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Abstract. Traditionally, graph quality metrics focus on readability, but
recent studies show the need for metrics which are more specific to the
discovery of patterns in graphs. Cluster analysis is a popular task within
graph analysis, yet there is no metric yet explicitly quantifying how well
a drawing of a graph represents its cluster structure.

We define a clustering quality metric measuring how well a node-link
drawing of a graph represents the clusters contained in the graph. Exper-
iments with deforming graph drawings verify that our metric effectively
captures variations in the visual cluster quality of graph drawings. We
then use our metric to examine how well different graph drawing algo-
rithms visualize cluster structures in various graphs; the results confirm
that some algorithms which have been specifically designed to show clus-
ter structures perform better than other algorithms.

1 Introduction

Clustering is an important task in graph analysis. Visualization can be a useful
tool in this task, where a good drawing of a network should be able to highlight
important group structures within the network and allow a user to accurately
answer group-level analytical tasks. To this end, a number of graph layout algo-
rithms specifically focused on faithfully depicting clusters within a graph have
been introduced.

The quality of a drawing of a graph is often measured using aesthetic crite-
ria which rate the readability of the visualization, such as the number of edge
crossings or symmetry. However, these measures become less significant when
working with large graphs (e.g. [19]). More recent work considers quality met-
rics more extensible to large graphs, such as shape-based metrics which compare
the original topology of a graph to one derived from the positioning of ver-
tices in its drawing [9]. Newly introduced is also the concept of more specific
quality metrics concerned with the discovery of specific patterns with visualiza-
tions [5]. Although general quality metrics are still necessary, these more specific
metrics are useful when developing visualizations geared for a more specific
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purpose - for example, clustered graph visualizations which can be used to sup-
port various classes of group-level tasks [34].

Despite a longstanding recognition of cluster discovery as one important goal
in graph visualization and the definition of quality metrics that regard the depic-
tion or discovery of specific structures, there is yet to be defined a metric that
explicitly quantifies how well a visualization represents the underlying clustering
structure of the graph. We therefore introduce a clustering quality metric which
scores a drawing of a graph based on how well the clustering structure of the
graph is displayed within it. We present the following contributions:

1. We define the clustering quality metric, a new metric to measure the visual
cluster quality of node-link graph drawings. In our framework, we compare
the ground truth clustering provided for the vertices a graph to the geometric
clustering derived from the graph’s drawing, and the similarity of both clus-
terings denotes the quality of the visualization of clusters within the drawing.

2. We validate the metric through deformation experiments of graph drawings.
Results of the experiment confirm that as the graphs are distorted resulting in
the clusters to become visually less distinct from each other in the drawings,
the scores computed using our metric decrease.

3. We compare various graph drawing algorithms using our metric to discover
which methods perform better in visualizing cluster structures. We com-
pare drawing algorithms of different types, including layouts that have been
designed specifically to emphasize clusters. Our experiments confirm that
these layouts perform better than others not explicitly geared towards clus-
ter visualization, especially for real world graphs.

2 Related Work

2.1 Graph Drawing Quality Metrics

Aesthetics have been described as one criterion to be achieved by graph drawing
algorithms [3]. The concept of aesthetics is concerned with the readability of
graphs and include standards such as the minimization of edge crossing and
bends, and minimization of drawing area used. A number of studies have verified
the correlation of such aesthetic metrics with the ability of users to execute tasks
on the graph (e.g. [17,30,31]). However, these studies tend to focus on smaller
graphs, and newer studies (e.g. [19]) have discovered that the effects of these
aesthetic criteria are not as apparent in larger graphs.

Shape-based metrics [9] attempt to address this limitation by computing a
shape graph based on the drawing of a graph, where two vertices are connected
with an edge if they are “close” to each other, and comparing it to the topology
of the original graph - a good drawing is expected to have a shape graph similar
to its actual topology. For recent work on visualization quality metrics, Behrisch
et al. [5] provides a survey covering various visualization techniques, including
but not limited to node-link drawings, and notes that measuring the effectiveness
of node-link drawings in supporting analytical tasks is an open research question.
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2.2 Clustering Comparison Metrics

Clustering refers to the division of a set of items into clusters, where items in
the same cluster are more similar to each other than to items in a different
cluster [1]. Despite the seemingly simple definition, the notions of “similarity”
and what constitutes a “cluster” differ between contexts, leading to the birth of
various clustering algorithms and thus multiple ways to cluster the same set [11].
To compare two clusterings C and C ′ of the same set, a number of metrics exist:

– Rand Index (RI) measures the similarity of C and C ′ based on the number
of pairs of elements classified into the same group in both C and C ′ and the
number of pairs of elements classified into different groups in both C and
C ′ [32]. Adjusted Rand Index (ARI) [18] is a version corrected for chance.

