
Optimization of Robot Movements Using
Genetic Algorithms and Simulation

Brandon Zahn, Jake Fountain, Trent Houliston, Alexander Biddulph,
Stephan Chalup, and Alexandre Mendes(B)

School of Electrical Engineering and Computing, Faculty of Engineering and Built
Environment, The University of Newcastle, Callaghan, NSW 2308, Australia

Alexandre.Mendes@newcastle.edu.au

Abstract. This work describes the optimization of two robot move-
ments in the context of the Humanoid league competition at RoboCup. A
multi-objective genetic algorithm (MOGA) was used in conjunction with
the real-time physics simulator Gazebo. The motivation for this work
was that the NUbots team, from the University of Newcastle, lacked a
simulation platform for their soccer-playing robots. Gazebo was the pre-
ferred choice of simulator, offering built-in compatibility with the Robot
Operating System (ROS). The NUbots robot software, however, uses a
proprietary message-passing framework in place of ROS. This work thus
describes the pathway to use Gazebo with non-ROS compliant appli-
cations. In addition, it describes how MOGA can be used to optimize
complex movements in an efficient manner. The two robot movements
optimized were a kick script and the walk engine. For the kick script, the
resulting optimal configuration improved the kick distance by a factor
of six, with 50% less torso sway. For the walk engine, the forward speed
increased by 50%, with 38% less torso sway, compared to the manually-
tuned walk engine.

Keywords: Simulation · Walk engine · Optimization · Multi-objective

1 Introduction

The use of optimization to fine-tune the movement of robots has been the focus
of attention in recent years, particularly in the context of legged robots [3].
Those types of robots normally use controllers that allow them to maintain
balance while performing complex tasks such as walking, turning and jump-
ing. Some of those controllers might have several parameters, depending on the
tasks that they perform, which need to be tuned. Just as an example, the walk
controller used in this work has 46 parameters that can be individually tuned
and finding the right trade-off between balance and speed is a difficult task.
The work presented here is significant due to the combination of tools that it
uses (the Gazebo simulator and a proprietary message-passing framework called
NUClear) and the challenge that it posed. The lessons learned in terms of soft-
ware engineering and how to effectively make the two systems communicate are
c© Springer Nature Switzerland AG 2019
S. Chalup et al. (Eds.): RoboCup 2019, LNAI 11531, pp. 466–475, 2019.
https://doi.org/10.1007/978-3-030-35699-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35699-6_38&domain=pdf
https://doi.org/10.1007/978-3-030-35699-6_38

Optimization of Robot Movements Using Genetic Algorithms and Simulation 467

important contributions. From the perspective of optimization, the contribution
is the demonstration of how NSGA-II [4] manages to obtain very good solutions
in short periods of time and requiring few generations, which is an important
aspect when the evaluation of individual solutions is a costly task.

Our work follows on the footsteps of other multi-objective optimization stud-
ies conducted on legged robots. Among those we cite [8], who used NSGA-II to
optimize a walk controller for a quadruped robot. More recently, we have the
work of Juang and Yeh (2017) [6], who also used NSGA-II in the optimization
of a walk controller for a biped NAO robot. The results presented here indicate
that the approach is suitable for the optimization of simpler movements (e.g. a
kick script), as well as a considerably more complex walk engine.

2 Kick Script and Walk Engine Optimization

This work was developed with the NUgus robotic platform in mind [2]. The
original igus platform was developed by the University of Bonn as an open
platform in 2015 [1] and the NUbots team made a number of modifications
to the original model, naming it NUgus afterwards. A simulation model of the
NUgus was also derived from the original igus model, and used in our tests.

Two optimization problems are addressed. The first one is the tuning of the
kick script used by the NUgus to kick the ball. The script consists of a sequence of
six target positions for each of the 20 motors in the robot, i.e. they correspond to
a sequence of poses. The first values in the sequence refer to the initial positions
of each motor when the kick is triggered, and the last values refer to their final
position after the kick is concluded. The four intermediate positions are strategic
poses, e.g. the pose when the kick leg is brought backwards; the pose when the
kick leg is at its maximum extension after ball contact, etc. The optimization
goal is to find the positions of the motors in each of the four intermediate poses
so that the ball’s travelled distance is maximized, and maximum torso sway is
minimized (to reduce the chances of the robot falling over while the kick is being
executed). In order to provide information about how a solution for the problem
is encoded, the values for motor positions are integers in the interval [0, 1024].
Therefore, there are 80 integer variables to be optimized, all of them within the
interval above.

