
Rhoban Football Club: RoboCup
Humanoid KidSize 2019 Champion

Team Paper

Löıc Gondry, Ludovic Hofer, Patxi Laborde-Zubieta(B), Olivier Ly,
Lucie Mathé, Grégoire Passault, Antoine Pirrone, and Antun Skuric

Rhoban Football Club Team, LaBRI, University of Bordeaux, Bordeaux, France
team@rhoban.com, lucie.mathe@etu.u-bordeaux.fr,

{patxi.laborde-zubieta,gregoire.passault}@u-bordeaux.fr

Abstract. In 2019, Rhoban Football Club reached the first place of the
KidSize soccer competition for the fourth time and performed the first
in-game throw-in in the history of the Humanoid league. Building on
our existing code-base, we improved some specific functionalities, intro-
duced new behaviors and experimented with original methods for label-
ing videos. This paper presents and reviews our latest changes to both
software and hardware, highlighting the lessons learned during RoboCup.

1 Introduction

This article presents some of the elements which led to the fourth consecutive
victory of our team in the RoboCup KidSize Humanoid league. We also obtained
the first place in the drop-in tournament for the third time in a row and the first
place at the technical challenges competition for the first time. Our robots scored
30 goals, received 11 goals and performed the first in-game throw-in in the history
of the Humanoid league.

This year we mainly pursued three objectives: moving toward more dynamic
gameplay, improving our performance at the technical challenge competition and
reducing the complexity of our code base which has grown each year since we
first participated in 2011. While introducing several new functionalities, we still
managed to reduce the total number of lines of code used for the competition
from 196,000 to 163,000. All the code and configuration file we used during the
competition are available1 along with some documentation.

The structure of the paper is as follows: Sect. 2 introduces the tools used to
model our robot, recent hardware changes are presented in Sect. 3, new motions
and improvements are detailed in Sect. 4, our ongoing work regarding perception
and data acquisition is described in Sect. 5 and finally the dynamical aspect of
our strategy is presented in Sect. 6.

1 https://www.github.com/Rhoban/workspace/releases/tag/public 2019.

c© Springer Nature Switzerland AG 2019
S. Chalup et al. (Eds.): RoboCup 2019, LNAI 11531, pp. 491–503, 2019.
https://doi.org/10.1007/978-3-030-35699-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35699-6_40&domain=pdf
https://www.github.com/Rhoban/workspace/releases/tag/public_2019
https://doi.org/10.1007/978-3-030-35699-6_40

492 L. Gondry et al.

2 Model

The 3D model of the robots used during Robocup 2019 can be accessed2 in the
online CAD software OnShape3.

2.1 CAD to Standard Model (URDF/SDF)

Several CAD tools are commonly used to design robotics parts4, mostly based
on constraints geometry design. On the other hand, standard robot description
format emerged, notably URDF and SDF5, driven by the ROS community [8].
They are XML files describing the robot architecture, including transformation
matrices, information about dynamics (mass, center of mass, inertia), collisions
and visualisation geometry. In order to manufacture them, we used to design our
robot with such CAD tools. But even if the model carried all the information
needed for the standard robot description, the description was produced with
separate tools. As a result, we could not ensure the consistency between the
CAD and the description model. For that reason, we switched to OnShape, an
emerging CAD software that includes an API allowing to request information
about the 3D model. It allowed us to develop onshape-to-robot6, a tool that
seamlessly produces an URDF from a CAD model that can be used without any
change for all our applications.

2.2 Using Model in Online Code

In order to compute frame transformations online using the robot, we developed
a library on top of RBDL [3] to load the URDF and request it. onshape-to-
robot allows you to attach manually frames in your model, directly in the CAD
design-time, that appear in the final robot description and allow you to compute
transformation matrices using the DOFs of your robot.

2.3 Physics Simulation

The robot description model that is produced this way can also be used for
physics simulation, like Bullet7. However, simulating the collisions of the actual
parts is computationally expensive, first because the exported parts are rep-
resented by unstructured triangular surfaces, but also because of all the small
details (like screw holes) which are not relevant for our use case.