– Mutual Information (MI), when applied to two random variables, measures
how much information of one can be gathered from the other, and is also
applicable to comparisons between two clusterings C and C ′ [7]. Normalized
Mutual Information (NMI) [36] is a normalized version, while Adjusted Mutual
Information (AMI) [38] is a version adjusted for chance.

– Fowlkes-Mallows Index (FMI) compares a clustering C ′ to a target clustering
C using the number of true positives, false positives, and false negatives [12].

– Homogeneity (HOM) and completeness (CMP) have been described as desir-
able outcomes of a cluster assignment C ′ compared to a target clustering C,
where homogeneity measures to what extent each cluster in C ′ only contains
members of the same cluster in C, and completeness refers to the extent that
all members of a cluster in C are assigned to the same cluster in C ′ [33].

2.3 Graph Drawing Algorithms

In this section, we briefly describe a number of types of algorithms used to
compute graph layouts:

– Force-directed layouts model a graph as a system where repulsive forces exist
between all pairs of vertices and neighboring vertices attract each other [13].

– Multi-level layouts improve the time efficiency of force-directed layouts
through steps of coarsening the graph into a smaller graph such as through
clustering, applying the layout on the smaller graph, and using it as an ini-
tial layout to draw the less coarse graph until a layout for the original is
computed [15].

– Multi-dimensional scaling (MDS) methods are based on dimension reduction
techniques that aim to display high-dimensional data in fewer dimensions
while preserving the distances between the data points [37].

– Stress-based layouts utilize the stress function found in the MDS literature.
These methods compute a layout by minimizing an adapted stress function
that considers the geometric and theoretical distances between vertices [14].

– Spectral methods computes the layout of a graph using the eigenvectors of
matrices related to the graph, such as adjacency or Laplacian matrices [20].
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3 Clustering Metric for Graph Visualization

We propose a new task-specific metric for graph visualization, the clustering
quality metric, for measuring how well a drawing of a graph represents its under-
lying clustering structure. We compute the similarity between a ground truth
clustering of a graph’s vertices to a geometric clustering derived from its drawing
and compute the clustering quality using the similarity of the two clusterings.
Figure 1 summarizes the framework used for our proposed metric.

Fig. 1. The framework for the clustering quality metric. The framework takes as input
a graph G with a predefined ground truth clustering C. A drawing D is produced by
applying a layout algorithm to G, from which a geometric clustering C′ of the vertices
is computed. Computing the similarity of C and C′ produces the clustering quality CQ
score, which can be done using a variety of clustering comparison metrics.

Let G = (V,E) be a graph and C = {Ci, i = 1...k} be the ground truth
clustering of V , the vertex set of G. Although in some applications a vertex may
belong to multiple clusters, in this study, we focus on non-overlapping clusters
as a starting point in developing the metric.

Step 1: We apply a layout algorithm to G to obtain a graph drawing D,
which provides geometric positions for each node in G. A node-link drawing
of a graph with no additional visual variables implicitly denotes groupings of
vertices through the proximity of vertices to each other and a user is more likely
to perceive two vertices drawn close together as belonging to the same group
rather than two vertices drawn further apart.

Step 2: We compute a geometric clustering C ′ = {C ′
i, i = 1...k} purely based

on the geometric positions of vertices in D. Any geometric clustering algorithm
can be used, but in this work, we use k-means clustering, which partitions a
set into k subsets that minimize the within-class variance [25]. We use k-means
clustering as it is a widely used method applicable to geometric clustering with
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existing fast and efficient heuristic approximations and because for our experi-
ments, we know the number of ground truth clusters.