The second optimization problem refers to the walk engine, and the goal is to
optimize 46 parameters used by the controller responsible for moving the robot
forward. The goal in this case is to maximize forward speed, while minimizing
maximum torso sway. The parameters are represented by real numbers in differ-
ent ranges for each parameter. Again, to give an indication of the search space
size for this problem, the largest interval among the controller’s parameters is
[0, 100].

468 B. Zahn et al.

3 Methodology

In this section we will explain four elements of this study: (1) the NUbots soft-
ware system, (2) the Gazebo simulator, (3) the communication middleware and
(4) the multi-objective genetic algorithm.

3.1 Nubots Software System - NUClear

In recent years, the NUbots developed a proprietary software architecture named
NUClear [5]. It is a framework designed to aid in the development of real time
modular systems and is built from a set of C++ template meta-programs that
control the flow of information through the system. These meta-programs reduce
the cost of routing messages between modules, resulting in faster communica-
tion times. Since NUClear utilises a co-messaging system, it allows for simple
event callback functions through an expressive domain specific language (DSL).
The DSL is highly extensible and provides several attachment points to develop
new DSL keywords as required. NUClear has been successfully applied in several
projects for robotics and virtual reality, and also in the NUgus Humanoid Plat-
form [2]. A detailed description of NUClear is given in [5], which also provides a
comparison with the Robot Operating System (ROS)1 in terms of features and
communication performance.

3.2 Gazebo Simulator

Gazebo is an open-source, physics-based robotics simulator. It is very popu-
lar with the simulation-league of RoboCup, being utilised by all teams to run
their robots in simulations. Considerable support and information are available
online to assist the integration of any ROS compliant robotic system with the
Gazebo simulator. However, this is not the case for proprietary software, such
as NUClear. Since Gazebo has strong connections with RoboCup, and resources
such as 3D models and data for the igus platform are readily available, it would
be a logical decision to choose Gazebo to integrate with the team’s software
architecture and NUClear. Integrating ROS into the NUbots’ software architec-
ture has been opposed due to the time required to re-factor the entire code, and
also because NUClear is arguably more flexible than ROS, as described in [5].

Gazebo depends on several packages but the most significant for this work
is the Ignition Transport library2, which provides Gazebo with an intra- and
inter-process co-messaging communication protocol for robot simulation (similar
to NUClear). It is an open source communication library that allows sharing
data between nodes that could be running within the same process in the same
machine or in machines located on the same network.

1 http://www.ros.org/.
2 http://ignitionrobotics.org.

http://www.ros.org/
http://ignitionrobotics.org

Optimization of Robot Movements Using Genetic Algorithms and Simulation 469

3.3 Communication Middleware

This section provides an overview of the communications configuration for this
study. An online repository3 has been created, where developers can download
all necessary files and use them. The NUbots codebase repository4 contains
all the required source code for setting up a virtual machine (VM) that runs
the NUbots software system under the NUClear framework. A diagram of the
configuration for communications between Gazebo and the VM is shown in Fig. 1
and described below.

Fig. 1. The configuration for communications between the NUbots software system
and Gazebo. On the left, we have the host machine, which runs the Gazebo simulator.
On the right, we have a virtual machine that runs the NUbots software system. Two
communication nodes (the Discovery nodes) were created using the Ignition Transport
library – one for each module. Those nodes manage all the communication through the
network and operate in a two-way, publish-subscribe fashion. In each communication
cycle, the NUbots software in the virtual machine sends data to the Gazebo simulator
about where to move each of the 20 motors, and the simulator sends back data about the
position of each limb, as well as gyroscope and accelerometer data. The communication
is in real time, via a common TCP/UDP communication layer.