To tackle this issue, we introduced a semi-automatic system that allows
to approximate those complex 3D shapes with pure geometry: union of cubes,
2 https://cad.onshape.com/documents/f3bdef32bffd81536fce83d1/v/779c691df8f135b

ba01eead1/e/a530b1889ee09acb5e1d7ff9.
3 https://www.onshape.com/.
4 Famous examples are Dassault Solidworks, Autodesk Inventor and Catia.
5 http://sdformat.org/spec.
6 https://github.com/rhoban/onshape-to-robot/.
7 https://github.com/bulletphysics/bullet3.

https://cad.onshape.com/documents/f3bdef32bffd81536fce83d1/v/779c691df8f135bba01eead1/e/a530b1889ee09acb5e1d7ff9
https://cad.onshape.com/documents/f3bdef32bffd81536fce83d1/v/779c691df8f135bba01eead1/e/a530b1889ee09acb5e1d7ff9
https://www.onshape.com/
http://sdformat.org/spec
https://github.com/rhoban/onshape-to-robot/
https://github.com/bulletphysics/bullet3

Rhoban Football Club: RoboCup Humanoid KidSize 2019 Champion 493

spheres and cylinders (Fig. 1). This also allows to ignore some small parts that
are not useful in the collision world. We are then able to simulate a physics
model of our robot (Fig. 2). Even if the discrepancy between simulation and real
world is high, motions like walking, kicking and standing up can be reproduced,
allowing to do some motor test before porting it to the real robot.

Fig. 1. Semi-automatic system to approxi-
mate 3D model with shape representation.

Fig. 2. Sigmaban approximated with 3D
shapes in PyBullet physics simulator.

3 Hardware

We made only few changes on the hardware. We added some piano wire arcs to
protect from falls, we switched to a four cells battery and we changed the shape
of the feet and the hands. The last two improvements are described in Sect. 4.

3.1 Protections

One of the challenges in our league is that robots should be able to withstand
falls. For example, our robots can fall up to 20 times during a game. It regularly
resulted in the breaking of a motor of the neck. After several attempts, it was
clear to us that a software safety on its own was not enough. Hence, to absorb a
part of the impact we added 3 mm thick piano wire arcs at the front and at the
back of the robot. By doing so, in 2018 and 2019 we had a significant decrease
in the number of broken motors in the neck. But it is still not reliable enough
as the many shoulder motors that we broke can tell.

To improve the protection of our robots, we would like to try other materials
such as spring steel strips, which are less likely to bend perpendicularly to the
impact, or dense foam. In order to assess rigorously the effectiveness of different
solutions, the impacts when falling should be measured. For example, using
motion capture or force platforms. Another way to protect the motors is to
use clutches, but for the moment we did not find any solution fulfilling the
requirements in term of weight and space used.

494 L. Gondry et al.

As mentioned during the second edition of the workshop “Humanoid Robot
Falling: Fall Detection, Damage Prevention and Recovery Actions”8, this prob-
lem is a research topic of growing importance. And the robots of the KidSize
league happens to be an interesting benchmarking environment for this subject:
solutions can be tested under realistic conditions during matches and it is much
easier to safely experiment with smaller humanoid robots.

3.2 Battery

In our design, the 6 motors of a leg are connected in series. We observed voltage
drop up to 4 volts between the first and the last motor of the leg during dynamic
motions. When using three cells batteries, this leads to a voltage around 8 Volts
in the ankle. While the four cells batteries are out of the specified range for the
dynamixel motors since they deliver 16 V, they strongly increase the available
torque and reduces the ohmic power loss. In the past, we were using MX-64
motors in the legs and a lower position of the center of mass during the walk
motion, this led to frequent overheating when using four cells batteries. Now
that we have MX-106 motors and a smoother walking engine, we can safely use
four cells batteries without risking overheating. Increasing the voltage was one
of the key elements to obtain a more powerful kick. When the ball was properly
positioned, our robot managed to kick more than seven meters.

4 Motions

4.1 New Walk Engine

We designed a new walk engine, still based on single support, with the goal
of reducing the complexity of the former one that included too many unused
parameters, making it less maintainable. We now use cubic splines to represent
the trajectories of the feet (see Fig. 3). They allow us to control both position
and speed at specific knots. Trajectories are updated only at each support foot
swap and described in the trunk frame.

We wanted the foot to reach its nominal speed before touching the ground
and to decelerate after leaving the ground. This way, the foot in contact with the
ground would have a constant speed which should lead to a steady and continu-
ous speed of the trunk. However, the robot is performing much better when the
foot touches and leaves the ground with vanishing speed. One hypothesis is that
it is better to touch the ground with no speed for stability reasons. Moreover,
the exact time when the foot touches the ground can vary from one step to one
another.

The walk engine code can be found on our open source repository under
Motion/engines/ directory.

8 https://iros2018wsfallingrobots.wordpress.com/.

https://iros2018wsfallingrobots.wordpress.com/

Rhoban Football Club: RoboCup Humanoid KidSize 2019 Champion 495

Fig. 3. Trajectory of the feet during walk engine (physics simulation).

Fig. 4. Differents steps of the Throw-in.

4.2 Throw-In

This year, the throw-in rule has been introduced. While it is currently allowed
for robots to perform it by kicking, we decided to move directly to human-like
throw-in performed with the hands. The motion for the throw-in is created the
same way as other kicks: we define splines associating time points with angular
targets for the motors. The target between specified time points is obtained
through linear interpolation.

We designed the throw-in motion using splines with several keypoints, see
Fig. 4: initialization, bending the knees, unfolding the arms, leaning forward,
holding the ball, straightening, lifting the arms and unfolding the knees, moving
the arms behind the head, throwing the ball and back at initialization.

While simulation using PyBullet was not accurate, it allowed to design a
coarse approximation of the motion before fine tuning the targets on the robot.

One of the main challenge to design the throw-in was to handle the fact
that our arms have only three degrees of freedom. While the mechanical design
is entirely sufficient for standing-up, it does not allow to control the distance
between the hands when the elbow are bent. Therefore, amplitude of the motion
on the elbow was limited in order to maintain grasp on the ball.

In order to lift the ball more easily, we designed new hands for the robot, see
Fig. 5. The main idea was to create two metal plates in each side of the elbow
motor and join them with spacer screws. On one side, the plate has a notch for
the motor and, on the other side, there is large hole to surround the ball.

496 L. Gondry et al.

Fig. 5. Assembly of one hand of the robot in OnShape.

While designing the motion, we managed to have the ball bouncing and
rolling up to 4.5 m. Since the field is only 6 m wide, we had to slow down the
speed during the throw-in phase in order to have a more appropriate length for
passes.

Next year, we plan to improve the throw-in so that the robot can adapt the
direction by changing the orientation of the torso while the ball is in the air.

4.3 High Kick

One of the key aspect to lift the ball while kicking is the point in contact with
the ball at impact. We refer to this part by the name of kicker. Previously, we
used a kicker designed to give a rotational impulsion to ball so that it could roll
on the grass. This year, in order to perform in the High Kick technical challenge,
we designed new kickers.

To lift the ball, the contact point at impact has to be below the center of
mass of the ball. Since we use high studs to stabilize on artificial grass and the
ball has a radius of only 7.5 cm, the margin for the motion is relatively small.
We decided to separate the new kicker in two different parts: the first one is thin
and raises the ball which rolls over it, the second one hits the ball after it has
left the ground making it easier to hit below the center of gravity.

Fig. 6. Differents steps of the High kick.

Rhoban Football Club: RoboCup Humanoid KidSize 2019 Champion 497

This new kicker allowed us to outperform the other teams during the tech-
nical challenge, our robot scored over a bar of 20 cm, while the second best
performance in our league was achieved by the CIT Brains who kicked the ball
above 12 cm. Figure 6 shows the steps of this motion. An interesting fact about
this high kick is that one of our robot did kick above another fallen robot during
the quarter finals. Although not intentional, this kick is definitely a step toward
the use of a third dimension in the RoboCup Humanoid league.

5 Perception and Localisation

This year, we aimed high regarding the modifications of our perception and local-
isation modules. Unfortunately, our system for labeling videos still lacked some
robustness and the training procedure for our neural networks included a few
bugs which impacted negatively its results during the competition. This sections
presents our promising development of these modules along with preliminary
conclusions based on their use during RoboCup 2019.

5.1 Labeling Videos

Most of the teams in the RoboCup Humanoid league now uses neural network to
detect or classify features in their perception module. In order for the module to
work on-site, it is generally required to manually label large datasets of images
acquired on-site. The labeling of images requires a significant amount of human
time and adding new features to detect for the robots increases the time spent
labeling. We also previously used manual tagging, with the help of a collaborative
on-line tool we developed for that purpose9.

This year, we decided to take a paradigm shift, moving from labeling images
to labeling videos. The main idea is quite simple, if we can retrieve the pose and
orientation of the robots camera inside the field referential for each frame, then
the position of field landmarks inside images can easily be obtained. Moreover,
by synchronizing the video streams from multiple robots, it is possible to share
annotations among them.

Accurate estimation of the orientation of the cameras is a difficult problem,
in order to tackle it, we experimented two different methods: using ViveTrackers
on the head of the robots and combining manual labeling with odometry. Both
methods share similar issues regarding time synchronization between devices and
its impact on orientation estimation. We used two complementary schemes to
reduce the uncertainty on camera orientation.

9 https://github.com/rhoban/tagger.

https://github.com/rhoban/tagger

498 L. Gondry et al.

1. We used specific tool (chrony10) to synchronize all the information streams.
2. The impact of timing differences is mitigated using the following acquisition

method for videos. Robots alternate between two different phases: walking
to a randomly generated location and slowly scanning the environment while
standing still. During extraction of labels, only the images obtained during
the scanning phase are considered. This proved to be necessary because the
head of the robot is shaking when the robot is walking, thus increasing the
uncertainty on the orientation of the camera.

Access to the fields for data acquisition is a scarce ressource during the setup
days. In order to optimize the usage of the time we were given, we created a
specific training scenario in which the field is separated in as many zones as the
number of robots used for acquisition.

– A zone is allocated to each robot.
– During 2 min, each robot alternates between moving to a random location

inside its zone and scanning its environment.
– Zones are separated by a safety buffer of around 50 cm to reduce the risk of

collision between robots.
– During the training, perception is disabled and robot relies solely on odometry

to estimate its position.

Automatically Through Vive. Vive is an indoor tracking system developed
by HTC. It is based on active laser emitters base stations called Lighthouses that
sends laser sweeps on a known frequency. Infrared receivers are used and the time
when they are hit by the sweeps of lighthouses is used to compute the position
of the object they are attached to. There are two generation of the lighthouses.
The first generation only works by pairs and covers a maximal tracking area of
5 m × 5 m. With the second version, the area can be increased up to 10 m × 10 m
by using four lighthouses. Initially designed to track Vive controllers and helmets
for virtual reality application, it is now also possible to buy simple trackers that
you can attach to anything to track its position.

This makes ground truth possible with attaching a Vive tracker to the head
of the robot, and capture some logs. The only thing that is required is then the
transformation from the tracker frame to the camera frame, and the ability to
project a known object 3D position onto image.

Vive trackers and lighthouses are easy to carry and deploy. Moreover, the
calibration phase before being able to track objects is fast. This makes it a bet-
ter choice than motion capture for on-site calibration, while being more afford-
able and with a wider working area. We used it during the German Open 2019
Humanoid KidSize competition to generate automatically labelled images.

A calibration phase is still needed to find the 3D transformation from the
lighthouses to the field frame, and also to tag the balls position on the field every
time we move them. To achieve that conveniently, we use a Vive controller which

10 https://chrony.tuxfamily.org/.

https://chrony.tuxfamily.org/

Rhoban Football Club: RoboCup Humanoid KidSize 2019 Champion 499

is itself tracked and equipped with trigger button to mark some known position
on the field and find the optimal 3D transformations, or show the balls position
at the beginning of a log. We developed a custom tool to do that11 on the top
of OpenVR SDK12.

Even if most of the data obtained this way was suitable for training our
neural networks, the accuracy of such technology can be discussed [6]. In order
to have a better control on the calibration and the data fusion algorithm used
to compute the position using the IMU and light beam datas, the authors of
LibSurvive13 reverse engineered Vive. Having access to the low level data allowed
better positioning results [2]. The support for the second lighthouse generation
is currently being completed.

One of the drawbacks intrinsic to this method is that it cannot be used during
real games.

Combining Labeling and Odometry. Finding a camera pose from 3D-2D
correspondances is a well-known problem [5], by labeling the position of key-
points of the field in an image, it is relatively easy to retrieve an accurate esti-
mation of the pose of the camera which took the image. However, it is not
realistic to apply this method for every image of a video for two majors reasons:
this would require large amount of human-time to label a video and some frames
do not even contain keypoints from the field.

Using odometry to extrapolate the pose of the camera before and after a
labeled frame helps to strongly reduce the labeling burden. Experimentally, we
noticed that labeling around 10 frames for a 2 min session containing more than
1500 usable frames hold satisfying results.

Currently, the major flaw of this method is that it requires the robots to stop
walking and reduce the scanning speed in order to improve the pose estimation.
Those conditions are rarely met during real games, making it difficult to extract
data from real games, a crucial point to enhance opponent detection. In the
future, we hope to take leverage on visual-inertial odometry methods [4] to
enhance the accuracy of pose estimation in more dynamic situations. This would
allow to easily label videos of entire games quickly, thus tackling the problem of
building large datasets for neural network training.

5.2 Multi-class ROI and Classification

Last year, our perception system was mainly based on three specific pipelines,
one for detecting the ball, a second one detecting the base of the goal posts and
a third one to detect the corner of the arena field. The two first systems were
roughly similar, but each system had its own neural network and some specifici-
ties to identify region of interests [7]. In order to make the perception system
simpler while covering more type of features, we decided to use a single system to
11 https://github.com/Rhoban/vive provider.
12 https://github.com/ValveSoftware/openvr.
13 https://github.com/cnlohr/libsurvive.

https://github.com/Rhoban/vive_provider
https://github.com/ValveSoftware/openvr
https://github.com/cnlohr/libsurvive

500 L. Gondry et al.

identify the region of interests and classify the type of feature. While less accu-
rate for centering the features in the region of interests, it allows to incorporate
additional features such as line intersections or opponents more easily.

While this new system yielded promising results during the preparation of
the RoboCup, we struggled to obtain decent results on-site and were forced to
limit the perception to two different type of features: balls and base of goal
posts. We initially thought that the main problem was the fact that the posts
were thinner than the posts we used in our laboratory. However, after RoboCup,
we ran a thorough code review and found 3 major bugs between the training
process of the neural networks and the online prediction of the class. Once we
solved them, we were able to include more classes while having an accuracy rate
much higher than what we had during RoboCup. Due to these bugs, it is not
possible to provide meaningful results for the code we used during RoboCup.
However, the final results promise a strongly improved perception system for
next year.

5.3 Localisation

We use a three-dimensional particle filter for localization which includes the
position and the orientation of the robot on the field. It fuses information from
both: the perception module and the odometry. Due to the major issues in
perception at the beginning of the competition, we decided to strongly reduce
the exploration for the first games. Increasing the confidence in the odometry
allowed us to stay into the competition until we improved the perception part.

The position and the orientation of the robot used to be defined respectively
as the average of the positions and the orientations of the particles. The major
change we introduced this year was to fit a Gaussian mixture model on the set
of particles by using the Expectation-Maximization [1] algorithm. It finds iter-
atively the partition in k disjoint subsets that maximizes the likelihood of the
corresponding Gaussian mixture model. The choice of the k is done online as
follows. Let Ck = {c1, . . . , ck} be the clustering into k disjoint subsets obtained
by the Expectation-Maximization algorithm. Let |c| and VarP(c) denote respec-
tively the number of particles and the variance of the particles positions. Finally,
we define respectively the internal variances of position and orientation of Ck as

VarP(Ck) =
∑k

i=0 VarP(ci) ∗ |ci|
∑k

i=0 |ci|
.

Starting from k = 1, the number of clusters is increased until we reach k = 5 or
VarP(Ck) ≥ 0.5VarP(Ck+1). This ensures that adding a cluster is only done if it
provides a major reduction of the variance. When several clusters are considered,
only the most populated one is considered for high-level decisions.

The proposed method provides two main benefits with respect to the simple
solution of taking the average of all particles. First, it allows to obtain meaningful
orientation while the particle filter has not converged. This situations frequently
occurs when a robot comes back from penalty from the side line. During games,

Rhoban Football Club: RoboCup Humanoid KidSize 2019 Champion 501

(a) Filtering of scattered particles: particles
in blue, best cluster mean in red.

(b) Monitoring on field entry: Robot 1
enters the field from the side line.

Fig. 7. In-game examples of localization.

it allows to discard scattered particles which will be automatically attributed
to a cluster containing the noise, see Fig. 7a. Second, representation of local-
ization belief under the form of multiple clusters allows to store or broadcast
the information at a much lower cost than sending the position of all the parti-
cles. Therefore, this method enables real-time monitoring under low bandwidth
conditions, see Fig. 7b.

6 Strategy

In 2017, we introduced an off-line value iteration process to compute a kick policy
that chooses a type of kick as well as the orientation aiming to optimize the time
to score a goal with one robot on an empty field [7]. The reward function used
for the optimization is simply the time needed for the robot to reach the next
ball position, a penalty if the ball is kicked out of field and 0 if a goal is scored.
This process produces a value function V that gives us an estimation of the time
it takes to score a goal from a given position on the field.