Step 3: Using C ′, we compute the clustering quality of D by computing the
similarity of C with C ′ to produce a clustering quality score CQ. Any clustering
comparison metrics can be used with our framework, however we use the fol-
lowing metrics discussed in Sect. 2.2: Adjusted Rand Index (CQARI), Adjusted
Mutual Information (CQAMI), Fowlkes-Mallows Index (CQFMI), Homogeneity
(CQHOM ), and Completeness (CQCMP ). These metrics have been established
for measuring a clustering’s quality when a target ground truth is available. In
the cases of CQARI and CQAMI , they were taken over other variants of RI and
MI as they are adjusted for chance. All these metrics produce a score of 1 for
perfect clustering, while independent clusterings attain values close to 0.

4 Validation Experiments

4.1 Experiment Design

To validate our metric, we designed deformation experiments for graph drawings.
We start with a drawing of a graph that displays its clusters such that the number
of visible clusters and their respective sizes accurately represent the ground truth
clusters and the clusters are well-separated from each other with no overlap.

We then progressively deform the drawing. In each experiment, we performed
10 steps of deformation, where in each step, the coordinates of each vertex from
the previous step are perturbed by a small value in the range [0, δ], with δ being in
the range of 0.05-0.1 multiplied by the drawing area. We compute the clustering
quality score and compare the scores across all steps of the deformation.

Based on the clustering comparison metrics, we expect our approach to pro-
duce scores in the range of [0, 1] where a higher value denotes a closer similar-
ity between the geometrical clustering C ′ derived from the drawing D and the
ground truth clustering C. Therefore, we formulate the following hypothesis in
order to validate our metric:

Hypothesis 1: The clustering quality metric scores will decrease as the graph
drawings are deformed.

To create the initial layout, we used the Backbone layout from Visone [4]
as this layout produced drawings scoring 1 or nearly 1 on our metric for
our datasets. The exception is that we used sfdp from Graphviz [10] for
cv−many−verydense−mid and gnm−many−mid−verysparse, where sfdp
produces drawings with higher clustering quality metric scores than backbone.
We used cluster comparison metrics implementations from scikit-learn [29].

Each dataset for our validation experiment is created by first creating a small
graph. Each vertex is replaced with a larger graph of a specified internal density
- each will become a cluster of the dataset. Then, each edge is replaced with
inter-cluster edges with a specified external density. Table 1 shows the dataset
details. |c| stands for the number of clusters and avg(cd) denotes the average
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internal density of the clusters, as opposed to the global density denoted in the
previous column.

Each graph is named in the format [name] − [no.ofclusters] −
[internaldensity]− [externaldensity], where we vary the parameters to increase
generality. The prefixes denote the structure used to generate the clustered
graph - c stands for a complete graph, b denotes a bipartite graph, s denotes a
star graph, t denotes a tree, p denotes a path, rn denotes an r-regular graph, cv
is a complete graph with variable cluster sizes, and gnm denotes a Gn,m random
graph.

Table 1. Validation datasets

Name |V | |E| |c| Density avg(cd)

c− few − verydense−mid 439 9552 9 0.0497 0.399

s− few − verydense− dense 2051 256108 10 0.122 0.400

t− few − dense−mid 2082 164180 15 0.0379 0.400

c− few − dense−mid 898 31516 9 0.0391 0.349

p− few − verydense− verysparse 3002 230055 15 0.0511 0.759

c−mid− verydense−mid 815 18674 15 0.0563 0.797

r3 −mid− dense− verysparse 1773 53103 20 0.0338 0.670

cv −many − verydense−mid 2000 54749 30 0.0274 0.788

r3 −many − verydense− sparse 3045 124727 30 0.0269 0.801

gnm−many −mid− verysparse 2685 26098 30 0.00724 0.214

4.2 Results

Figure 2 displays one deformation experiment example, where vertices are col-
ored based on their combinatorial cluster membership. In step 0 (Fig. 2 (a)),
vertices of the same cluster are positioned close to each other, there is minimal
overlap between each cluster and the layout produces CQ scores of 1. As the

(a) Step 0 (b) Step 2 (c) Step 5 (d) Step 9

Fig. 2. Deformation experiment for r3−mid−dense−verysparse, drawn using Back-
bone layout, showing how each subsequent step further deforms the clusters in the
drawing.
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positions are perturbed, vertices of the same cluster grow further apart. The
clusters also continue mixing with each other, until vertices are no less likely to
be placed closer to members of other clusters than vertices in its own cluster.

