
Gliders2d: Source Code Base for
RoboCup 2D Soccer Simulation League

Mikhail Prokopenko1,2(B) and Peter Wang2

1 Complex Systems Research Group, Faculty of Engineering and IT,
The University of Sydney, Sydney, NSW 2006, Australia

mikhail.prokopenko@sydney.edu.au
2 Data Mining, CSIRO Data61, PO Box 76, Epping, NSW 1710, Australia

Abstract. We describe Gliders2d, a base code release for Gliders, a
soccer simulation team which won the RoboCup Soccer 2D Simulation
League in 2016. We trace six evolutionary steps, each of which is encapsu-
lated in a sequential change of the released code, from v1.1 to v1.6, start-
ing from agent2d-3.1.1 (set as the baseline v1.0). These changes improve
performance by adjusting the agents’ stamina management, their press-
ing behaviour and the action-selection mechanism, as well as their posi-
tional choice in both attack and defense, and enabling riskier passes.
The resultant behaviour, which is sufficiently generic to be applicable
to physical robot teams, increases the players’ mobility and achieves a
better control of the field. The last presented version, Gliders2d-v1.6,
approaches the strength of Gliders2013, and outperforms agent2d-3.1.1
by four goals per game on average. The sequential improvements demon-
strate how the methodology of human-based evolutionary computation
can markedly boost the overall performance with even a small number
of controlled steps.

1 Introduction

The RoboCup Soccer 2D Simulation League contributes to the overall RoboCup
initiative, sharing its inspirational Millennium challenge: producing a team of
fully autonomous humanoid soccer players capable of winning a soccer game
against the 2050 FIFA World Cup holder, while complying with the official
FIFA rules [6]. Over the years, the 2D Simulation League made several impor-
tant advances in autonomous decision making under constraints, flexible tactical
planning, collective behaviour and teamwork, communication and coordination,
as well as opponent modelling and adaptation [7,20,28–30,33,34,38,41]. These
advances are to a large extent underpinned by the standardisation of many low-
level behaviours, world model updates and debugging tools, captured by several
notable base code releases, offered by “CMUnited” team from Carnegie Mellon
University (USA) [35,37], “UvA Trilearn” team from University of Amsterdam
(The Netherlands) [15], “MarliK” team from University of Guilan (Iran) [40], and
“HELIOS” team from AIST Information Technology Research Institute (Japan)
[1]. As a result, almost 80% of the League’s teams eventually switched their code
c© Springer Nature Switzerland AG 2019
S. Chalup et al. (Eds.): RoboCup 2019, LNAI 11531, pp. 418–428, 2019.
https://doi.org/10.1007/978-3-030-35699-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35699-6_33&domain=pdf
https://doi.org/10.1007/978-3-030-35699-6_33

Gliders2d: Source Code Base 419

base to agent2d over the next few years [30]. The 2016 champion team, Glid-
ers2016 [25,30], was also based on the well-developed code base of agent2d-3.1.1
[1], and fragments of MarliK source code [40], all written in C++.

The winning approach developed by Gliders combined human innovation
and artificial evolution, following the methodologies of guided self-organisation
[19,21,22,26] and human-based evolutionary computation (HBEC). The latter
comprises a set of evolutionary computation techniques that incorporate human
innovation [8,16]. This fusion allowed us to optimise several components, includ-
ing an action-dependent evaluation function proposed in Gliders2012 [27], a
particle-swarm based self-localisation method and tactical interaction networks
introduced in Gliders2013 [4,11,12,17,24], a new communication scheme and
dynamic tactics with Voronoi diagrams utilised by Gliders2014 [23], bio-inspired
flocking behaviour incorporated within Gliders2015 [32], and opponent modelling
diversified in Gliders2016 [25]. The framework achieved a high level of tactical
proficiency ensuring players’ mobility and the overall control over the field.

