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Abstract. Team homer@UniKoblenz has become an integral part of the
RoboCup@Home community. As such we would like to share our expe-
rience gained during the competitions with new teams. In this paper we
describe our approaches with a special focus on our demonstration of this
year’s finals. This includes semantic exploration, adaptive programming
by demonstration and touch enforcing manipulation. We believe that
these demonstrations have a potential to influence the design of future
RoboCup@Home tasks. We also present our current research efforts in
benchmarking imitation learning tasks, gesture recognition and a low
cost autonomous robot platform. Our software can be found on GitHub
at https://github.com/homer-robotics.

1 Introduction

This year, team homer@UniKoblenz became RoboCup@Home world champion
for the fourth time. This makes our team the most successful team in the Open
Platform League of the RoboCup@Home!

Team homer@UniKoblenz started in 2008 by borrowing rescue robot “Rob-
bie” from our prior existing RoboCup Rescue team for their own participation in
a so far unknown at home environment. The next year homer@UniKoblenz par-
ticipated for the first time with their own robot “Lisa”. Thanks to the endeavors
of the team leaders and the commitment of all team members over time we
managed to be among the top 5 teams frequently. As our team that arises from
new students every year, going beyond the 5th place was not easy. We had to
develop strategies to teach and mentor new students and allow them to start
being productive after a short introductory period. Most importantly, we had to
come up with a software architecture and organization structure, which enable
programming on different abstraction levels and, despite their complexity, are
easy to comprehend and to learn for new team members. In this paper we first
present our strategies and solutions to overcome common challenges. We provide
several software package used by our team during the competition and give an
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insight on how we collect data for object recognition. We hope all of these will
serve as guidelines for new teams. Finally, we discuss our demonstration in the
finals of 2019 and describe the results of the competition.

2 Team homer@UniKoblenz

The key to success in a competition is a good team. Here we describe our selection
process for new team members and give an overview over our robotics hardware.

2.1 Members

In our case only one academic employee is working with Lisa. That employee
is the team leader and conducts research for his PhD thesis on Lisa. Since the
major part of the team is formed by students and there is only a limited amount
of persons, which can be effectively supervised, these students have to be selected
carefully. Thus, students have to write a formal application and will be invited to
an interview. The application process is necessary in order to identify especially
those students, which are most motivated and willing to put extensive work into
the project. A student does not have to be exceptionally talented in any field
to be accepted. The main requirement is to show motivation and willingness to
learn. Two weeks before the start of the course all selected students participate
in a daily training to learn the basics of version control, operating the robots
and using ROS. The goal is to enable the students to work on their own with the
robots. This is achieved by using a modular software architecture with different
abstraction levels. Please consult [1,2] for details on the organization of our
software. During the course focus is put on preparations for the competition. In
two weekly meetings the team analyzes the requirements of the different tests
and develops strategies to solve them. Over the years we reduced the amount
of formal requirements engineering and software specifications to a minimum
in favor of agile and permanent development. We integrate Jenkins as a build
server for continuous, multi-architecture integration and deployment. Further,
at all times students are encouraged to test their code using the robots at place
with real sensor data or recorded ones, e.g. from ROS bagfiles. On a regular
basis we organize simulated RoboCup events at which each RoboCup task is
tested and scored according to the current rules. This allows to honestly assess
the progress made during the course.

2.2 Robots

We use a custom built robot called Lisa and a PAL Robotics TIAGo [3] depicted
in Fig. 1. Each robot is equipped with a workstation notebook with an 8 core
processor and 16 GB RAM. We use Ubuntu Linux 16.04 and ROS Kinetic.
Each robot is equipped with a laser range finder and wheel encoders for navi-
gation and mapping. Further, both robots have a movable sensor head with an
RGB-D camera and a directional microphone. Lisa features a 6-DOF robotic arm
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Fig. 1. The robots Lisa (left) and TIAGo (right). We use Lisa first and foremost for
human robot interaction related tasks. The 10 in. screen supports guided interactions.
TIAGo is used mainly as a mobile manipulation platform. The work range is far higher
and the arm controllers are more reliable.

(Kinova Mico) for mobile manipulation. The end effector is a custom setup and
consists of 4 Festo Finray-fingers. An Odroid C2 mini computer inside the casing
of Lisa handles the robot face and speech synthesis. In contrast to Lisa, TIAGo is
able to move its torso up and down and has a wider working range. This allows
TIAGo to use his 7-DOF arm to reach the floor, as well as high shelves.

3 Contributing Software and Dataset

We omit a detailed description of the current approaches used by our team as
these can be found in recent team description papers. Instead, in this section
we focus on our contributions in the form of released software and dataset. We
hope, this will help new teams to catch up with the evolved RoboCup@Home
community and allow them to participate and reach a similar performance level
more easily.

3.1 Software

We started releasing our packages for ROS in our old repository1. Now we decided
to make our contributions more accessible through our GitHub profile2. This
1 Previous homer repositories: http://wiki.ros.org/agas-ros-pkg.
2 Current homer GitHub profile: https://github.com/homer-robotics.

http://wiki.ros.org/agas-ros-pkg
https://github.com/homer-robotics
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Fig. 2. Examples from the RoboCup 2019 dataset. We recorded backgrounds like in
(a) and labeled images containing objects like e.g objects of the class fruits in (b).
The labeled objects are then augmented under a variety of transformations and then
mapped onto the recorded background images (c).

includes custom mapping and navigation packages, a robotic face, integration
to different text to speech systems and gesture recognition. In [2,4] we describe
in detail how new teams can create an autonomous robot capable of mapping,
navigation and object recognition using our released software. Currently, as deep
learning has become the state of the art in vision, we are also adopting these
methods. Meanwhile, our point cloud recognition software with recent enhance-
ments is described in [5] and can also be found on GitHub3. As development
continues, we plan to release more packages and instructions on how they can
be used.

3.2 RoboCup@Home 2019 Dataset

During the RoboCup 2019 competition we created a dataset that gives an insight
in what data we gather for the competition attendance. In total, we recorded
189 images containing objects of different classes and 12 background images. The
pixel-wisely labeled images in conjunction with the labeled object images were
used to project the extracted objects to a variety of backgrounds. The back-
grounds represent manipulation locations from inside the arena. In total 60572
labels were generated on 33539 augmented images. Figure 2 shows examples of
backgrounds, object images and augmented images. The dataset is available
online4.

4 Final Demonstration

During the final demonstration we showed three approaches that could poten-
tially influence the way how RoboCup tasks will be designed in the future. The
first two approaches are addressing the challenge of how robots can perform
3 Point cloud recognition: https://github.com/vseib/PointCloudDonkey.
4 RoboCup@Home 2019 dataset: https://agas.uni-koblenz.de/datasets/robocup 2019

sydney/.

https://github.com/vseib/PointCloudDonkey
https://agas.uni-koblenz.de/datasets/robocup_2019_sydney/
https://agas.uni-koblenz.de/datasets/robocup_2019_sydney/
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Fig. 3. LISA exploring the apartment during the RoboCup@Home finals. (a) shows a
map created shortly after entering the apartment. Tables and chairs are added to the
semantic representation. (b) shows the explored map at the end of the final demon-
stration. Once finished with the apartment the robot started to explore the outside
area.

complex tasks without much prior knowledge. We demonstrated an approach
for autonomous semantic exploration on our robot Lisa and an approach for
adaptive learning of complex manipulation tasks. In addition, we proposed an
approach for touch enforcing manipulation. A video showing the final demon-
stration during the RoboCup@Home 2019 is available on YouTube5.

4.1 Autonomous Semantic Exploration

Currently, at RoboCup@Home semantic information about the arena and the
objects are provided during the setup days. After publication the majority of
teams records maps, defines locations and trains objects. All this data is trans-
lated to a semantic knowledge representation which can be understood by the
robot. Maps are commonly stored as occupancy grid maps with additional lay-
ers for rooms and points of interest. Object recognition tends to be trained
using recent object detectors [6,7]. This strategy works fine in an competition
environment as long as the state of the arena remains unchanged or undergoes
only minor modifications. In the finals, we demonstrated a more general idea
addressing the question “How can we make robots behave more autonomously
in previously unknown environments?”. There is a variety of pre-trained models
nowadays which contains a wide variety of classes found in daily life. The COCO
[8] dataset contains classes like Chairs, Dining Table, Refrigerators, Couch. The
wide variety of training examples allows for creation of a generalized object
detector which yields good results in completely different scenarios. We make
use of the strength of those object detectors and combined them with a tradi-
tional method for exploration based on occupancy grid-maps. An example, as
shown during the finals is shown in Fig. 3. Based on the autonomously created
semantic representation, robots could execute manipulation tasks in the future

5 Final Video 2019: https://www.youtube.com/watch?v=PZmKzngDegk.

https://www.youtube.com/watch?v=PZmKzngDegk


570 R. Memmesheimer et al.

in previously unknown environments without any human intervention. Multi-
modal sensor data extraction that is fused on different levels can increase the
quality and level of the semantic representation. For our approach we plan to
improve the pose estimates of the detected objects.