Figure 3 shows the clustering metric scores for each deformation step, with
the scores averaged for all datasets in Table 1. We expect to see the CQ scores
decreasing after each deformation step, which is indeed what the figure shows,
confirming Hypothesis 1 for a wide variety of clustered graphs.

Fig. 3. Average of clustering quality scores for all validation experiments. The decreas-
ing trend for all clustering comparison metrics show that our metric successfully cap-
tures the deteriorating visual clustering quality and validates Hypothesis 1. We also see
that CQAMI and CQFMI are more sensitive to changes in the visual cluster quality,
from the steeper curves. Also note that CQHOM and CQCMP produce highly similar
results such that their curves overlap.

4.3 Discussion and Summary

Figure 3 shows that the plots of the clustering quality metric scores produce a
downward slope. This validates our metric and the usage of all selected clustering
comparison metrics with our framework. It can also be seen that the scores of our
metric deteriorate at different rates when different clustering comparison metrics
are used: CQARI deteriorates at the fastest rate, followed closely by CQFMI .
CQHOM and CQCMP obtains very similar scores with their curves overlapping,
while CQAMI degrades at a slightly faster rate. Therefore, we conclude that
CQARI and CQFMI are more sensitive to changes in clustering visualisation
quality than the other metrics.

In summary, the validation experiments have shown that our metric reflects
the visual clustering quality of drawings of clustered graphs. Furthermore, from
the different rates of change of the clustering quality scores when different clus-
tering comparison metrics are used, we conclude that CQARI and CQFMI are
better at capturing changes in visual cluster quality and are recommended for
use with our framework.
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5 Layout Comparison Experiments

5.1 Experiment Design

After the validation experiments have shown that our metric effectively measures
visual cluster quality, we compare the performance of a number of graph drawing
algorithms against our metric. We selected layouts of different types:

– Force-directed: Fruchterman-Reingold (FR) [13] and Organic from yfiles [39].
– Multi-level: FM3 [15] and sfdp [10,16].
– MDS: Metric MDS based on classical scaling [37] and Pivot MDS [6].
– Stress-based: Stress Majorization [14] and Sparse Stress Minimization [28].
– Spectral: spectral layout with graph laplacian.

We also selected a few layouts which purport to focus on the discovery of
clusters or important community structures in a graph to test their claims:

– LinLog [26] modifies the force-directed model to emphasize clusters.
– Backbone [27] utilizes triadic or quadratic Simmelian backbones to extract

important community structures from “hairball” graphs.
– tsNET [22] is based on t-distributed Stochastic Neighbor Embedding (t-SNE),

a dimensionality reduction technique [24], and aims to preserve point neigh-
borhoods.

Based on the selection of algorithms, we formulate the following hypothesis:

Hypothesis 2: LinLog, backbone, and tsNET will score higher on our metric
than other selected layouts in visualizing clusters in graphs.

We used implementations provided from Tulip [8] (FR, FM3, Pivot MDS, Stress
Majorization, LinLog), visone [4] (Backbone, Metric MDS, Sparse Stress Min-
imization, Spectral), yEd [39] (Organic), Graphviz [10] (sfdp), and Kruiger’s
implementation of tsNET [21]. We re-used some datasets from the validation
experiments and created some new ones, listed in Table 2. We also selected real

Table 2. Additional layout comparison datasets

Name |V | |E| |c| Density avg(cd)

b−many − dense− sparse 1797 49210 30 0.0305 0.560

cv −mid− verydense−mid 939 21798 20 0.0495 0.162

s−mid−mid− sparse 2116 24175 20 0.0108 0.216

w −many −mid− verysparse 2485 68844 25 0.0223 0.554

r4 −many − verydense− verysparse 3045 124727 30 0.0269 0.801

revije− 90 124 1334 14 0.127 0.377

SS −Butterfly − 0 − 85 832 13009 10 0.0376 0.258

email − Eu− core− lcc 986 16687 34 0.0344 0.490
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world graph datasets with existing vertex categorization, which are listed under
the double line in Table 2. The datasets were taken from Pajek [2] and Stanford
Network Analysis Project’s (SNAP) repository [23,40].

