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Abstract. This paper presents the approach of our team, b-it-bots,
in the RoboCup@Work competition which resulted in us winning the
World Championship in Sydney in 2019. We describe our current hard-
ware, including modifications made to the KUKA youBot, the under-
lying software framework and components developed for navigation,
manipulation, perception and task planning for scenarios in industrial
environments. Our combined 2D and 3D approach for object recogni-
tion has improved robustness and performance compared to previous
years, and our task planning framework has moved us away from large
state machines for high-level control. Future work includes closing the
perception-manipulation loop for more robust grasping. Our open-source
repository is available at https://github.com/b-it-bots/mas_industrial-
robotics.

1 Introduction

The RoboCup@Work league was established in 2012 as a demonstration
league, and became a regular league in 2016. It is aimed at robots working
autonomously in industrial environments in collaboration with humans. A typi-
cal task involves transporting objects from one location to another, using skills
such as autonomous navigation, object perception, manipulation and task plan-
ning.
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Fig. 1. b-it-bots robot configuration based on the KUKA youBot

Our team, b-it-bots, has participated in RoboCup@Work since its incep-
tion, and has regularly performed well at both the World Championships and
RoboCup German Open. This year, our team achieved the first place after a
closely fought competition with teams from Germany, Singapore, Iran and the
Netherlands.

The team consists of Master of Science in Autonomous Systems students
from Hochschule Bonn-Rhein-Sieg, who are advised by PhD students and pro-
fessors. Although RoboCup activities are not part of the academic curriculum,
the students participate voluntarily and results from class projects, research and
development projects and Master’s theses have been deployed on the robot over
several years. Collaboration between team members is achieved by regular team
meetings every Friday, development and issue tracking on Github and develop-
ment sprints before competitions. Our main research interests include mobile
manipulation in industrial settings, navigation in unconstrained environments,
robot perception, task planning and failure detection and error recovery.

In this paper, we describe our approach for the RoboCup@Work competition
including our robot platform in Sect. 2, software framework in Sect. 3, navigation
in Sect.4, our approach for different perception tasks in Sect. 5, manipulation
and control in Sect. 6 and task planning in Sect. 7.

2 Robot Platform

As most other teams in the league, we use the KUKA youBot as the applied
platform for RoboCup@Work (see Fig.1). It is equipped with a 5-DoF manip-
ulator, a two finger gripper and an omni-directional platform. The standard
internal computer of the youBot has been replaced with an Intel NUC with a
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Core i7 processor and 8 GB of RAM. Two Hokuyo URG-04LX! laser range find-
ers are mounted vertically flipped in the front and the back of the platform.
For perception-related tasks, the manipulator is fitted with an ASUS Xtion Pro
Live? RGB-D camera on the gripper palm. Additionally, an RGB camera is fitted
between the fingers of the gripper for close-range perception of objects.

Another custom modification has been made for the youBot gripper (based
on the design of [6]) which enhances the opening range and enables grasping of a
wider range of objects. The gripper (see Fig. 1) is actuated with two Dynamixel
AX-12A servo motors which provide a position interface and force-feedback infor-
mation. A final modification was performed on the back platform of the youBot.
It has been replaced with a new light-weight aluminium version, the position of
which can be manually adjusted forward and backward. All technical drawings
to the previously described modifications, as well as various 3D printed sensor
mounts have been made public?.

3 Robot Software Framework

We use the Robot Operating System (ROS) [15] as the middleware to pass data
and events between components. We primarily use topics since they support
non-blocking communication and the possibility of monitoring the communica-
tion between two or more nodes at any time. We have standardized our nodes
with the addition of event in and event out topics. Our components listen to the
event in topic and expect simple command messages for starting, stopping or
triggering (run once) the component. The components provide feedback of their
status on the event out topic when they finish. This allows us to coordinate and
control the components with either simpler state machines or task planning; in
either case, the control flow and data flow between the components remains sep-
arated, following a similar approach as proposed in GenoM3 [13]. The software
is organized in an hierarchical manner (see Fig. 2) with the low level components
implemented as ROS nodes. Higher level actions are developed as SMACH [10]
state machines wrapped around ROS action servers, and include actions such
as move base to location, perceive location, pick object, and place object. For
task planning, the Mercury task planner [11] is used within the framework of
ROSPlan, with actions in the task plan corresponding to the actions mentioned
earlier.