We describe a base code release for Gliders, called Gliders2d, version v1,
with 6 sequential changes which correspond to 6 evolutionary HBEC steps, from
v1.1 to v1.6. Since Gliders2d release is based on agent2d, the version Gliders2d-
v1.0 is identical to agent2d-3.1.1 (apart from the team name), but every next
step includes a new release. It is important to point out that Gliders2d is
an evolutionary branch separate from the (Gliders2012—Gliders2016) branch,
and both branches evolved independently. The final version of the presented
release, Gliders2d-v1.6, is neither a subset not superset of any of Gliders2012—
Gliders2016 teams. However, as a point of reference, we note that Gliders2d-v1.6
has a strength approaching that of Gliders2013 [24], and future releases will
improve the performance further.

Our objectives in making this first release are threefold: (a) it includes several
important code components which explain and exemplify various approaches
taken and integrated within the champion team Gliders2016; (b) it illustrates the
HBEC methodology by showing some of the utilised primitives, while explicitly
tracing the resultant performance (i.e., the fitness) for each sequential step from
v1.1 to v1.6; (c) it demonstrates how one can make substantial advances, starting
with the standard agent2d code, with only a small number of controlled steps.
It may help new teams in making the first steps within the league, using the
available base code.

2 Methodology and Results

The HBEC approach evolves performance across an artificial “generation”, using
an automated evaluation of the fitness landscape, while the team developers inno-
vate and recombine various behaviours. The mutations are partially automated.
On the one hand, the development effort translates human expertise into novel
behaviours and tactics. On the other hand, the automated evaluation platform,
utilised during the development of Gliders, and Gliders2d in particular, leverages
the power of modern supercomputing in exploring the search-space.

420 M. Prokopenko and P. Wang

Each solution, represented as the team source code, can be interpreted as a
“genotype”, encoding the entire team behaviour in a set of “design points”. A
design point, in the context of a data-farming experiment, describes a specific
combination of input parameters [10], defining either a single parameter (e.g.,
pressing level), complex multi-agent tactics (e.g., a set of conditional statements
shaping a positioning scheme for several players), or multi-agent communication
protocols [14,30,41].

While some design points are easy to vary, others may be harder to mutate
and/or recombine due to their internal structure. For example, a specific tactic
(design point), created by a team developer, may be implemented via several con-
ditional statements each of which comprises a condition and an action, involving
multiple parameters and primitives (see next subsections for examples). These
components can then be mutated and recombined as part of the genotype.

The solutions are evaluated against a specific opponent, over thousands of
games played for each generation. In order to maintain coherence of the resultant
code, which evolves against different opponents in parallel, auxiliary conditions
switch the corresponding parts of design points on and off for specific oppo-
nents [30], in an analogy to epigenetic programming [39]. The fitness function
is primarily based on the average goal difference, with the average points as a
tie-breaker, followed by the preference for a lower standard error.

The main thread in the evolutionary branch described in this release aims
to ensure a better control of the soccer field, by different means: (i) stamina
management with higher dash power rates; (ii) more intense pressing of the
ball possessing opponent; (iii) actions’ evaluation aimed at delivering the ball
to points stretching the opposition most; (iv) attacking players positioning to
maximise their ball reachability potential; (v) defending players positioning to
minimise the ball reachability potential of the opponents; (vi) risky passes. These
improvements may in general be applied to robotic teams in physical RoboCup
leagues.

In tracing the relative performance of Gliders2d from v1.1 to v1.6 we used
three benchmark teams: agent2d-3.1.1 itself [1], Gliders2013 [24], and the cur-
rent world champion team, HELIOS2018 [18]. For each sequential step, 1000
games were played against the benchmarks. Against agent2d, the goal difference
achieved by Gliders2d-v1.6 improves from zero to 4.2. Against HELIOS2018, the
goal difference improves from −12.73 to −4.34. Finally, against Gliders2013, the
goal difference improves from −5.483 to −0.212, achieving near-parity. Tables 1,
2, and 3 summarise the performance dynamics, including the overall points for
and against, goals scored and conceded, the goal difference, and the standard
error of the mean.

