Skip to main content

Cyanobacterial Extracellular Polymeric Substances (EPS)

  • Living reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Cyanobacteria are a very particular group of photoautotrophic prokaryotic organisms with major ecological significance in the carbon and nitrogen cycles. Most cyanobacterial strains produce extracellular polymeric substances (EPS), mainly heteropolysaccharides that can remain attached to cell surface or be released into the extracellular environment (RPS). These EPS play prominent roles on cell protection and biofilms/colonies formation, and have distinct features compared to other bacterial EPS. Here, we review the cyanobacterial EPS biological roles, what is known/can be inferred about their biosynthetic pathways, and describe their particularly complex composition/structure. In addition, we address how to optimize the production and yield, and how to tailor the polymers either by genetic manipulation or by chemical modification. At last, already implemented applications as well as promising ones are discussed foreseeing the commercialization of cyanobacterial EPS-based products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agostoni M, Montgomery BL. Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes. Life (Basel). 2014;4(4):745–69.

    Google Scholar 

  • Brull LP, Huang Z, Thomas-Oates JE, Paulsen BS, Cohen EH, Michaelsen TE. Studies of polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: structural characterization and effect on the complement system of polysaccharides from Nostoc Commune. J Phycol. 2000;36(5):871–81.

    Article  CAS  Google Scholar 

  • Challouf R, Trabelsi L, Dhieb RB, El Abed O, Yahia A, Ghozzi K, Ammar JB, Omran H, Ouada HB. Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol. 2011;54(4):831–8.

    Article  CAS  Google Scholar 

  • Chamizo S, Adessi A, Certini G, De Philippis R. Cyanobacteria inoculation as a potential tool for stabilization of burned soils. Restor Ecol. 2020;28:S106–14.

    Google Scholar 

  • Chen L, Wang G, Hong S, Liu A, Li C, Liu Y. UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J Integr Plant Biol. 2009;51(2):194–200.

    Article  CAS  PubMed  Google Scholar 

  • Colica G, De Philippis R. Exopolysaccharides from cyanobacteria and their possible industrial applications. In: Sharma NK, Rai AK, Stal LJ, editors. Cyanobacteria: an economic perspective. Chichester: Wiley; 2014. p. 197–207.

    Google Scholar 

  • Colica G, Li H, Rossi F, Li DH, Liu YD, De Philippis R. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem. 2014;68:62–70.

    Article  CAS  Google Scholar 

  • Costa B, Mota R, Tamagnini P, Martins MCL, Costa F. Natural cyanobacterial polymer-based coating as a preventive strategy to avoid catheter-associated urinary tract infections. Mar Drugs. 2020;18(6):279.

    Article  CAS  PubMed Central  Google Scholar 

  • De Philippis R, Colica G, Micheletti E. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol. 2011;92:697–708.

    Article  CAS  PubMed  Google Scholar 

  • de Porcellinis AJ, Klähn S, Rosgaard L, Kirsch R, Gutekunst K, Georg J, Hess WR, Sakuragi Y. The non-coding RNA Ncr0700/PmgR1 is required for photomixotrophic growth and the regulation of glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 2016;57(10):2091–103.

    Article  PubMed  Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv. 2016;34:1159–79.

    Article  CAS  PubMed  Google Scholar 

  • Derikvand P, Llewellyn CA, Purton S. Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. Eur J Phycol. 2016;52(1):43–56.

    Article  Google Scholar 

  • Di Pippo F, Ellwood NTW, Guzzon A, Siliato L, Micheletti E, De Philippis R, Albertano PB. Effect of light and temperature on biomass, photosynthesis and capsular polysaccharides in cultured phototrophic biofilms. J Appl Phycol. 2012;24(2):211–20.

    Article  CAS  Google Scholar 

  • Estevinho BN, Mota R, Leite JP, Tamagnini P, Gales L, Rocha F. Application of a cyanobacterial extracellular polymeric substance in the microencapsulation of vitamin B12. Powder Technol. 2019;343:644–51.