4 Navigation

For navigation, we use move_base from the ROS navigation stack, along with
accompanying components such as the occupancy grid map, global and local

! https://www.hokuyo-aut.jp/search/single.php?serial=166.
2 https://www.asus.com/us/3D-Sensor/Xtion PRO_LIVE.
3 https://github.com/mas-group/technical_drawings.
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Fig. 2. Software architecture organization

path planner (Dynamic-Window-Approach) and Adaptive Monte Carlo Local-
ization (AMCL). The parameters for move_base, such as inflation radius and
maximum linear velocity, were configured by running experiments in simulation
in various environments. Based on the experiments, we fixed 3 sets of param-
eters for low, medium and high speed navigation; currently the speed settings
are chosen manually based on the complexity of the environment. We use the
force-field recovery behaviour developed by smARTLab@Work [6], which moves
the robot away from obstacles when it gets stuck.

A direct base controller has been implemented, which allows the robot to
move in a local frame relative to its current position without requiring a map
or global localization. This is used, for example, for local motions while picking
objects from a workstation.

Yellow and black barrier tapes on the floor indicate areas in the environment
to be avoided. Using the RGB-D camera, we detect the barrier tape in 2D using
a colour filter and convert the pixels to 3D using the point cloud. The point
cloud is republished as a laser scan which forms an additional sensor source for
the costmap, hence treating the barrier tapes as static obstacles.

5 Perception

Several components have been developed for processing the image and point
cloud data from the arm-mounted RGB-D camera. In the current configuration,
the RGB-D camera faces downwards when the arm is fully stretched upwards;
this allows the robot to perceive the entire area of the workstation.
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5.1 Object Recognition

Perception of objects relevant for industrial environments is particularly chal-
lenging because they are typically textureless and made of reflective materials
such as metal. For the object detection and recognition task, we use the RGB-D
camera with both 3D and 2D methods as outlined in Fig. 3.

3D Perception. For 3D segmentation and classification, we capture a single
point cloud, downsample it using a voxel grid filter, and crop it using passthrough
filters in order to reduce the computational complexity. To perform plane seg-
mentation, we use a sample consensus method to segment a single horizontal
plane. The convex hull of the segmented plane is computed and represented as
a planar polygon. The prism of points above the polygon are segmented and
clustered to individual object point clouds.

We extract the features of each cluster using 3D modified Fisher vector
(3DmFV) [4] and mean circle features [19]. The 3DmFV features represent a
global description of the point cloud using a generative model which is formu-
lated using Gaussian mixture model (GMM). The mean circle features include
the radius of circles fit on slices of the point cloud along all three axes, dimen-
sions of the bounding box, mean colour, etc. The combined 3DmFV and mean
circle features are used to learn a random forest classifier as illustrated in Fig. 4.
The training data for 3D perception consists of approximately 300 segmented
point clouds per object.

2D Perception. In previous years, we used graph-based segmentation [9] to seg-
ment objects from the background. However, since the requirement to pick from
arbitrary surfaces has been included in the rulebook for RoboCup@Work [2], an
approach for object segmentation which does not rely on a uniform background
is required. We use SqueezeDet [20], a convolutional neural network for object
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Fig. 4. A visualization of 3DmFV and mean circle features in the point cloud clas-
sification. 3DmFV aggregates the global feature of the point cloud while mean circle
computes local features represented by slices on three different axes.

Fig. 5. Recognized objects using 2D (left) and 3D (middle) methods. The right image
illustrates the estimated pose of each object.

detection in which the region proposal and classification are integrated into one
stage. It uses the ConvDet layer to output coordinates for bounding boxes and
the class probabilities for each bounding box.