2.1 Gliders2d v1.1: Stamina Management

The first step in improving upon agent2d performance, along the released evo-
lutionary branch, is adding adjustments to the agents’ stamina management
(confined to a single source file strategy.cpp). Specifically, there are four addi-
tional assignments of the maximal dash power in certain situations, for example:

Gliders2d: Source Code Base 421

// G2d: run in opp penalty area
else if (wm.ball().pos().x > 36.0 && wm.self().pos().x > 36.0 && mate_min <

opp_min - 4)
dash_power = ServerParam::i().maxDashPower();

This fragment of the source code demonstrates how these specific situa-
tions are described through conditions constraining the ball position, the agent
position and its role, the offside line, and the minimal intercept cycles for the
Gliders2d team (mate min) and the opponent team (opp min). Such constraints
can be evolved by mutation or recombination of primitives (argument (op) X),
where X is a constraint, the argument is a state of relevant variable, e.g.
wm.ball().pos().x, and (op) is a relational operator, e.g., <, >, ==, and
so on. The action form may vary from a simple single assignment (the maximal
dash power in this case), to a block of code.

Adding the stamina management conditions increased the goal difference
against HELIOS2018 from −12.729 to −6.868, and against Gliders2013 from
−5.483 to −2.684.

2.2 Gliders2d v1.2: Pressing

The second step along this evolutionary branch is adding adjustments to the
agents’ pressing behaviour (confined to a single source file bhv basic move.cpp).
The pressing level, more precisely, level of pressure, is expressed as the
number of cycles which separate the minimal intercept cycles by the agent
(self min) and the fastest opponent (opp min). The intercept behaviour
forcing the agent to press the opponent with the ball is triggered when
self_min < opp_min + pressing. In agent2d the pressing level is not distin-
guished as a variable, being hard-coded as 3 cycles, and making it an evolvable
variable is an example of a simple innovation. Specifically, there are several
assignments of the pressing level, tailored to different opponent teams, agent
roles and their positions on the field, as well as the ball location.

Again, adding the evolved conditions for pressing increased the goal difference
against agent2d from near-zero to 1.288, against HELIOS2018 from −6.868 to
−6.476 (this increase is within the standard error of the mean), and against
Gliders2013 from −2.684 to −1.147.

2.3 Gliders2d v1.3: Evaluator

The third step modifies the action evaluator, following the approach introduced
in Gliders2012 [27], which diversified the single evaluation metric of agent2d
by considering multiple points as desirable states. The action-dependent eval-
uation mechanism is described in detail in [25,27], and the presented release
includes its implementation (source files sample field evaluator.cpp and
action chain graph).

In particular, a new variable, opp forward, is introduced, counting the num-
ber of non-goalie opponents in a sector centred on the agent and extending

422 M. Prokopenko and P. Wang

to the points near the opponent’s goal posts. The single evaluation metric of
agent2d is invoked when there are no opponents in this sector, or when the ball
is located within (or close to) the own half. Otherwise, the logic enters into
a sequence of conditions (marked in the released code), identifying the “best”
point out of several possible candidates offered by Voronoi diagrams. A Voronoi
diagram is defined as the partitioning of a plane with n points into n convex
polygons, so that each polygon contains exactly one point, while every point in
the given polygon is closer to its central point than any other [13]. The best
point is selected to be relatively close to the teammates’ positions, and far from
the opponents’ positions. The distance between the identified best point and the
future ball location, attainable by the action under consideration, is chosen as
the evaluation result.

The action-dependent evaluation mechanism increased the goal difference
against agent2d from 1.288 to 1.616, while not providing a notable improvements
against the two other benchmarks, as it is applicable in attacking situations
which are rare in these match-ups at this stage.

2.4 Gliders2d v1.4: Positioning

To make a better use of the new field evaluator, the positioning scheme of the
players is adjusted by selecting the points according to suitably constructed
Voronoi diagrams. For example, a Voronoi diagram may partition the field
according to the positions of the opponent players; the candidate location points
can be chosen among Voronoi vertices, as well as among the points located at
intersections between Voronoi segments and specific lines, e.g., offside line, as
illustrated in [23]. All the constrained conditions are evolvable.