The main contribution in terms of communication infrastructure was the
creation of two communication modules. The first one sits within the Gazebo
simulator in the host machine and is named Discovery node’. The goal of this
module is to receive servo commands from the NUbots software that are then

3 http://github.com/NUbots/Gazebo.
4 http://github.com/NUbots/NUbots.

http://github.com/NUbots/Gazebo
http://github.com/NUbots/NUbots

470 B. Zahn et al.

applied to the robot model in the simulation. In addition, it sends the position
of each joint of the robot model, as well as gyro and accelerometer data back to
the Nubots software, so it can be used in the walk engine. The second communi-
cation module sits within the NUbots software side (namely Discovery node). It
manages the publishing of the data that its Gazebo counterpart subscribes to,
and subscribes to the data published by the Gazebo’s Discovery node’. The two
modules communicate via a common TCP/UDP communication layer.

Integrating Gazebo with the NUClear framework required several iterations,
until a configuration that was able to compile using the NUbots’ toolchain was
found. Several hurdles had to be crossed in that process, from compilation issues
due to package conflicts (which required Gazebo to be built from source), to
synchronization problems between the two environments (which was solved with
the implementation of a custom clock function). For a thorough analysis of all
the issues that occurred during the integration process and their corresponding
solutions, we refer the reader to reference [10]. This reference will be valuable to
developers who want to use Gazebo with non-ROS compliant applications.

3.4 Multi-Objective Genetic Algorithm (MOGA)

As mentioned before, this work focused on two optimization tasks: (a) the kick
script parameters and (b) the walk engine parameters for forward walking.
The Multi-Objective Genetic Algorithm (MOGA) implemented uses the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [4]. NSGA-II has several
advantages over other well-known MOEAs, such as the Strength Pareto Evolu-
tionary Algorithm (SPEA) [11]. Among those advantages, we cite the concept
of minimal distance between sets of solutions, which results in less fitness eval-
uations until the population converges, and most notably, maintains a strong
population diversity throughout the evolutionary process. Now, we describe how
MOGA was used in each of the optimization problems.

3.5 Optimizing the Kick Script

In order to optimize the kick script parameters using MOGA, firstly a suitable
representation for a solution must be defined. The kick script is defined by a
sequence of target positions for each motor (i.e. script frames). In out imple-
mentation, the first and last frames are fixed, and the MOGA can change the
values for the intermediate frames, only. A valid solution contains 80 genes (20
motors and 4 intermediate poses), encoded as integers in the interval [0, 1024].

Objective Function. Two objective functions were chosen to evaluate the
quality of the kick. Obj1 was designed to measure the robot’s stability. By using
the IMU sensor in the torso, the accelerometer data is recorded during a kick and
a maximum field plane sway ||−−→fpsmax|| value is calculated. The field plane sway
||−−→fps|| is the 2D vector magnitude of the x and y components of the accelerometer

Optimization of Robot Movements Using Genetic Algorithms and Simulation 471

sensor, calculated as:

||−−→fps|| =
√−→x 2

accel + −→y 2
accel

(
ms−2

)
(1)

||−−→fps|| is calculated each time a new sensor message arrives, which is 90 times
per second, and Obj1 is to minimize ||−−→fpsmax||.

Obj2 is the maximization of the ball distance from the kick location. Since a
minimization function is required by the MOGA framework, Obj2 is defined as:

Obj2 = min

(
1

ball distance

) (
m−1

)
(2)

3.6 Optimizing Walk Engine Parameters

This optimization involved the tuning of 46 parameters that describe how the
walk engine generates waypoints for the joints during a walk cycle [9].

The representation of a solution consisted of 46 real values, and each of them
was given minimum and maximum possible values, set at 50% of the original
value in each direction. For example, if a parameter is originally set at 0.4, the
minimum and maximum values then become 0.2 and 0.6, respectively. Notice
that the original values correspond to the current hand-tuned walk engine, which
already produces a relatively stable and fast walk. Thus, we expect the param-
eters of the optimized walk to be relatively close.

