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Abstract. We are proposing an Open Source ROS vision pipeline for
the RoboCup Soccer context. It is written in Python and offers sufficient
precision while running with an adequate frame rate on the hardware
of kid-sized humanoid robots to allow a fluent course of the game. Fully
Convolutional Neural Networks (FCNNs) are used to detect balls while
conventional methods are applied to detect robots, obstacles, goalposts,
the field boundary, and field markings. The system is evaluated using
an integrated evaluator and debug framework. Due to the usage of stan-
dardized ROS messages, it can be easily integrated into other teams’
code bases.
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1 Introduction

In RoboCup Humanoid Soccer, a reliable object recognition is the foundation
of successful gameplay. To keep up with the rule changes and competing teams,
continuous development and improvement of the detection approaches is nec-
essary [2]. The vision pipeline we used previously was neither easily adapt-
able to these changes nor to our new middleware, the Robot Operating System
(ROS) [15]. Additionally, it was hard for new team members to contribute.

Thus, we developed a completely new vision pipeline using Python. In the
development, we focused on a general approach with high usability and adapt-
ability. Furthermore, our team offers courses for students as part of their studies,
in which they are able to work with our existing code base. Therefore, the code
has to be optimized for collaboration within the team. It needs to be easily
understandable, especially because the team members change regularly while
the code base has to be actively maintained. In addition to that, it allows new
participants to work productively with a short training period and thus providing
a sense of achievement.
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Fulfilling the requirements of our domain is made possible by versatile mod-
ules (see Sect. 3.1), which are designed to solve specific tasks (e.g. color or object
detection), but are also applicable in more generalized use cases. Since we want to
promote further development and encourage collaboration, we publish our code
under an Open-Source license. Due to this and the usage of the ROS middleware
as well as standardized messages [5], the vision pipeline can be integrated into
code bases used by other teams.

2 Related Work

RoboCup Soccer encourages every participating team to continuously enhance
their systems by adapting the laws of the game [2]. Thus, the number of teams
using neural networks as a classifier for batches of ball candidates and even the
amount of those employing Fully Convolutional Neural Networks (FCNNs) in
their vision pipeline is increasing. This section is based on the team descrip-
tion papers submitted by all qualified teams for the RoboCup Humanoid Soccer
League1.

The most frequently used methods for object detection are single shot detec-
tors (SSDs), based on existing models such as You Only Look Once (YOLO) [16].
In addition to the Hamburg Bit-Bots [4] (our team), the Bold Hearts [18] and
Sweaty [7] are using fully convolutional neural networks (FCNNs) in their vision
pipeline. With their FCNN [6], the Bold Hearts are detecting the ball and goal-
posts. Team Sweaty is additionally able to detect several field markings and
robots with their approach [19]. In the Humanoid KidSize League, the process-
ing hardware is restricted due to the size and weight limits. While the basic
structure of a Convolutional Neural Network for classification is similar between
teams (e.g. [1]), the candidate acquisition varies. The EagleBots.MX team uses a
cascade classifier with Haar-like features [12]. Rhoban detects regions of interest
by using information about the robot’s state and “a kernel convolution on an
Integral Image filter” [1]. The team Electric Sheep uses a color based candidate
detection and relies solely on “number of pixels, ratio of the pixels in the candi-
date area and the size of the candidate area” [3] to classify them. In contrast to
this, [11] proposes a method of candidate acquisition and classification for the
Standard Platform League (SPL) based on high-contrast regions in grayscale
images without the need of color.

The field boundary is usually detected by computing the convex hull around
the largest accumulation of green pixels detected by a field color mask. The
team MRL is working on a neural network based approach for field boundary
detection [13]. For localization purposes, some teams detect field markings by
color [4] while others are relying on the detection of landmarks, such as line
crossings or the penalty marks [19].

1 https://www.robocuphumanoid.org/hl-2019/teams/ last accessed: 2019-06-14.
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3 Overview and Features

The vision pipeline is implemented as an adaption of the pipe-and-filter pat-
tern [14]. Every module implements one or multiple filters. The data flow is
defined in the main vision module. To accommodate the nonlinear data flow and
to optimize the runtime performance, the output of filters is stored in the mod-
ules. This includes intermediate results of related tasks (e.g. when red robots are
detected, general obstacle candidates are stored in the module, too). The stored
measurements are invalidated as soon as a new image is received. Using launch
scripts, the whole vision pipeline, as well as provided tools, can be started with a
single command in a terminal. Additional parameters allow launching the vision
pipeline with additional debug output, without the FCNN, or to be used in a
simulation environment (rosbags or the Gazebo simulator).