The positioning based on Voronoi diagrams increased the goal difference
against agent2d from 1.616 to 2.387, again maintaining the performance against
the two other benchmarks.

2.5 Gliders2d v1.5: Formations

This step did not change any of the source code files—instead the formation files,
specified in configurations such as defense-formation.conf, etc. were modified
with fedit2. This approach, pioneered in the Simulation League by [2,3], is based
on Constrained Delaunay Triangulation (CDT) [9]. For a set of points in a plane,
a Delaunay triangulation achieves an outcome such that no point from the set is
inside the circumcircle of any triangle. Essentially, CDT divides the soccer field
into a set of triangles, based on the set of predefined ball locations, each of which
is mapped to the positions of each player. Moreover, when the ball takes any
position within a triangle, each player’s position is dynamically adjusted during
the runtime in a congruent way [2,3,30]. Overall, a formation defined via CDT
is an ordered list of coordinates, and so, in terms of evolutionary computation,
mutating and recombining such a list can be relatively easily automated and
evaluated.

Gliders2d: Source Code Base 423

Figure 1 shows a CDT fragment; for example, the point 110, where the ball
is located, defines the following intended positions for the players:

Ball -48.66 22.71
1 -50.72 6.07
2 -46.08 3.12
3 -47.6 10.53
4 -43.58 -3.75
5 -48.49 18.65
6 -44.3 13.29
7 -41.17 5.8
8 -40.32 17.03
9 -21.01 -17.44
10 -19.94 26.01
11 -22.62 5.8

The released changes in Gliders2d-1.5 formations are aimed at improving
the defensive performance, placing the defenders and midfielders closer to the
own goal. A notable performance gain was observed against all three bench-
marks. The goal difference against agent2d increased from 2.387 to 3.210; against
HELIOS2018: from −6.422 to −4.383; and against Gliders2013: from −1.039 to
−0.344.

Fig. 1. Example of a Delaunay triangulation, used by defense-formation.conf, pro-
duced by fedit2. The triangle formed by points 106, 108 and 110 is highlighted. When
the ball is located at 110, the players are supposed to be located in the shown positions.

424 M. Prokopenko and P. Wang

Table 1. Performance evaluation for Gliders2d against agent2d, over ∼1000 games
carried out for each version of Gliders2d against the opponent. The goal difference
improves from zero to 4.2, while the average game score improves from (2.29:2.29) to
(5.21:1.01).

Gliders2d Points for Points
against

Goals
scored

Goals
conceded

Goal diff. Std. error

v0.0 (agent2d) 1.384 1.414 2.287 2.289 −0.002 0.040

v1.1 (stamina) 1.345 1.468 2.254 2.290 −0.036 0.049

v1.2 (pressing) 2.161 0.691 2.642 1.355 1.288 0.051

v1.3 (evaluator) 2.252 0.607 2.997 1.381 1.616 0.063

v1.4 (positioning) 2.515 0.367 3.849 1.461 2.387 0.086

v1.5 (formations) 2.785 0.154 3.995 0.785 3.210 0.181

v1.6 (risky passes) 2.840 0.116 5.214 1.014 4.200 0.172

Table 2. Performance evaluation for Gliders2d against HELIOS2018, over ∼1000
games carried out for each version of Gliders2d against the opponent. The goal dif-
ference improves from −12.73 to −4.34, while the average game score improves from
(0.12:12.85) to (0.26:4.60).

Gliders2d Points for Points
against

Goals
scored

Goals
conceded

Goal diff. Std. error

v0.0 (agent2d) 0.000 3.000 0.123 12.852 −12.729 0.514

v1.1 (stamina) 0.001 2.998 0.231 7.099 −6.868 0.276

v1.2 (pressing) 0.003 2.994 0.248 6.724 −6.476 0.140

v1.3 (evaluator) 0.004 2.992 0.269 6.821 −6.552 0.310

v1.4 (positioning) 0.002 2.996 0.298 6.720 −6.422 0.223

v1.5 (formations) 0.027 2.952 0.273 4.655 −4.383 0.197

v1.6 (risky passes) 0.024 2.961 0.260 4.600 −4.337 0.161

2.6 Gliders2d v1.6: Risky Passes

The final step of this release introduced risk level, expressed as the number
of additional cycles “granted” to teammates receiving a pass, under a
pressure from opponent players potentially intercepting the pass
(strict check pass generator.cpp). If risk level is set to zero, the default
passing behaviour of agent2d is recovered. For positive values of risk the passes
are considered as feasible even if an ideal opponent interceptor gets to the
ball trajectory sooner than the intended recipient of the pass. The conditional
statements include several new variables, used in mutating and recombining the
conditions.

The addition of risky passes increased the goal difference against agent2d
from 3.210 to 4.2; and against Gliders2013: from −0.344 to −0.212.

Gliders2d: Source Code Base 425

Table 3. Performance evaluation for Gliders2d against Gliders2013, over ∼1000 games
carried out for each version of Gliders2d against the opponent. The goal difference
improves from −5.48 to −0.21, while the average game score improves from (0.57:6.05)
to (0.78:0.99).

Gliders2d Points for Points
against

Goals
scored

Goals
conceded

Goal diff. Std. error

v0.0 (agent2d) 0.022 2.968 0.569 6.052 −5.483 0.213

v1.1 (stamina) 0.183 2.730 0.596 3.280 −2.684 0.071

v1.2 (pressing) 0.539 2.230 0.613 1.760 −1.147 0.063

v1.3 (evaluator) 0.657 2.109 0.770 1.800 −1.030 0.067

v1.4 (positioning) 0.603 2.160 0.700 1.739 −1.039 0.077

v1.5 (formations) 1.039 1.607 0.700 1.044 −0.344 0.026

v1.6 (risky passes) 1.111 1.527 0.776 0.988 −0.212 0.038

3 Conclusions

In this paper, we described the first version of Gliders2d : a base code release for
Gliders (based on agent2d-3.1.1). We trace six sequential changes aligned with
six evolutionary steps. These steps improve the overall control of the pitch by
increasing the players’ mobility through several means: less conservative usage
of the available stamina balance (v1.1); more intense pressing of opponents
(v1.2); selecting more diversified actions (v1.3); positioning forwards in open
areas (v1.4); positioning defenders closer to own goal (v1.5); and considering
riskier passes (v1.6).

As has been argued in the past, the simulation leagues enable replicable and
robust investigation of complex robotic systems [5,31]. We believe that the pur-
pose of the RoboCup Soccer Simulation Leagues (both 2D and 3D) should be to
simulate agents based on a futuristic robotic architecture which is not yet achiev-
able in hardware. Aiming at such a general and abstract robot architecture may
help to identify a standard for what humanoid robots may look like in 2050, the
year of the RoboCup Millennium challenge. This is the reason for focussing, in
this release, on the features which can also be used by simulated 3D, as well as
robotic, teams competing in RoboCup, aiming at some of the most general ques-
tions: when to conserve energy (stamina), when to run (pressing), where to kick
the ball (actions), where to be on the field (positioning in attack and defense),
and when to take risks (passes). While the provided specific answers may or may
not be widely acceptable, general reasoning along these lines may bring us closer
to a new RoboCup Humanoid Simulation League (HSL). In HSL, the Simulated
Humanoid should be defined in a standard and generalisable way, approaching
human soccer-playing behavior [36], while the behavioural and tactical improve-
ments can be evolved and/or adapted to this standardised architecture.

The released code: http://www.prokopenko.net/gliders2d.html.
The last presented version, Gliders2d-v1.6, is comparable to Gliders2013,

achieving the average score of (0.78:0.99) against this benchmark, and outper-
forms agent2d-3.1.1 with the average score (5.21:1.01).

http://www.prokopenko.net/gliders2d.html

426 M. Prokopenko and P. Wang

In tracing this evolutionary branch, we illustrated the methodology of human-
based evolutionary computation, showing that even a small number of controlled
steps can dramatically improve the overall team performance.

Acknowledgments. We thank HELIOS team for their excellent code base of agent2d,
as well as several members of Gliders team contributing during 2012–2016: David
Budden, Oliver Cliff, Victor Jauregui and Oliver Obst. We are also grateful to partici-
pants of the discussion on the future of the RoboCup Simulation Leagues, in particular
to Peter Stone, Patrick MacAlpine, Nuno Lau, Klaus Dorer, and Daniel Polani.

References

1. Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the
RoboCup soccer 2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R.
(eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44468-9 46

2. Akiyama, H., Noda, I.: Multi-agent positioning mechanism in the dynamic envi-
ronment. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007.
LNCS (LNAI), vol. 5001, pp. 377–384. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68847-1 38

3. Akiyama, H., Shimora, H.: HELIOS 2010 team description. In: Ruiz-del-Solar, J.,
Chown, E., Plöger, P.G. (eds.) RoboCup 2010: Robot Soccer World Cup XIV.
LNCS, vol. 6556. Springer, Heidelberg (2011)

4. Budden, D., Prokopenko, M.: Improved particle filtering for pseudo-uniform belief
distributions in robot localisation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R.
(eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 385–395. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44468-9 34

5. Budden, D.M., Wang, P., Obst, O., Prokopenko, M.: RoboCup simulation leagues:
enabling replicable and robust investigation of complex robotic systems. IEEE
Robot. Autom. Mag. 22(3), 140–146 (2015)

6. Burkhard, H.D., Duhaut, D., Fujita, M., Lima, P., Murphy, R., Rojas, R.: The
road to RoboCup 2050. IEEE Robot. Autom. Mag. 9(2), 31–38 (2002)

7. Butler, M., Prokopenko, M., Howard, T.: Flexible synchronisation within RoboCup
environment: a comparative analysis. In: Stone, P., Balch, T., Kraetzschmar, G.
(eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 119–128. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45324-5 10

8. Cheng, C.D., Kosorukoff, A.: Interactive one-max problem allows to compare the
performance of interactive and human-based genetic algorithms. In: Deb, K. (ed.)
GECCO 2004. LNCS, vol. 3102, pp. 983–993. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24854-5 98

9. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1–4), 97–108
(1989)

10. Cioppa, T.M., Lucas, T.W.: Efficient nearly orthogonal and space-filling latin
hypercubes. Technometrics 49(1), 45–55 (2007)

11. Cliff, O.M., Lizier, J.T., Wang, X.R., Wang, P., Obst, O., Prokopenko, M.: Towards
quantifying interaction networks in a football match. In: Behnke, S., Veloso, M.,
Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 1–12.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44468-9 1

https://doi.org/10.1007/978-3-662-44468-9_46
https://doi.org/10.1007/978-3-540-68847-1_38
https://doi.org/10.1007/978-3-540-68847-1_38
https://doi.org/10.1007/978-3-662-44468-9_34
https://doi.org/10.1007/3-540-45324-5_10
https://doi.org/10.1007/978-3-540-24854-5_98
https://doi.org/10.1007/978-3-540-24854-5_98
https://doi.org/10.1007/978-3-662-44468-9_1

Gliders2d: Source Code Base 427

12. Cliff, O.M., Lizier, J.T., Wang, X.R., Wang, P., Obst, O., Prokopenko, M.: Quan-
tifying long-range interactions and coherent structure in multi-agent dynamics.
Artif. Life 23(1), 34–57 (2017)

13. Dylla, F., et al.: Approaching a formal soccer theory from the behavior specification
in robotic soccer. In: Dabnicki, P., Baca, A. (eds.) Computers in Sport, pp. 161–
186. Bioengineering, WIT Press, London (2008)

14. Gabel, T., Klöppner, P., Godehardt, E., Tharwat, A.: Communication in soccer
simulation: on the use of wiretapping opponent teams. In: Holz, D., Genter, K.,
Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 3–15.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27544-0 1