5.2 Results

Tables 3 and 4 show layout comparison examples, with colours representing
ground truth clusters, with CQ scores displayed in Figs. 4 and 5 respectively.
LinLog, tsNET, and Backbone score higher than other layouts for both datasets,
supporting Hypothesis 2. In Table 3 and Fig. 4, where the number of clusters are
small, other layouts such as sfdp, FR, FM3, and spectral also score close to 1.
Meanwhile, in the example in Table 4 and Fig. 5 displaying a real world graph
with a larger number of clusters, LinLog, tsNET, and backbone’s performances
more clearly surpass the other layouts.

Table 3. Layout comparison for c− few − verydense−mid

FR Organic Stress Maj. Metric MDS Backbone FM3

Spectral S. Stress Min. tsNET Pivot MDS sfdp LinLog

Fig. 4. Clustering quality metrics for c − few − verydense − mid. LinLog, tsNET,
and Backbone produces scores of 1 on our metrics, in line with Hypothesis 2. For this
dataset, sfdp, FR, FM3, and spectral also score highly, close to 1.
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Table 4. Layout comparison for email − Eu− core− lcc

FR Organic Stress Maj. Metric MDS

Backbone FM3 Spectral S. Stress Min.

tsNET Pivot MDS sfdp LinLog

Fig. 5. Clustering quality metrics for email − Eu − core − lcc. LinLog, backbone,
and tsNET clearly outperform other layouts, as expected from Hypothesis 2. Among
non-cluster-focused layouts, sfdp produces the highest scores.
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(a) Average for all datasets

(b) Average for real world datasets

Fig. 6. Clustering quality metrics averaged per layout for all layout comparison
datasets (a) and for real world datasets only (b). In (a), we see that tsNET and LinLog
produce the highest scores, validating Hypothesis 2 for the two layouts. Meanwhile in
(b), we see that on real world datasets, LinLog, tsNET, and Backbone outperforms
other layout algorithms in accordance to Hypothesis 2.

Figure 6(a) shows the scores averaged across all layout comparison datasets
and Fig. 6(b) show the scores averaged across real world datasets. Averaged
across all datasets, LinLog scores the highest, with tsNET close behind, confirm-
ing Hypothesis 2 for these two layouts. Backbone scores well on many graphs, but
sometimes deteriorates in quality when the number of clusters becomes larger
compared to the total size of the graph, causing it to score lower than tsNET and
LinLog on average (see Fig. 6(a)). Even so, it still outperforms the other algo-
rithms on real world datasets as seen in Fig. 6(b), which supports Hypothesis 2
for Backbone on real world graphs.
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In the case of synthetic datasets, sfdp also tends to perform well, as seen in the
overall averaged clustering quality metric scores in Fig. 6(a). LinLog, backbone,
and tsNET still outperforms it with real world datasets as seen from Fig. 6(b),
however, in line with Hypothesis 2.

5.3 Discussion and Summary

Our experiments verify that LinLog and tsNET attains the highest average scores
on our metrics across all comparison datasets and Backbone attains equally high
average scores on real world datasets.

A point of note is that LinLog often has issues with excessive node overlaps,
especially when the internal cluster density is high - this can be seen in Table 3,
where the nodes of each cluster are positioned very close together such that they
almost appear as only one node, and to a lesser extent in Table 4 where the red
cluster is packed quite closely together. Backbone does not have this problem on
any tested graphs. Thus, we can conclude that Backbone also has its advantages
for practical applications of clustered graph visualization.

In summary, our experiments have confirmed Hypothesis 2 for LinLog and
tsNET, which consistently obtained the highest scores across all datasets, while
for Backbone it is more supported on real world structures.

6 Conclusion and Future Work

We have introduced a new graph drawing quality metric for the visualization of
clusters in graph. Deformation experiments has shown the effectiveness of the
metric in measuring how well a drawing of a graph depicts the clusters in the
graph. We have also compared graph drawings produced by layouts emphasizing
cluster structures to non-cluster-focused layouts and validated the claims of these
cluster-focused layouts especially on real world structures.

A direction for future work is to refine the metric by combining it with read-
ability metrics, such as to address node overlaps, and further validating it with
human evaluation. Other geometric clustering algorithms besides k-means can
also be tested, including fuzzy clustering algorithms that accomodate overlaps
between clusters, and concepts of visual cluster separations for scatterplots [35]
can also be considered.
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