This year, we also used an online value iteration that performs an optimiza-
tion at depth one to include the current state of the game. It can roughly be
described as follows. The discrete set of ball positions on the field is called S.
An action is a type of kick together with a discrete orientation. We denote A the
set of possible actions. Let Pa(s, s′) denotes the probability of reaching state s′

from state s after performing action a kick with orientation a. The knowledge of
the game is introduced with a reward function r(s, s) described thereafter. The
online policy is given by the formula

arg max
a∈A

∑

s′∈S

Pa(s, s′)(r(s, s′) + V (s′)).

To compute the reward r, we check if we are in a state where it is not allowed
to score a goal. For example in the case of a throw-in, an indirect penalty kick
or when we have the kick-off and the ball is still not in play (exited the center

502 L. Gondry et al.

Fig. 8. An example situation using on-line Monte Carlo.

circle). In this case, a penalty score is given if a goal is scored. In that case, the
robot will naturally kick the ball so that it does not score a goal, but placing
it in the best situation possible to score a goal on the next kick. The reward
r(s, s′) also includes the time for the closest robot to reach s′ from which we
subtract the time for the kicking robot to reach s′. Finally, we give penalties to
kicks towards opponent robots if we have their location. As an example, in the
situation of Fig. 8, the robot 1 is going for the ball, because he is the closest to
it. He is not allowed to score a goal, because of the kick-off conditions. Hence,
a short kick action getting the ball out of the center circle is preferred by the
on-line iteration instead of a powerful kick that would certainly score. If the
robot was alone on the field, the optimal orientation would be straight forward.
However, the iteration produces this left oriented kick, because by the time we
estimate the kick is done, the robot 2 will be properly positioned to handle the
ball and score a goal faster than if robot 1 would have kicked straight.

References

1. Bilmes, J.A.: A gentle tutorial of the EM algorithm and its application to parameter
estimation for Gaussian mixture and Hidden Markov models. International Com-
puter Science Institute (1998). https://doi.org/10.1.1.119.4856

2. Borges, M., Symington, A., Coltin, B., Smith, T., Ventura, R.: HTC Vive: anal-
ysis and accuracy improvement. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2610–2615. IEEE (2018)

3. Felis, M.L.: RBDL: an efficient rigid-body dynamics library using recursive algo-
rithms. Auton. Robots 41(2), 495–511 (2017)

4. Gui, J., Gu, D., Wang, S., Hu, H.: A review of visual inertial odometry from fil-
tering and optimisation perspectives. Adv. Robot. (2015). https://doi.org/10.1080/
01691864.2015.1057616

5. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the
PnP problem. Int. J. Comput. Vis. (2009). https://doi.org/10.1007/s11263-008-
0152-6

6. Niehorster, D.C., Li, L., Lappe, M.: The accuracy and precision of position and
orientation tracking in the HTC Vive virtual reality system for scientific research.
i-Perception 8(3) (2017). https://doi.org/10.1177/2041669517708205

https://dx.doi.org/10.1.1.119.4856
https://doi.org/10.1080/01691864.2015.1057616
https://doi.org/10.1080/01691864.2015.1057616
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1177/2041669517708205

Rhoban Football Club: RoboCup Humanoid KidSize 2019 Champion 503

7. Allali, J., et al.: Rhoban football club: RoboCup humanoid kid-size 2017 champion
team paper. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS (LNAI), vol. 11175, pp. 423–434. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 35

8. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, vol. 3, Kobe, Japan, p. 5 (2009)

https://doi.org/10.1007/978-3-030-00308-1_35
https://doi.org/10.1007/978-3-030-00308-1_35

	Rhoban Football Club: RoboCup Humanoid KidSize 2019 Champion Team Paper
	1 Introduction
	2 Model
	2.1 CAD to Standard Model (URDF/SDF)
	2.2 Using Model in Online Code
	2.3 Physics Simulation

	3 Hardware
	3.1 Protections
	3.2 Battery

	4 Motions
	4.1 New Walk Engine
	4.2 Throw-In
	4.3 High Kick

	5 Perception and Localisation
	5.1 Labeling Videos
	5.2 Multi-class ROI and Classification
	5.3 Localisation

	6 Strategy
	References