15. Kok, J.R., Vlassis, N., Groen, F.: UvA Trilearn 2003 team description. In: Polani,
D., Browning, B., Bonarini, A., Yoshida, K. (eds.) Proceedings CD RoboCup 2003.
Springer, Padua (2003)

16. Kosorukoff, A.: Human based genetic algorithm. In: 2001 IEEE International Con-
ference on Systems, Man, and Cybernetics, vol. 5, pp. 3464–3469. IEEE (2001)

17. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Coherent information structure in
complex computation. Theory Biosci. 131, 193–203 (2012)

18. Nakashima, T., Akiyama, H., Suzuki, Y., Ohori, A., Fukushima, T.: HELIOS 2018:
team description paper. In: RoboCup 2018 Symposium and Competitions: Team
Description Papers, Montreal, Canada, July 2018 (2018)

19. Nehaniv, C., Polani, D., Olsson, L., Klyubin, A.: Evolutionary information-
theoretic foundations of sensory ecology: channels of organism-specific meaning-
ful information. In: Modeling Biology: Structures, Behaviour, Evolution, pp. 9–11
(2005)

20. Noda, I., Stone, P.: The RoboCup soccer server and CMUnited clients: imple-
mented infrastructure for MAS research. Auton. Agents Multi-agent Syst. 7(1–2),
101–120 (2003)

21. Prokopenko, M., Gerasimov, V., Tanev, I.: Evolving spatiotemporal coordina-
tion in a modular robotic system. In: Nolfi, S., et al. (eds.) SAB 2006. LNCS
(LNAI), vol. 4095, pp. 558–569. Springer, Heidelberg (2006). https://doi.org/10.
1007/11840541 46

22. Prokopenko, M., Gerasimov, V., Tanev, I.: Measuring spatiotemporal coordi-
nation in a modular robotic system. In: Rocha, L., Yaeger, L., Bedau, M.,
Floreano, D., Goldstone, R., Vespignani, A. (eds.) Artificial Life X: Proceedings
of the 10th International Conference on the Simulation and Synthesis of Living
Systems, Bloomington, IN, USA, pp. 185–191 (2006)

23. Prokopenko, M., Obst, O., Wang, P.: Gliders 2014: dynamic tactics with Voronoi
diagrams. In: RoboCup 2014 Symposium and Competitions: Team Description
Papers, Joao Pessoa, Brazil, July 2014 (2014)

24. Prokopenko, M., Obst, O., Wang, P., Budden, D., Cliff, O.M.: Gliders 2013: tactical
analysis with information dynamics. In: RoboCup 2013 Symposium and Competi-
tions: Team Description Papers, Eindhoven, The Netherlands, June 2013 (2013)

25. Prokopenko, M., Wang, P., Obst, O., Jaurgeui, V.: Gliders 2016: integrating multi-
agent approaches to tactical diversity. In: RoboCup 2016 Symposium and Compe-
titions: Team Description Papers, Leipzig, Germany, July 2016 (2016)

26. Prokopenko, M.: Guided Self-organization: Inception. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-53734-9

27. Prokopenko, M., Obst, O., Wang, P., Held, J.: Gliders 2012: tactics with action-
dependent evaluation functions. In: RoboCup 2012 Symposium and Competitions:
Team Description Papers, Mexico City, Mexico, June 2012 (2012)

https://doi.org/10.1007/978-3-030-27544-0_1
https://doi.org/10.1007/11840541_46
https://doi.org/10.1007/11840541_46
https://doi.org/10.1007/978-3-642-53734-9

428 M. Prokopenko and P. Wang

28. Prokopenko, M., Wang, P.: Relating the entropy of joint beliefs to multi-agent
coordination. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002.
LNCS (LNAI), vol. 2752, pp. 367–374. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-45135-8 32

29. Prokopenko, M., Wang, P.: Evaluating team performance at the edge of chaos. In:
Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS
(LNAI), vol. 3020, pp. 89–101. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-25940-4 8

30. Prokopenko, M., Wang, P.: Disruptive innovations in RoboCup 2D soccer simula-
tion league: from Cyberoos’98 to Gliders2016. In: Behnke, S., Sheh, R., Sarıel, S.,
Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 529–541. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 44

31. Prokopenko, M., Wang, P., Marian, S., Bai, A., Li, X., Chen, X.: RoboCup 2D soc-
cer simulation league: evaluation challenges. In: Akiyama, H., Obst, O., Sammut,
C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 325–337.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 27

32. Prokopenko, M., Wang, P., Obst, O.: Gliders 2015: opponent avoidance with bio-
inspired flocking behaviour. In: RoboCup 2015 Symposium and Competitions:
Team Description Papers, Hefei, China, July 2015 (2015)

33. Reis, L.P., Lau, N., Oliveira, E.C.: Situation based strategic positioning for coor-
dinating a team of homogeneous agents. In: Hannebauer, M., Wendler, J., Pagello,
E. (eds.) BRSDMAS 2000. LNCS (LNAI), vol. 2103, pp. 175–197. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44568-4 11

34. Riley, P., Stone, P., Veloso, M.: Layered disclosure: revealing agents’ internals. In:
Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp.
61–72. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44631-1 5

35. Stone, P., et al.: Overview of Robocup-2000. In: Stone, P., Balch, T., Kraetzschmar,
G. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 1–29. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45324-5 1

36. Stone, P., Quinlan, M., Hester, T.: Can robots play soccer? In: Richards, T. (ed.)
Soccer and Philosophy: Beautiful Thoughts on the Beautiful Game, Popular Cul-
ture and Philosophy, vol. 51, pp. 75–88. Open Court Publishing Company, Chicago
(2010)

37. Stone, P., Riley, P., Veloso, M.: The CMUnited-99 champion simulator team. In:
Veloso, M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856,
pp. 35–48. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45327-X 2

38. Stone, P., Riley, P., Veloso, M.: Defining and using ideal teammate and opponent
models. In: Proceedings of the 12th Annual Conference on Innovative Applications
of Artificial Intelligence (2000)

39. Tanev, I., Yuta, K.: Epigenetic programming: genetic programming incorporating
epigenetic learning through modification of histones. Inf. Sci. 178(23), 4469–4481
(2008)

40. Tavafi, A., Nozari, N., Vatani, R., Yousefi, M.R., Rahmatinia, S., Pirdir, P.: Mar-
liK 2012 soccer 2D simulation team description paper. In: RoboCup 2012 Sym-
posium and Competitions: Team Description Papers, Mexico City, Mexico, June
2012 (2012)

41. Zuparic, M., Jauregui, V., Prokopenko, M., Yue, Y.: Quantifying the impact of
communication on performance in multi-agent teams. Artif. Life Robot. 22(3),
357–373 (2017)

https://doi.org/10.1007/978-3-540-45135-8_32
https://doi.org/10.1007/978-3-540-45135-8_32
https://doi.org/10.1007/978-3-540-25940-4_8
https://doi.org/10.1007/978-3-540-25940-4_8
https://doi.org/10.1007/978-3-319-68792-6_44
https://doi.org/10.1007/978-3-030-00308-1_27
https://doi.org/10.1007/3-540-44568-4_11
https://doi.org/10.1007/3-540-44631-1_5
https://doi.org/10.1007/3-540-45324-5_1
https://doi.org/10.1007/3-540-45327-X_2

	Gliders2d: Source Code Base for RoboCup 2D Soccer Simulation League
	1 Introduction
	2 Methodology and Results
	2.1 Gliders2d v1.1: Stamina Management
	2.2 Gliders2d v1.2: Pressing
	2.3 Gliders2d v1.3: Evaluator
	2.4 Gliders2d v1.4: Positioning
	2.5 Gliders2d v1.5: Formations
	2.6 Gliders2d v1.6: Risky Passes

	3 Conclusions
	References