    Article  CAS  Google Scholar 

  • Fan Q, Lechno-Yossef S, Ehira S, Kaneko T, Ohmori M, Sato N, Tabata S, Wolk CP. Signal transduction genes required for heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol. 2006;188:6688–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattom A, Shilo M. Production of emulcyan by Phormidium J-1: its activity and function. FEMS Microbiol Lett. 1985;31:3–9.

    Article  CAS  Google Scholar 

  • Fisher ML, Allen R, Luo Y, Iii RC. Export of extracellular polysaccharides modulates adherence of the cyanobacterium Synechocystis. PLoS One. 2013;8(9):e74514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flamm D, Blaschek W. A sulfated cyanobacterial polysaccharide proven as a strong inhibitor of human complement activity in an in vitro assay. Planta Med. 2014a;80(12):1009–16.

    Article  CAS  PubMed  Google Scholar 

  • Flamm D, Blaschek W. Exopolysaccharides of Synechocystis aquatilis are sulfated arabinofucans containing N-acetyl-fucosamine. Carbohydr Polym. 2014b;101:301–6.

    Article  CAS  PubMed  Google Scholar 

  • Flores C, Tamagnini P. Looking outwards: isolation of cyanobacterial released carbohydrate polymers and proteins. JoVE. 2019;147:e59590.

    Google Scholar 

  • Flores C, Santos M, Pereira SB, Mota R, Rossi F, De Philippis R, Couto N, Karunakaran E, Wright PC, Oliveira P, Tamagnini P. The alternative sigma factor SigF is a key player in the control of secretion mechanisms in Synechocystis sp. PCC 6803. Environ Microbiol. 2019a;21:343–59.

    Article  CAS  PubMed  Google Scholar 

  • Flores C, Lima RT, Adessi A, Sousa A, Pereira SB, Granja PL, De Philippis R, Soares P, Tamagnini P. Characterization and antitumor activity of the extracellular carbohydrate polymer from the cyanobacterium Synechocystis ΔsigF mutant. Int J Biol Macromol. 2019b;136:1219–27.

    Article  CAS  PubMed  Google Scholar 

  • Foster JS, Havemann SA, Singh AK, Sherman LA. Role of mrgA in peroxide and light stress in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett. 2009;293:298–304.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Riley KW, Harwood TV, Zuniga EG, Risser DD. A tripartite, hierarchical sigma factor cascade promotes hormogonium development in the filamentous cyanobacterium Nostoc punctiforme. mSphere. 2019;4:e00231–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han P, Sun Y, Wu X, Yuan Y, Dai Y, Jia S. Emulsifying, flocculating, and physicochemical properties of exopolysaccharide produced by cyanobacterium Nostoc flagelliforme. Appl Biochem Biotechnol. 2014;172(1):36–49.

    Article  CAS  PubMed  Google Scholar 

  • Han P, Shen S, Wang H, Sun Y, Dai Y, Jia S. Comparative metabolomic analysis of the effects of light quality on polysaccharide production of cyanobacterium Nostoc flagelliforme. Algal Res. 2015;9:143–50.

    Article  Google Scholar 

  • Herrero A, Stavans J, Flores E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol Rev. 2016;40(6):831–54.

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Fan Q, Lechno-Yossef S, Wojciuch E, Wolk CP, Kaneko T, Tabata S. Clustered genes required for the synthesis of heterocyst envelope polysaccharide in Anabaena sp. Strain PCC 7120. J Bacteriol. 2005;187(3):1114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jindal N, Singh DP, Khattar JIS. Optimization, characterization, and flow properties of exopolysaccharides produced by the cyanobacterium Lyngbya stagnina. J Basic Microbiol. 2013;53:902–12.

    Article  CAS  PubMed  Google Scholar 

  • Jittawuttipoka T, Planchon M, Spalla O, Benzerara K, Guyot F, Cassier-Chauvat C, Chauvat F. Multidisciplinary evidences that Synechocystis PCC6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PLoS One. 2013;8:e55564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaji T, Shimada S, Yamamoto C, Fujiwara Y, Jung-Bum L, Hayashi T. Inhibition of the association of proteoglycans with cultured vascular endothelial cell layers by calcium and sodium spirulan. J Heal Sci. 2002;48(3):250–5.

