcs a1, a2, . . . , ak enumerated in
counterclockwise order around s. For an arc ai with i ∈ {1, . . . , k}, let α be the
circle that supports ai. If Cα = (xα, yα) is the center of α and rα its radius, we
can write α as

{
Cα + rα(cos t, sin t) : t ∈ [0, 2π]

}
. Let u and v be the endpoints

of ai so that we meet u first when we traverse s counterclockwise when starting
outside of ai. Let u = Cα + rα(cos t1, sin t1) and v = Cα + rα(cos t2, sin t2). We
say that the region s subtends an angle in the circle α of size ∠(s, ai) = t2 − t1
with respect to the arc ai. Note that ∠(s, ai) is negative if ai forms a concave side
of s; see Fig. 11. If the circle α forms only one side of the region s, then we just
say that the region s subtends an angle in the circle α of size ∠(s, α) = t2 − t1.
Moreover, if s is a digonal region, that is, it is formed by only two circles α and
β, then we simply say that β subtends an angle of ∠(β, α) = t2− t1 in α to mean
∠(s, α).

By total angle we denote the sum of subtended angles by s with respect to
all the arcs that form its sides, that is,

∑k
i=1 ∠(s, ai).

We now give an upper bound on the number of digonal and triangular faces in
an arrangement A of n orthogonal circles. The tool that we utilize in this section
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is the Gauss–Bonnet formula [24] which, in the restricted case of orthogonal
circles in the plane, states that, for every region s formed by some circular arcs
a1, a2, . . . , ak, it holds that

k∑

i=1

∠(s, ai) +
kπ

2
= 2π.

This formula implies that each digonal or triangular face subtends a total angle
of size π and of size π/2, respectively. Thus, we obtain the following bounds.

Theorem 2. Every arrangement of n orthogonal circles has at most 2n digo-
nal faces and at most 4n triangular faces.

Proof. Because faces do not overlap, each digonal or triangular face uses a unique
convex arc of a circle bounding this face. Therefore, the sum of angles subtended
by digonal or triangular faces formed by the same circle must be at most 2π.
Analogously, the sum of total angles over all digonal or triangular faces cannot
exceed 2nπ. By the Gauss–Bonnet formula each digonal or triangular face sub-
tends a total angle of size π or π/2, respectively. This gives an upper bound of
2n on the number of digonal faces and an upper bound of 4n on the number of
triangular faces. ��

Theorem 2 can be generalized to all convex orthogonal closed curves since
the Gauss–Bonnet formula does not require curves to be circular. In contrast to
this, for example, a grid made of axis parallel rectangles has quadratically many
quadrangular faces. This makes circles a special subclass of convex orthogonal
closed curves. We refer to the full version for more details [5].

The Gauss–Bonnet formula does not help us to get an upper bound on the
number of quadrangular faces. Using Observation 2, however, it is possible to
restrict the types of quadrangular faces to several shapes and obtain bounds
on the number of faces of each type. Apart from being interesting in its own
right, such a bound also provides a bound on the total number of faces in an
arrangement of orthogonal circles. Namely, since the average degree of a face in
an arrangement of orthogonal circles is 4, a bound on the number of faces of
degree at most 4 gives a bound on the number of all faces in the arrangement
(via Euler’s formula). Unfortunately, the bound on the number of quadrangular
faces that we achieved was 17n and thus higher than the bound 15n+2 that we
now have for the number of all faces in an arrangement of n orthogonal circles.

4 Intersection Graphs of Orthogonal Circles

Given an arrangement A of orthogonal circles, consider its intersection graph,
which is the graph with vertex set A that has an edge between any pair of
intersecting circles in A. Lemmas 1 and 2 imply that such a graph does not
contain any K4 and any induced C4. We show that such graphs can be non-
planar (Lemma 6), then we bound their edge density (Theorem3), and finally we
consider the intersection graphs arising from orthogonal unit circles (Theorem 4).
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Fig. 12. Construction of an orthogonal circle intersection graph that contains Kn as a
minor (here n = 5).

Lemma 6. For every n, there is an intersection graph of orthogonal circles that
contains Kn as a minor. The representation uses circles of three different radii.

Proof. Let a chain be an arrangement of orthogonal circles whose intersection
graph is a path. We say that two chains C1 and C2 cross if two disjoint circles α
and β of one chain, say C1, are orthogonal to the same circle γ of the other
chain C2; see Fig. 12a (left). If two chains cross, their paths in the intersection
graph are connected by two edges; see the dashed edges in Fig. 12a (right).

Consider an arrangement of n rectilinear paths embedded on a grid where
each pair of curves intersect exactly once; see the inset in Fig. 12b. We convert
the arrangement of paths into an arrangement of chains such that each pair of
chains crosses; see Fig. 12b. Now consider the intersection graph of the orthogonal
circles in the arrangement of chains. If we contract each path in the intersection
graph that corresponds to a chain, we obtain Kn. ��

Next, we discuss the density of orthogonal circle intersection graphs. Gyárfás
et al. [16] have shown that any C4-free graph on n vertices with average degree
at least a has clique number at least a2/(10n). Due to Lemma 1, we know that
orthogonal circle intersection graphs have clique number at most 3. Thus, their
average degree is bounded from above by

√
30n, leading to at most

√
7.5n

3
2 edges

in total. However, Lemma 5 implies the following stronger bound.

Theorem 3. The intersection graph of a set of n orthogonal circles has at most
7n edges.

Proof. The geometric representation of an orthogonal circle intersection graph is
an arrangement of orthogonal circles. By Lemma5, an arrangement of n orthog-
onal circles always has a circle orthogonal to at most seven circles. Therefore, the
corresponding intersection graph always has a vertex of degree at most seven.
Thus, it has at most 7n edges. ��
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Fig. 13. Penny graphs vs. orthogonal unit circle intersection graphs

Fig. 14. Arrangements of n orthogonal circles with many digonal, triangular, and quad-
rangular faces.

The remainder of this section concerns a natural subclass of orthogonal circle
intersection graphs, the orthogonal unit circle intersection graphs. Recall that
these are orthogonal circle intersection graphs with a representation that consists
of unit circles only. As Fig. 13a shows, every representation of an orthogonal unit
circle intersection graph can be transformed (by scaling each circle by a factor of√

2/2) into a representation of a penny graph, that is, a contact graph of equal-
size disks. Hence, every orthogonal unit circle intersection graph is a penny
graph – whereas the converse is not true. For example, C4 or the 5-star are
penny graphs but not orthogonal unit circle intersection graphs (see Fig. 13b).

Orthogonal unit circle intersection graphs being penny graphs implies that
they inherit the properties of penny graphs, e.g., their maximum degree is at
most six and their edge density is at most �3n − √

12n − 6, where n is the
number of vertices [21, Theorem 13.12, p. 211]. Because triangular grids are
orthogonal unit circle intersection graphs, this upper bound is tight.

As it turns out, orthogonal unit circle intersection graphs share another fea-
ture with penny graphs: their recognition is NP-hard. The hardness of penny-
graph recognition can be shown using the logic engine [7, Section 11.2], which
simulates an instance of the Not-All-Equal-3-Sat (NAE3SAT) problem. We
establish a similar reduction for the recognition of orthogonal unit circle inter-
section graphs; the details are in the full version [5].

Theorem 4. It is NP-hard to recognize orthogonal unit circle intersection
graphs.

5 Discussions and Open Problems

In Sect. 3 we have provided upper bounds for the number of faces of an orthogonal
circle arrangement. As for lower bounds on the number of faces, we found only
very simple arrangements containing 1.5n digonal, 2n triangular, and 4(n − 3)
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quadrangular faces; see Figs. 14a, b, and c, respectively. Can we construct better
lower bound examples or improve the upper bounds?

Recognizing (unit) disk intersection graphs is ∃R-complete [18]. But what is
the complexity of recognizing (general) orthogonal circle intersection graphs?

Acknowledgments. We thank Alon Efrat for useful discussions and an anonymous
reviewer for pointing us to the Gauss-Bonnet formula.
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