Fig. 1. Exemplary debug image. The detected field boundary is marked by a red line,
field markings are represented as a set of red dots. Around detected obstacles, boxes
are drawn (red: red robot, blue: blue robot, white: white obstacles i.e. goalposts).
The best rated ball candidate and discarded candidates are indicated by a green circle
or red circles respectively [4]. (Color figure online)

3.1 Modules

The following subsections present modules currently used in our vision pipeline
by giving a general overview of their function (Fig. 2). Some modules contain
multiple implementations of the same task as more efficient ones were developed
and required evaluation. Modules which are no longer in use because they were
replaced (e.g. a Hough-circle ball candidate detection and a classifier) are left
out of this paper but kept in the repository.
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Fig. 2. Schematic representation of the vision pipeline. After the image acquisition,
the pipeline is split into two threads. One handles conventional detection methods and
the other handles the FCNN detecting the ball. Afterward, ROS messages and debug
output are generated. The debug step is optional. Modules marked with an * implement
the Candidate Finder class.

Color Detector. As many of the following modules rely on the color classifica-
tion of pixels to generate their output, the color detector module matches their
color to a given color space. These color spaces are configured for the colors of
the field or objects like goalposts and team markers. Two types of color space
definitions are implemented: Either it is defined by minimum and maximum
values of all three HSV channels or by predefined lookup tables (provided as
a Pickle file or YAML, a data-serialization language). The HSV color model is
used for the representation of white and the robot marker colors, red and blue.
The values of the HSV channels can be easily adjusted by a human before a
competition to match the white of the lines and goal or the team colors of the
enemy team respectively. This is necessary as teams may have different tones of
red or blue as their marker color. On the other hand, the color of the field is
provided as a YAML file to include more various and nuanced tones of green.
These YAML files can be generated using a tool by selecting the field in a video
stream (in the form of a live image or a ROS bag). Additional tools visualize
included colors or increase the density of color spaces by interpolation between
points in the RGB space.

The latest change of rules [17] also allowed natural lighting conditions. There-
fore, pixels in the image mainly surrounded by pixels whose color is already in
the color space are added.

However, only colors without any occurrences above the field boundary are
chosen to ensure a stable adaptation to changes in shade and lighting. In Fig. 3,
the images in the left column show an erroneous detection of the field boundary
while the dynamic color space module has been deactivated. The color lookup
table was deliberately chosen to be a bad representation of the green of this field
which can be seen in the resulting color mask on the left. A few seconds after the
activation of the dynamic color space using the dynamic reconfiguration feature,
the field mask marks most of the field, which leads to an increased detection
precision of the field boundary and therefore of obstacles. The dynamic color
space feature is implemented in a separate ROS node and runs parallel to the
main vision to increase runtime performance. It then publishes the updated color
space for the vision.
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Field Boundary Detector. Detecting the boundary of the field is important
as it is used for obstacle and field marking detection and to adapt the field color
space.

In order to determine an approximation of the field edge, the module searches
for the topmost green pixels in columns of the image. To increase runtime perfor-
mance not every pixel in every column is checked. Because of this, the resulting
field boundary is not perfectly accurate which can be seen by the smaller dents
in Fig. 1 in situations in which field markings are close to the edge of the field.
These dents are too small to be classified as obstacles and therefore insignificant
compared to the improvement of runtime performance.

Depending on the situation different algorithms are used to find the topmost
green pixel. The first iterates over each column from top to bottom until green
is found. As the robot will be looking down on the field most of the time, the
field will be a large part of the image. Searching for it from the top is therefore
very reliable and fast in most cases. However, this poses the problem that the
robot might see green pixels in the background when looking up to search for
objects which are further away (e.g. goalposts). Then these would be detected
resulting in an erroneous measurement of the topmost point of the field.

To address this problem, a different algorithm iterates from the bottom of
a column to the top until a non-green pixel is found. As the white lines inside
of the field would then be falsely detected as the outer boundary, a kernel is
applied onto the input image to take surrounding pixels into consideration.