    Article  CAS  Google Scholar 

  • Kanekiyo K, Hayashi K, Takenaka H, Lee JB, Hayashi T. Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Biol Pharm Bull. 2007;30(8):1573–5.

    Article  CAS  PubMed  Google Scholar 

  • Kehr JC, Dittmann E. Biosynthesis and function of extracellular glycans in cyanobacteria. Life. 2015;5:164–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan T, Date A, Chawda H, Patel K. Polysaccharides as potential anticancer agents-a review of their progress. Carbohydr Polym. 2019;210:412–28.

    Article  CAS  PubMed  Google Scholar 

  • Khayatan B, Meeks JC, Risser DD. Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria. Mol Microbiol. 2015;98:1021–36.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Hou X, Hayashi K, Hayashi T. Effect of partial desulfation and oversulfation of sodium spirulan on the potency of anti-herpetic activities. Carbohydr Polym. 2007;69(4):651–8.

    Article  CAS  Google Scholar 

  • Li H, Xu J, Liu Y, Ai S, Qin F, Li Z, Zhang H, Huang Z. Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune. Carbohydr Polym. 2011;83:1821–7.

    Article  CAS  Google Scholar 

  • Li H, Su L, Chen S, Zhao L, Wang H, Ding F, Chen H, Shi R, Wang Y, Huang Z. Physicochemical characterization and functional analysis of the polysaccharide from the edible microalga Nostoc sphaeroides. Molecules. 2018;23(2):508.

    Article  PubMed Central  Google Scholar 

  • Løbner M, Walsted A, Larsen R, Bendtzen K, Nielsen CH. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis. J Medicinal Food. 2008;11(2):313–22.

    Article  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(1):490–5.

    Article  Google Scholar 

  • Low KE, Howell PL. Gram-negative synthase-dependent exopolysaccharide biosynthetic machines. Curr Opin Struct Biol. 2018;53:32–44.

    Article  CAS  PubMed  Google Scholar 

  • Mader J, Gallo A, Schommartz T, Handke W, Nagel C, Günther P, Brune W, Reich K. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. J Allergy Clin Immunol. 2016;137(1):197–203.

    Article  CAS  PubMed  Google Scholar 

  • Miranda H, Immerzeel P, Gerber L, Hörnaeus K, Lind SB, Pattanaik B, Lindberg P, Mamedov F, Lindblad P. Sll1783, a monooxygenase associated with polysaccharide processing in the unicellular cyanobacterium Synechocystis PCC 6803. Physiol Plant. 2017;161(2):182–95.

    Article  CAS  PubMed  Google Scholar 

  • Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, Kato T, Saiki I. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis. 1998;16(6):541–50.

    Article  CAS  PubMed  Google Scholar 

  • Morales-Jiménez M, Gouveia L, Yáñez-Fernández J, Castro-Muñoz R, Barragán-Huerta BE. Production, preparation and characterization of microalgae-based biopolymer as a potential bioactive film. Coatings. 2020;10(2):120.

    Article  Google Scholar 

  • Morsy FM, Nafady NA, Abd-Alla MH, Elhady DA. Green synthesis of silver nanoparticles by water soluble fraction of the extracellular polysaccharides/matrix of the cyanobacterium Nostoc commune and its application as a potent fungal surface sterilizing agent of seed crops. Univers J Microbiol Res. 2014;2(2):36–43.

    Article  Google Scholar 

  • Mota R, Guimaraes R, Buttel Z, Rossi F, Colica G, Silva CJ, Santos C, Gales L, Zille A, De Philippis R, Pereira SB, Tamagnini P. Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr Polym. 2013;92:1408–15.

    Article  CAS  PubMed  Google Scholar 

  • Mota R, Rossi F, Andrenelli L, Pereira SB, De Philippis R, Tamagnini P. Released polysaccharides (RPS) from Cyanothece sp CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites. Appl Microbiol Biotechnol. 2016;100:7765–75.