The two objective functions for walk evaluation were the minimization of the
time required to walk a distance of 2.5 m, starting from a standing pose; and the
minimization of the maximum 3D vector magnitude of the three components of
the accelerometer, ||−−−→

accelmax||, where:

||−−−→
accel|| =

√−→x 2
accel + −→y 2

accel + −→z 2
accel

(
ms−2

)
(3)

4 Results

4.1 Results for the Kick Script Optimization

The MOGA framework ran for 300 generations with a population size of 40
individuals. Additional parameters are listed in Table 1 and the results are shown
in Fig. 2. The parameters were determined after a series of exploratory tests and
empirical observation of the evolution of the population of solutions.

In our tests, we opted for a high crossover probability, aiming at a fast evolu-
tion of the population, and a low mutation probability, since diversity would be
handled by the minimum distance between solutions, which is part of NSGA-II.
In Fig. 2, we highlight four solutions. IndO is the original, hand-tuned kick script
(distance of 0.6 m; acceleration of 35.8 ms−2) and becomes dominated already by
generation 10. After 300 generations, several trade-off solutions were found, with
a good concentration around the 3.3 m distance and instantaneous acceleration

472 B. Zahn et al.

Table 1. NSGA-II parameters used in the kick script and walk engine optimizations.
For detailed information about those parameters, please refer to [4].

Test popSize gens mutProb crossProb etaC etaM

Kick script 40 300 0.025 0.8 15 40

Walk engine 40 50 0.025 0.8 13 20

Fig. 2. Populations of solutions found during the evolutionary process for the opti-
mization of the kick script on a simulated grass surface. Notice how the population
converges to high quality solutions in 300 generations, with lower torso sway values
and higher ball distances (in Obj2 the values are inverted, so lower is better). Four
individual solutions are highlighted for illustrative purposes.

of 15 ms−2. In that group of solutions, we highlighted three, with IndB offering
a good trade-off between the two objectives. That solution has a maximum torso
acceleration of 16.0 ms−2 and a resulting ball distance of 3.5 m. That represents
an improvement of almost 6-fold for the distance travelled by the ball, while the
maximum lateral acceleration was reduced to less than half of the original value.

Optimization of Robot Movements Using Genetic Algorithms and Simulation 473

Porting the Kick Script to the NUgus Robot: After completing the
kick script optimization, we tested three candidate solutions on the robot itself,
namely IndA, IndB and IndC . This test was fundamental to determine if the
simulation settings were a correct representation of the real world. The so-called
reality gap between simulation and real world is a major obstacle for the actual
use of simulation results in real robotic platforms. For more information about
this topic, we refer the reader to a recent survey [7]. Among the three solutions
tested, the only one that resulted on the robot still standing at the end of the
run was IndA. The other two led to the robot falling over at the end of the kick.
The most probable reasons for that result might be the incorrect simulation of
the friction between the studs on the robot’s feet and the artificial grass surface;
as well as the internal behaviour of the individual servos not being accurately
simulated. This topic will require additional investigation in the future.

Figure 3 shows the time-lapse sequences for the kicks represented by IndA
(top row) and IndB (bottom row), tested on the real robot. The top sequence
shows the ball travelling a bit over 2 m from the middle of the field towards the
goal (which is very similar to the simulated result), and the robot still standing
on the last frame. The bottom sequence shows the ball travelling all the way to
the goal (i.e. more than 3 m) but the robot falls over at the end.

Fig. 3. Time-lapse of two of the kick scripts highlighted in Fig. 2 – IndA (top) and
IndB (bottom) – running on the real NUgus robot. In both cases, the distance travelled
by the ball is very similar to the simulated results. However, only for solution IndA
the robot still stands at the end, while IndB leads to the robot falling over – in the
simulation, both scripts resulted in the robot standing at the end.

474 B. Zahn et al.

4.2 Results for Walk Engine

The framework was set up with the input parameters listed in Table 1 and was
run for 50 generations. The low number of generations was chosen due to time
constraints, as each evaluation of the walk required ≈1 min of simulation. The
results are shown in Fig. 4. The evolutionary process was again successful. The
time required for the robot to walk 2.5 m dropped from 32.5 s to 21.5 s (see
solution IndA in Fig. 4, compared to the original, hand-tuned solution IndO),
i.e. an increase of 50% in forward speed. The maximum torso acceleration was
reduced from 70.7 ms−2 to 43.2 ms−2.

Fig. 4. Evolution of the populations during the walk engine parameters optimization.
Notice how the population converges to high quality solutions in 50 generations, with
lower times required to walk the 2.5 m distance, and smaller torso sway values. Two
solutions are highlighted for illustrative purposes.

5 Conclusion

This work presented a multi-objective genetic algorithm approach for the opti-
mization of two robot movements: kick and forward walk. Moreover, it also

Optimization of Robot Movements Using Genetic Algorithms and Simulation 475

described how to setup a communication bus between the Gazebo simulator
and a non-ROS compliant application. The results of the simulation were very
good, with the optimized kick making the ball travel 6 times farther. For the
walk simulation the results were also very good, with forward speed increasing
by 50%. In both cases, the stability of the robot, represented by the maximum
acceleration of the torso section, was also reduced, compared to the original,
hand-tuned values. Future work will concentrate on bridging the reality gap
between the results in simulation and the real robot. At this stage, kick scripts
can be directly ported to the robotic platform, but the reality gap remains an
issue for simulated kicks with a travelled distance greater than 2.5 m. The walk
engine parameters will also require additional testing on the NUgus platform
before porting is successfully achieved.

References

1. Allgeuer, P., Farazi, H., Schreiber, M., Behnke, S.: Child-sized 3d printed IGUS
humanoid open platform. In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pp. 1–8 (2015)

2. Biddulph, A., Houliston, T., Mendes, A., Chalup, S.K.: Comparing computing
platforms for deep learning on a humanoid robot. In: Cheng, L., Leung, A.C.S.,
Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11307, pp. 120–131. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04239-4 11

3. Chalup, S., Murch, C., Quinlan, M.: Machine learning with AIBO robots in the
four-legged league of robocup. IEEE Trans. Syst. Man Cybernet. Part C 37(3),
297–310 (2007)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

5. Houliston, T., et al.: Nuclear: a loosely coupled software architecture for humanoid
robot systems. Front. Robot. AI 3, 20 (2016)

6. Juang, C.F., Yeh, Y.T.: Multiobjective evolution of biped robot gaits using
advanced continuous ant-colony optimized recurrent neural networks. IEEE Trans.
Cybern. 48(6), 1910–1922 (2017)

7. Mouret, J.B., Chatzilygeroudis, K.: 20 years of reality gap: a few thoughts about
simulators in evolutionary robotics. In: Proceedings of the Genetic and Evolution-
ary Computation Conference Companion, pp. 1121–1124. GECCO 2017. ACM,
New York (2017). https://doi.org/10.1145/3067695.3082052

8. Nygaard, T., Torresen, J., Glette, K.: Multi-objective evolution of fast and stable
gaits on a physical quadruped robotic platform. In: IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 1–8 (2016)

9. Yi, S., Hong, D., Lee, D.: A hybrid walk controller for resource-constrained
humanoid robots. In: 13th IEEE-RAS International Conference on Humanoid
Robots, pp. 88–93 (2013)

10. Zahn, B.: Optimisation of a walk engine for a humanoid robot. Technical report,
School of Electrical Engineering and Computing, The University of Newcastle,
Australia (2018). http://github.com/NUbots/Gazebo

11. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm. Technical report, Department of Electrical Engineering, Swiss
Federal Institute of Technology, Zurich, Switzerland (2001). https://www.research-
collection.ethz.ch/handle/20.500.11850/145755

https://doi.org/10.1007/978-3-030-04239-4_11
https://doi.org/10.1145/3067695.3082052
http://github.com/NUbots/Gazebo
https://www.research-collection.ethz.ch/handle/20.500.11850/145755
https://www.research-collection.ethz.ch/handle/20.500.11850/145755

	Optimization of Robot Movements Using Genetic Algorithms and Simulation
	1 Introduction
	2 Kick Script and Walk Engine Optimization
	3 Methodology
	3.1 Nubots Software System - NUClear
	3.2 Gazebo Simulator
	3.3 Communication Middleware
	3.4 Multi-Objective Genetic Algorithm (MOGA)
	3.5 Optimizing the Kick Script
	3.6 Optimizing Walk Engine Parameters

	4 Results
	4.1 Results for the Kick Script Optimization
	4.2 Results for Walk Engine

	5 Conclusion
	References