Due to the use of a kernel, the second method is significantly slower and
should only be used when necessary. It is therefore only chosen when the robots
head is tilted upwards by a certain degree, which makes it likely that the back-
ground will occupy a large portion of the image.

After finding the field boundary, its convex hull is calculated. This is nec-
essary because the actual border of the field might not be visible by the robot
since obstacles can partially obstruct it. As a convex hull eliminates the dents in
the detected field boundary that were caused by obstacles, it resembles a more
accurate representation.

Line Detector. The Bit-Bots team uses field markings determined by the line
detector to locate the robot in the field [4]. Unlike other teams (e.g. [8]), it does
not output lines but points in the image which are located on a marking. This
approach reduces the computation effort necessary to gather the information
needed for the localization method. Pixels are randomly chosen in the image
below the highest point of the field boundary. Afterward, the color of the pixel
is matched to the color space representing the color of field markings via the
Color Detector.

To improve the performance of this method, the point density is adapted
accordingly to their height in the image. Additionally, the point density is
increased in areas with line detections in the previous image.
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Candidate Finder. As multiple modules (FCNN Handlers and Obstacle Detec-
tors) detect or handle candidates which can be described in multiple ways (e.g.
coordinates of corner points, one corner point and dimensions or center point
and radius), a generalized representation is necessary. To approach this issue,
the Candidate and Candidate Finder classes are used.

The Candidate class offers multiple representations of the same candidate
as properties. Additionally, a function checking whether a point is part of the
candidate is provided.

The Candidate Finder is an abstract class which is implemented by modules
detecting candidates. It ensures a unified interface for retrieving candidates and
thereby increases adaptability.

Obstacle Detector. Most obstacles obstruct the actual field boundary because
they are inside the field and have a similar height as the robot. Therefore, the area
between the convex hull of the field boundary and the detected field boundary
itself is considered an obstacle, if its size is greater than a threshold. Possible
objects in the field are robots of both teams, goalposts and other obstacles, like
the referee. The classification of an obstacle is based on its mean color, as a
goalpost will be predominantly white while robots are marked with their team
color (blue or red).

FCNN Handler. The FCNN Handler module is used to preprocess images for
a given FCNN-model and to extract candidates from its output. The prepro-
cessing consists of a resize of the input image to fit the input size for the given
model. As FCNNs return a pixel-precise activation (two-dimensional output of
continuous values between 0 and 1), a candidate extraction is necessary. To opti-
mize the runtime performance, the candidate extraction is implemented in C++
and accessed as a Python module.

For debug-purposes and to continue the processing of the FCNN-output in
another ROS node, a generation of a ROS message containing the output in the
form of a heatmap is included.

Currently, we are using an FCNN to locate the soccer ball in the image. It is
based on the model proposed in [20] and trained on images and labels from the
Bit-Bots ImageTagger2 [9].

Debugging and Evaluation. To improve the results of the vision pipeline, it is
essential to analyze and evaluate the results of algorithms and parameters in the
pipeline. This is achieved by using ROS bags, the debug module, the Evaluator
node and by analyzing messages between nodes.

To ease debugging, the debug module allows the user to create a debug image
(the current input image with all detected features drawn into) via a simple
interface, resulting in live insights into the vision pipeline (see Fig. 1).

2 https://imagetagger.bit-bots.de last accessed: 2019-06-14.

https://imagetagger.bit-bots.de
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Fig. 3. Demonstration of the dynamic color detector. A deliberately badly fitting color
space was used on the top left image. The resulting color mask is shown in the bottom
left. White pixels represent field-color detections. The dynamic color space adapted the
original color space which resulted in the improved field-color detection depicted in the
bottom right color mask which is based on the input image in the top right.

To measure the runtime of specific components, external profilers and internal
time measurements are used. The neural networks are evaluated separately. To
analyze the performance of the whole vision pipeline, we developed an external
Evaluator node, which is presented in Sect. 4.

3.2 Configuration

Currently, the vision pipeline configuration consists of 80 parameters. Parameters
are used to define variables which can have different optimal values depending on
the environment (e.g. color definitions or stepsizes in scanline approaches). All
parameters are defined in a single file in the YAML format. The ROS parameter
server manages these parameters and parses the configuration file. Parameters
are stored in the vision module to improve performance. Via its dynamic recon-
figuration server, ROS allows the adaption of parameters in a graphical user
interface while the module is running. A change of the value of a parameter trig-
gers a callback in the vision pipeline which propagates the change to the modules.
The dynamic configuration, which is applicable to all parameters, allows users to
inspect the effect of the changed parameters with a minimal delay. The results
are drawn into the debug image. Thereby, the user is able to adapt parameters
intuitively based on runtime and detection performance.
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4 Evaluation

To evaluate the vision pipeline, the Evaluator node from the bitbots vision tools
package is used. The Evaluator reads a YAML file containing image names
and corresponding object annotations from a whole image set. A correspond-
ing export format and test data is provided in the Bit-Bots ImageTagger [9].
Afterward, the annotations are verified and preprocessed. Sequentially, it feeds
the images into the vision pipeline (as ROS messages) and waits for the vision
output.

On a Jetson TX2, the system processes 8.1 images per second without debug
output generation. Our vision pipeline is not separated into several ROS nodes
(except the dynamic color space node which is actively adapting the parameters
of the pipeline) because of the delay in the message generation and passing
process and because multiple modules require common information (e.g. the color
module). ROS nodelets [22] cannot be used as they are currently not supported
in rospy, the ROS interface for Python.

To determine the precision of a detection, the Jaccard-Index (Intersection
over Union, see [21] is used. Two masks are generated for each annotation type.
One mask is based on the label created or at least verified by a human and the
other one on the output of the vision pipeline. A Jaccard-Index of 1 signifies a
perfect detection, while 0 represents a completely wrong detection.

The results of our evaluation are presented in Table 1. The values are the
mean of the Jaccard-Indices of all labels for each detection class. In this evalua-
tion, a fully labeled and publicly available set3 of 707 images was used.

Table 1. The mean Jaccard-Indices of the detections separated by detection class.

Class Ball Field boundary Line Goalpost Robot red Robot blue

Mean Jaccard-Index 0.677 0.925 0.021 0.183 0.149 0.380

The context of RoboCup Humanoid Soccer required compromising detection
precision for runtime performance. For example, while the height of an obstacle
is not relevant to avoid collisions, it has a significant impact on the used metric.
The low rating for line detection is owed to our point based detection method
compared to line based labels. In our case, we assume that the detected line
points are sufficient for their purpose in the robot self-localization. The indices
of the goalpost, robot and especially the obstacle detections are positively biased
due to high numbers of negative samples included in the data set.

Despite the drawbacks of the metric, it allows a quantitative analysis of
changes in parameters and algorithms. We propose this method of evaluation
as it allows different vision pipelines to be automatically tested under the same

3 https://imagetagger.bit-bots.de/images/imageset/261/ last accessed: 2019-06-14.

https://imagetagger.bit-bots.de/images/imageset/261/
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conditions. Therefore whole vision pipelines are comparable to each other within
the same metric with one conveniently usable tool, given they are using ROS
[15] and standardized messages [5].

5 Conclusion and Further Work

We presented a state of the art vision pipeline for the RoboCup Soccer context.
Through its implementation in Python, the system trades runtime perfor-

mance for high adaptability and expandability while maintaining a usable frame
rate and offering a state of the art neural network based ball-detection method.
It is a starting point for new teams and teams transitioning to Python or ROS.
Additionally, the modules can be integrated into existing vision systems. The
Evaluator node offers a novel approach to analyze the complete vision pipeline
while existing approaches solely evaluate isolated parts of the system. Thus,
changes in a single module and their effect on other modules and overall perfor-
mance can be evaluated.

In the future, we are planning to improve our FCNN to detect multiple object
classes efficiently. In particular, the performance of our Neural Networks can be
improved as we believe that our Jetson TX2 is not used to its full capacity. To
achieve this and detect very distant objects reliably we are considering imple-
menting the method proposed in [10].

Additionally, we are going to investigate the applicability of using more exter-
nal information (e.g. the robot pose or a world model) in the vision pipeline for
further optimizations.

We invite other teams to use (and adapt) the presented vision pipeline or
modules in their own software stacks. The project is publicly available on GitHub
via https://github.com/bit-bots/bitbots vision.
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