    Article  CAS  PubMed  Google Scholar 

  • Mota R, Vidal R, Pandeirada C, Flores C, Adessi A, De Philippis R, Nunes C, Coimbra MA, Tamagnini P. Cyanoflan: a cyanobacterial sulfated carbohydrate polymer with emulsifying properties. Carbohydr Polym. 2020;229:115525.

    Article  CAS  PubMed  Google Scholar 

  • Mugnai G, Rossi F, Felde VJMNL, Colesie C, Büdel B, Peth S, Kaplan A, De Philippis R. The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil Biol Biochem. 2018;127:318–28.

    Article  CAS  Google Scholar 

  • Nazifi E, Wadab N, Asano T, Nishiuchi T, Iwamuro Y, Chinaka S, Matsugo S, Sakamoto T. Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune. J Photoch Photobio B. 2015;142:154–68.

    Article  CAS  Google Scholar 

  • Ngatu NR, Okajima MK, Yokogawa M, Hirota R, Eitoku M, Muzembo BA, Dumavibhat N, Takaishi M, Sano S, Kaneko T, Tanaka T, Nakamura H, Suganuma N. Anti-inflammatory effects of sacran, a novel polysaccharide from Aphanothece sacrum, on 2, 4, 6-trinitrochlorobenzene–induced allergic dermatitis in vivo. Ann Allergy Asthma Immunol. 2012;108(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  • O’Toole GA, Wong GCL. Sensational biofilms: surface sensing in bacteria. Curr Opin Microbiol. 2016;30(1999):139–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okajima MK, Bamba T, Kaneso Y, Hirata K, Fukusaki E, Kajiyama S, Kaneko T. Supergiant ampholytic sugar chains with imbalanced charge ratio form saline ultra-absorbent hydrogels. Macromolecules. 2008;41(12):4061–4.

    Article  CAS  Google Scholar 

  • Parwani L, Bhatnagar M, Bhatnagar A, Sharma V. Antioxidant and iron-chelating activities of cyanobacterial exopolymers with potential for wound healing. J Appl Phycol. 2014;26(3):1473–82.

    Article  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev. 2009;33:917–41.

    Article  CAS  PubMed  Google Scholar 

  • Pereira SB, Mota R, Vieira CP, Vieira J, Tamagnini P. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep. 2015;5:14835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira SB, Santos M, Leite JP, Flores C, Eisfeld C, Büttel Z, Mota R, Rossi F, De Philippis R, Gales L, Morais-Cabral JH, Tamagnini P. The role of the tyrosine kinase Wzc (Sll0923) and the phosphatase Wzb (Slr0328) in the production of extracellular polymeric substances (EPS) by Synechocystis PCC 6803. MicrobiologyOpen. 2019a;8:e753.

    Article  Google Scholar 

  • Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to obtain designer polymers based on cyanobacterial extracellular polymeric substances (EPS). Int J Mol Sci. 2019b;20:5693.

    Article  CAS  PubMed Central  Google Scholar 

  • Pierre G, Delattre C, Dubessay P, Jubeau S, Vialleix C, Cadoret JP, Probert I, Michaud P. What is in store for EPS microalgae in the next decade? Molecules. 2019;24(23):4296.

    Article  CAS  PubMed Central  Google Scholar 

  • Ramachandran L, Marappa N, Sethumadhavan K, Nooruddin T. Glycoprotein prompted plausible bactericidal and antibiofilm outturn of extracellular polymers from Nostoc microscopicum. Appl Biochem Biotechnol. 2019;191:284–98.

    Article  PubMed  Google Scholar 

  • Reichert M, Bergmann SM, Hwang J, Buchholz R, Lindenberger C. Antiviral activity of exopolysaccharides from Arthrospira platensis against koi herpesvirus. J Fish Dis. 2017;40(10):1441–50.

    Article  CAS  PubMed  Google Scholar 

  • Riley KW, Gonzalez A, Risser DD. A partner-switching regulatory system controls hormogonium development in the filamentous cyanobacterium Nostoc punctiforme. Mol Microbiol. 2018;109(4):555–69.