4.2 Adaptive Learning by Demonstration

With TIAGo we presented an approach for learning complex manipulation tasks
without any prior knowledge about the task. The robot estimates the initial scene
state by detecting objects. The robot’s arm is then put into gravity compensa-
tion mode, which allows for seamless human guidance. A human demonstrated
relevant arm trajectories for a given task. During the demonstration trajectories
are recorded relatively to the estimated objects and a static local reference.

Fig. 4. Average relative position and variance of Object A and Object B. Gray lines
in X-, Y- and Z-Axis represent single demonstrations. Blue lines represent average
positions and blue areas variances. The total variances are shown in gray in the bottom
graphics. (Color figure online)

Fig. 5. TIAGo learning by demonstration how to pour a drink (a) and cleaning a toilet
using a touch enforcing approach and a sponge end-effector (b).
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The reference allows demonstrations with just one or no object at all as ref-
erence. With multiple demonstrations, it can be predicted if a specific object
is involved in the task. More precisely, the variance in relative position of an
object to the end effector over time can be calculated. A low variance indicates
high importance of the object within the task at that moment and vice versa.
Examples of variances are shown in Fig. 4, where an object A has been placed in
an object B. The total variance of object A is low between 200–500 (Fig. 4(a)),
where it has been grasped and thus is involved in the task during that time
period. On the other hand the total variance of object B is low between 600–800
Fig. 4(b). The end effector moved over object B and let go in that time period.
Knowing the average position of the robot’s end effector relative to the appropri-
ate objects and estimating its importance allows to calculate a position for every
time step and finally build a trajectory for any scene. Our approach is based on
the ideas of Reiner et al. [9]. Yet, we use deviations of the trajectories to align
the multiple trajectories. Aligning them is necessary in order to compute precise
variances, since demonstrations by humans are never executed in the exact same
speed. The Levenberg-Marquardt algorithm is used, which shall grand a more
stable handling of singularities [10]. Figure 5(a) shows the approach as presented
during the finals. Future work on this approach will include integration of joint
efforts. Currently only joint angles are taken into account during the recording
and reproduction. This has side effects like that if an object is grasped by closing
the gripper it will be grasped with the same end effector joint states as in the
demonstration. This means objects are held only loosely or smaller objects will
not be stably grasped. Therefor, we suggest to also take the motor effort into
account during the demonstration and reproduction.

4.3 Touch Enforcing Manipulation

In the final demonstration we also built on top of our previously presented
effort based manipulation approach [11]. We propose to enforce contact during
a manipulation action by continuously observing the joint efforts. Our previous
approach was used in an open loop control, where a movement is interrupted
once a certain effort has been reached. This is suitable for grasping where you
want to determine when the effector touches the surface supporting the object.
Our novel approach proposes to hold a certain effort in closed loop control.
This was demonstrated during the finals as a case sample of cleaning a toilet
(Fig. 5(b)). This approach can be used for a variety of tasks like cleaning tables
or windows and slightly moving objects.

5 Results

This year’s tasks were categorized in two scenarios: Housekeeper and Party Host.
Both scenarios contained five tasks each and teams could choose to perform
three of those per scenario. For detailed descriptions of the tasks we refer to
the RoboCup@Home rulebook [12]. Results from the OPL are shown in Fig. 6.



572 R. Memmesheimer et al.

Fig. 6. Scores after Stage 1 and Stage 2 for the top five ranked teams. Stage 1 ended
with Serving Drinks. Note: Tasks not attended by teams are still listed with no increase
in points.

In Stage 1 of the Housekeeper scenario, we participated first in Take Out The
Garbage (Fig. 7a) where we gathered 500 points. The robot grasped two garbage
bags with our previously introduced closed loop touch enforcing approach. The
bins were detected by finding circular patterns in the laser scan. For the Storing
Groceries task we trained a semantic segmentation approach [6] with augmented
images. Semantic annotations contained grasping trajectories. Due to a robot
damage during transportation, the calibration was off and we scored 0 points. We
further participated in the Serving Breakfast task. In Find My Mates we scored
175 points and additional 500 in the Receptionist task. We used convolutional
pose machines [13] and projected them using the RGB-D camera in order to
calculate distances of the persons in relation to locations of the map. This way
we could estimate free seat locations and introduce the new guest to the others.
In Serving Drinks we scored 100 points (Fig. 7b).

Table 1. The finals results

Team Stage 1 Stage 2 Final

homer 1715 3365 100

Pumas 845 2195 78.05

CATIE 1425 1675 –
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Fig. 7. TIAGo grasping a trash bag during the Take Out The Garbage task using an
effort based grasping approach to ensure that the bag was grasped successfully (a) and
Lisa handing over a drink to a guest during the Serving Drinks task.

Fig. 8. LISA learning an unknown restaurant and then serving customers in the Restau-
rant task (a) and TIAGo gently placing a in the Clean the Table task (b) during a test
run.

Stage 2 consisted of Clean the Table, Enhanced General Purpose Service Robot
(EGPSR), Hand Me That, Restaurant, Stickler for the Rules Where Is This?.
No team attended the tasks Find My Disk, Smoothie Chef or Set The Table.
In Clean the Table (Fig. 8b) we achieved 300 points. Points were given only if
the whole task was completed. We used the effort based gripping approach and
successfully verified our grasping approaches. When having failed to grasp the
object, we asked for a handover by describing the object we had intended to take.
Our approach for Hand me That was based on finding the operator by estimating
human poses [13]. As multiple persons could be in the environment, the robot
asked the operator to take a distinguishable pose. We gathered 0 points, however
we demonstrated robust human robot interaction. For Restaurant (Fig. 8a) we
used again a gesture recognition based on estimated human poses [13]. Maps
were created on-line and as tables and chair’s in unknown environments are
hard to see obstacles we fused the laser range finder and RGB-D camera in an
obstacle layer of the mapping. We managed to serve two customers and deliver
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three orders with a forth order on the way. In total we gathered 850 points. For
the Where Is This? task we decided to use naive operators. We managed to
guide two randomly chosen children from the audience to the object they were
looking for, another 500 points for us. Table 1 shows the final results of the first
three teams.

6 Current Research

We now briefly highlight our current research and ongoing developments related
to RoboCup@Home.

Simitate: A Hybrid Imitation Learning Benchmark. Imitation learn-
ing approaches for manipulation tasks lack comparability and reproducibility.
Therefore we developed a benchmark [14] which integrates a dataset containing
RGB-D camera data as it is available on most robots. The RGB-D camera is cal-
ibrated against a motion capturing system. The calibration furthermore allows
the reconstruction in a virtual environment which allows quantitative evalua-
tion in a simulated environment. For that we propose two metrics that assess
the quality on a trajectory and a effect level.

300 450

40
0

004

15
0

(a) (b)

Fig. 9. Assembled Scratchy (a) and exemplary dimensions in (b).

A Lightweight Modular Autonomous Robot for Robotic Competi-
tions. We proposed a novel modular robotic platform [15] for competition atten-
dance and research. The aim was to create a minimal platform, which is easy to
built, reconfigurable, offers basic autonomy and is low in cost to rebuilt. Thus
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researchers can concentrate on their respective topics and adapt sensors and
appearance depending on their needs. Scratchy allows also low cost participa-
tion in robot competitions as the weight is low and the robot can be compressed
up to a hand luggage size.

Gesture Recognition. Gesture recognition in RoboCup@Home becomes more
and more mandatory. First we propose a gesture recognition approach on single
RGB-D images. We extract human pose features and train them using a set of
classifiers [16]. We then extended the approach to image sequences [17] using
Dynamic Time Warping [18] and a one nearest neighbour classifier. This allows
gesture classification with just one reference example.

Updating Algorithms. In the past we successfully used classic approaches for
3D point cloud processing [5] and affordance estimation [19]. We believe that
transferring these ideas to the powerful domain of deep neural networks will
further enhance the performance of these algorithms. Currently, we investigate
methods that allow for a lightweight network structure while still retaining the
performance of the classic approaches.

7 Conclusion

With our success this year we demonstrated a robust robotic architecture that
is adaptable to various kinds of robots and setups. This architecture was con-
stantly developed and improved over the years - and we will continue into the
same direction. This paper gave a brief insight into the internal organisation of
our teams and presented our robots. We further published some important soft-
ware components on our GitHub profile. We hope that all of these will be helpful
to new team who join the RoboCup@Home league. Our final demonstration of
this year focused on the topic of autonomy in unknown environments. We want
to motivate the league to follow this track and encourage autonomous robots
that operate in previously unseen environments and execute loosely specified
tasks. This will increase the flexibility of the robots and allow more research
related activities in RoboCup@Home. Our methods on imitation learning, pro-
gramming by demonstration, autonomous mobile exploration can be seen as
potential directions. We believe that recent research results like on benchmarking
imitation learning approaches, gesture recognition and a minimal autonomous
research platform can support current and new teams.
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