Given the 2D bounding box, we find the corresponding 3D point for each pixel
in the box and fit a 3D bounding box to determine the position and orientation
of the object. Sample outputs are shown in Fig.5. The training data for 2D
classification consists of approximately 700 annotated images per object.

Inference from both models together runs at approximately 2 FPS. This
is achieved by running inference on the two models (squeezeDet and random
forest) in parallel. The two object lists are received by the object list merger
node, which intelligently combines the lists into a unified one. The object list
merger uses information such as class probabilities from both classifiers, prior
knowledge regarding the accuracies for certain objects by each classifier, and
inventory at the current location being perceived (which is retrieved from the
knowledge base used by the task planner as described in Sect. 7).

For the precision placement test, the robot is required to insert objects into
cavities. Given an input image of the workstation, canny edge detection is applied
to extract the edges around the cavities and the workspace. The resulting edges
are dilated and combined into contours, which are filtered based on their area.
The cropped cavity images are classified using a MobileNetV2 [17] network. The
pose of each cavity is estimated in a similar manner as the 2D objects - by fitting
oriented 3D bounding boxes to the corresponding 3D points of the 2D contour.
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5.2 Object Tracking

In the rotating table test, the robot is required to pick up a specified list of
objects which are placed on top of a rotating table along with several other
objects. The table spins at an arbitrary speed within a known range; this is set
at the start of the run and remains fixed throughout. The robot needs to track
the objects, classify them, and estimate their motion model in order to anticipate
their arrival in front of the robot. Once an object has been identified for a grasp,
the gripper-mounted RGB camera is used to estimate the precise grasp time.

For tracking, the robot’s arm is moved to a predefined configuration such
that more than half of the table is within the field of view of its RGB-D camera.
At a rate of 10 Hz, 150 point clouds are captured and processed once capturing is
complete. For each point cloud, object clusters are extracted in a similar manner
as described in Sect. 5.1. In our current approach, we track objects by using the
detections from every frame and establish temporal correspondences based on
the distance between the centroids of all pairs of objects. This naive approach
is possible since there are no occlusions and the objects all rotate at a constant
speed. A list of tracked objects is maintained, where each tracked object consists
of a list of centroid positions and timestamps.

Given the tracked positions of the objects, a least squares solution for the
center of rotation is obtained using SVD, and the angular velocity is estimated
as the median of angular velocities for each tracked object. The velocity and
center of rotation are used to estimate the time and position at which a given
object will arrive in front of the robot. Once an object has been classified and
selected for grasping, the arm is positioned such that the gripper is directly
above the expected grasp location. In order to determine the exact grasp time,
background change detection is performed on the images of the gripper-mounted
RGB camera during a small window around the estimated arrival time.

Future improvements aim at incorporating the size and orientation infor-
mation of the objects for calculation of the exact grasp time using background
change detection to allow more flexibility in the placement of objects.

6 Manipulation and Control

We use Movelt! [1] as our base framework for basic manipulation tasks, but in
order to grasp objects reliably, several additional components have been devel-
oped and integrated on the robot. We developed our own interpolation-based
planner for Movelt! as it produces more deterministic trajectories for the arm
movement. This is used for motions of the arm to pre-defined positions.

For grasping, the grasp pose of the object is the input to the pre-grasp plan-
ner, which computes a pre-grasp arm configuration based on the type of grasp,
a distance offset and constraints imposed by the robot’s manipulator and end
effector. Finally the trajectories to reach the pre-grasp and grasp pose are con-
catenated and executed in sequence. Once the end effector reaches the grasp
pose, the gripper of the robot is closed. A grasp monitor checks whether the
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object is grasped successfully utilizing the force and position feedback of the two
Dynamixel motors.

6.1 Cartesian Motion

Given that the manipulator has only 5 degrees of freedom, an exact inverse
kinematic solution which satisfies both position and orientation of a particular
pose is not always possible. Hence, we deploy a Cartesian motion control frame-
work which can provide an approximate kinematic solution for a particular pose
by removing constraints on the orientation. The Cartesian motion control pro-
vides joint velocities for target task-space or Cartesian velocities; it relies on
an approximate inverse kinematic velocity solution near singularities and joint
limits of the arm. The method we use to obtain such inverse kinematic solutions
for task space velocities is called Weighted Damped Least Square (WDLS) [8].
Our implementation uses the WDLS inverse kinematic velocity solver provided
by the OROCOS KDL library. The use of such approximate solutions allows us
to manipulate objects in scenarios where positional accuracy is not the primary
objective, such as when inserting an object in a box. This method allows us to
ignore constraints on specific degrees of freedom (angular degrees of freedom in
this case) and the object can be placed in the box by reaching the area above
it in any orientation. The Cartesian motion controller also allows the robot to
execute motions subject to task-space constraints on the trajectory, such as
curve-tracing. The Cartesian controller is an instantaneous incremental motion
controller, hence online changes in the target position can be handled easily by
the velocity controller.

6.2 Learning from Demonstration

Complex manipulation skills can be transferred to the robot by the learning from
demonstration (LfD) framework developed using Dynamic Movement Primitives
and Cartesian control. Dynamic movement primitives use nonlinear dynamic
equations to learn the shape of the motion [18]. Skills are demonstrated to the
robot by a teacher using an arUco marker board; the robot records the motion
by tracking the board with a camera and the motion is then learned using the
LfD framework [14]*. This framework was implemented and used to teach the
robot motion profiles which are hard to engineer. We plan to use this for teaching
motion profiles such as those for picking from or placing on shelves.

7 Task Planning

Finite state machines (FSMs) are sometimes used for high-level control in
robotic applications, and in particular in competition settings where the objects
involved, locations and the tasks are well-specified and the action set is rela-
tively small. Such FSMs of whole scenarios may, over time, become complex

4 https:/ /youtu.be/jEtIm96KAbA.
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and difficult to understand and maintain. In our architecture, small, easily-
understandable, debuggable and maintainable FSMs (in the form of SMACH
scripts) are used for executing actions such as perceive location, pick object and
move base to location. The high-level control is handled through the use of a
task planner which produces a sequence of fully ordered actions to achieve a

goal. Listing 1.1 shows a sample plan for transporting a bearing from WS03 to
WS10.

Listing 1.1. Sample plan Listing 1.2. PDDL definition for pick
(:action pick
:parameters (?r — robot 71 — location 7o —
object)
:precondition (and (on 70 71)
(move_base youbot—brsu start ws03) (at 7r 71)
(perceive youbot—brsu ws03) (perceived 71)
(pick youbot—brsu ws03 bearing—00) ( gripper_is_free 7r)
(stage youbot—brsu platform_left bearing—00) (not (holding ?r ?0))
(move_base youbot—brsu ws03 ws10) (not (heavy 70))
(unstage youbot—brsu platform_middle )
bearing—00) :effect (and  (holding ?r 7o)
(place youbot—brsu ws10 bearing—00) (not (on 7o ?71))

(not ( gripper-is_free 7r))
(increase (total—cost) 2)

)

We have, for the past couple of years, been using the Mercury task plan-
ner [11], a winner at the 2014 International Planning Competition (IPC). Our
planning domain contains seven basic operators: move base to location, perceive
location, pick object, stage object to robot platform, unstage object from robot plat-
form, place object, and insert object. As an example, the PDDL representation of
the pick operator is shown in Listing 1.2. The limited number of operators also
serves to help with tractability, which remains a problem, as is often the case
with task planners, in particular given the limits on time in the arena to complete
the various tests. In addition to the operators, the domain also includes literals
representing locations, the robot, objects and the robot platform (representing
the spaces on the robot which are used to transport up to three objects at a
time). Eleven predicates such as on, occupied, gripper is free and perceived are
also included. Further details on the modelling of the domain and the planner’s
integration into the system can be found in [7] and [12].

As the task to be carried out is received from the referee box, it is parsed and
the facts that make up the initial state and the goal statement are added to the
knowledge base (KB) within the ROSPlan framework. Due to the time necessary
to generate an optimal plan, the problem generator chooses three goals to be
achieved and outputs the PDDL problem file which is then sent to the planner
along with the PDDL domain file containing the operators, their preconditions
and effects. The first plan that it may produce is far from optimal. As the
planner continues, the quality of the generated plan improves (see [11]). Here,
a time limit of 10s is set. The latest generated plan at that time is then sent
to the plan executor which schedules each action and dispatches it for execution
by triggering the SMACH scripts which are tailored specifically to perform the
actions given runtime constraints such as location type and object type. The plan
ezecutor monitors the action execution and, upon completion, updates the KB
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Table 1. Quantitative comparison of task planners for the @Work problem

Planner Time limit (s) | Plan length | Plan cost | Plan redundancies
Mercury 2014 | 10 65 570 5
15 65 570 5
FDSS(2) 2018 | 10 79 588 0
15 65 486 0
LAMA 2011 |10 57 420 0
15 56 400 0

to reflect the changes to the world that the action has resulted in (the action’s
effects), thus ensuring that the current state is available in case any replanning is
needed. In the case of a failure during the execution of an action, and depending
on the action, the plan executor either retries the action or triggers a re-plan.

Parallel execution of base and arm motion has helped to reduce execution
time as the robot is able to partially execute part of the following action along
with the current one. For example, as the robot is arriving at a workstation (the
current action) it may move the arm in preparation for a perceiving action (the
following action). This is handled entirely within the state machines which have
knowledge of the next action in the plan.

Ideally, the planner should take into consideration the different points
awarded for different items/locations in the RoboCup@Work scenarios, the time
constraints of the tests and the tendency for certain actions to succeed more
often than others. The planning system would then be able to provide a plan
that prioritises actions which are highly likely to succeed and high-reward goals.
The problem would then be a resource-constrained planning problem with expec-
tation maximisation in a Markov decision process (MDP). MDPs are known to
be hard to solve and are, therefore, usually solved offline and assume that all
possible situations are in the model. This kind of a solution is not readily avail-
able off-the-shelf (and to our knowledge remains an open research topic) and
yields a more complex modelling process than what is currently being used in
our system.

Looking ahead, and following the results of a comparative study [3] of plan-
ners submitted to the 2018 IPC that was carried out to investigate whether to
continue with our current planner or switch to another, the LAMA planner [16]
will be integrated and tested, mainly due to its ability to produce near-optimal
plans in limited time (see Table1).

8 Current Research Activities

Currently, robustness in perception and grasping of objects is an area for
improvement. Our current approach involves perceiving the objects once and
performing an open-loop grasp with only minimal grasp verification after the
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grasp is complete. We would like to improve this by closing the perception-
manipulation loop, incorporating continuous perception before and during the
grasp, and continuous grasp monitoring after grasping. We plan to use neural
compute sticks such as Intel Movidius® or Google Coral® to reduce the inference
time for object recognition. Additionally, smart machine vision cameras such as
JeVois” are being considered for use at the end-effector. For manipulation, we
aim to achieve coordinated motion between the base and the arm by modeling
the entire robot as an 8 DOF manipulator (3 DOF base + 5 DOF arm).

9 Conclusion

In this paper, we presented our approach for the RoboCup@Work competition
including modifications applied to the standard youBot hardware configura-
tion as well as the functional core components of our current software archi-
tecture. Our combined 2D and 3D approach to object recognition has resulted
in improved performance compared to previous years, while keeping up with
the increased complexity of the tasks over the years. The task planning frame-
work allows us to easily attempt new types of tasks, without having to deal with
large state machines. We applied the component-oriented development approach
defined in BRICS [5] for creating our software, allowing us to compose several
heterogeneous components into a complete system and even reuse components
on different robots. Our current work is focussed on improving the robustness of
grasping, by incorporating continuous perception during manipulation and addi-
tional sensors for grasp monitoring. Additionally, we eventually aim to move our
software to a different platform since the youBot is no longer in production.
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