    Article  CAS  PubMed  Google Scholar 

  • Risser DD, Meeks JC. Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme. Mol Microbiol. 2013;87(4):884–93.

    Article  CAS  PubMed  Google Scholar 

  • Rossi F, De Philippis R. Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis. In: Borowitzka MA, et al., editors. The physiology of microalgae, developments in applied phycology, vol. 6. Springer International Publishing Switzerland; 2016. p. 565–90.

    Google Scholar 

  • Rossi F, Mugnai G, De Philippis R. Complex role of the polymeric matrix in biological soil crusts. Plant Soil. 2018;429:19–34.

    Article  CAS  Google Scholar 

  • Schmid J. Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Curr Opin Biotechnol. 2018;53:130–6.

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kant C, Yadav RK, Reddy YP, Abraham G. Cyanobacterial exopolysaccharides: composition, biosynthesis, and biotechnological applications. In: Mishra AK, Tiwari DN, Rai AN, editors. Cyanobacteria: from basic science to applications. Academic; 2019. p. 347–58.

    Chapter  Google Scholar 

  • Soule T, Shipe D, Lothamer J. Extracellular polysaccharide production in a scytonemin-deficient mutant of Nostoc punctiforme under UVA and oxidative stress. Curr Microbiol. 2016;73(4):455–62.

    Article  CAS  PubMed  Google Scholar 

  • Stuart RK, Mayali X, Lee JZ, Everroad RC, Hwang M, Bebout BM, Weber PK, Pett-Ridge J, Thelen MP. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J. 2016;10(5):1240–51.

    Article  CAS  PubMed  Google Scholar 

  • Takenaka H, Yamaguchi Y. Commercial-scale culturing of cyanobacteria: an industrial experience. In: Sharma NK, Rai AK, Stal LJ, editors. Cyanobacteria: an economic perspective. Chichester: Wiley; 2014. p. 293–302.

    Google Scholar 

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol. 2005;71:7327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tien CJ. Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochem. 2002;38:605–13.

    Article  CAS  Google Scholar 

  • Uhliariková I, Šutovská M, Barboríková J, Molitorisová M, Kim HJ, Park YI, Matulová M, Lukavský J, Hromadková Z, Capek P. Structural characteristics and biological effects of exopolysaccharide produced by cyanobacterium Nostoc sp. Int J Biol Macromol. 2020;160:364–71.

    Article  PubMed  Google Scholar 

  • Wang Y, Lechno-Yossef S, Gong Y, Fan Q, Wolk CP, Xu X. Predicted glycosyl transferase genes located outside the HEP island are required for formation of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J Bacteriol. 2007;189(14):5372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv. 2016;34:1225–44.

    Article  CAS  PubMed  Google Scholar 

  • Yue SJ, Jia SR, Yao J, Dai YJ. Nutritional analysis of the wild and liquid suspension cultured Nostoc flagelliforme and antitumor effects of the extracellular polysaccharides. Adv Mater Res. 2011;345:177–82.

    Article  Google Scholar 

  • Zhang L, Selão TT, Nixon PJ, Norling B. Photosynthetic conversion of CO2 to hyaluronic acid by engineered strains of the cyanobacterium Synechococcus sp. PCC 7002. Algal Res. 2019;44:101702.

    Article  Google Scholar 

  • Zhao C, Li Z, Li T, Zhang Y, Bryant DA, Zhao J. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002. Cell Discov. 2015;1:15004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuniga EG, Boateng KK, Bui NU, Kurnfuli S, Muthana SM, Risser DD. Identification of a hormogonium-polysaccharide specific gene set conserved in filamentous cyanobacteria. Mol Microbiol. 2020;114(4):597–608.

    Google Scholar 

Download references

Acknowledgments

This work was financed by FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-028779 (PTDC/BIA-MIC/28779/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Tamagnini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mota, R., Flores, C., Tamagnini, P. (2021). Cyanobacterial Extracellular Polymeric Substances (EPS). In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-35734-4_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35734-4_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35734-4

  • Online ISBN: 978-3-030-35734-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics