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Abstract. Reinforcement learning techniques bring a new perspective
to enduring problems. Developing skills from scratch is not only appeal-
ing due to the artificial creation of knowledge. It can also replace years of
work and refinement in a matter of hours. From all the developed skills
in the RoboCup 3D Soccer Simulation League, running is still consider-
ably relevant to determine the winner of any match. However, current
approaches do not make full use of the robotic soccer agents’ potential.
To narrow this gap, we propose a way of leveraging the Proximal Policy
Optimization using the information provided by the simulator for official
RoboCup matches. To do this, our algorithm uses a mix of raw, com-
puted and internally generated data. The final result is a sprinting and a
stopping behavior that work in tandem to bring the agent from point a
to point b in a very short time. The sprinting speed stabilizes at around
2.5 m/s, which is a great improvement over current solutions. Both the
sprinting and stopping behaviors are remarkably stable.

Keywords: Reinforcement learning · Machine learning · Humanoid ·
Robot · Soccer · Running

1 Introduction

Reinforcement learning is constantly expanding its reach to replace outdated
solutions. Its ability to overcome problems with large state and action spaces is
becoming more relevant as the computational power increases and new optimiza-
tion algorithms are developed. Competitive environments are particularly prone
to adopt this trend given the intense demand for new and improved solutions.
This is particularly noticeable in the RoboCup competition. Every year, new
robotic skills are designed, making the competition more exciting. Ultimately,
developing and optimizing high performance behaviors can be useful for real life
situations in the future.
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One of the most important skills in a 3D soccer simulation match is running.
The first player to reach the ball has an advantage over the opposing team, which
may prove to be decisive if done consistently. To improve the odds, researchers
should focus on developing fast and stable running mechanisms. With this in
mind, every competing team has perfected their algorithms along the years. How-
ever, none is making use of the full potential of the robotic soccer agents. This
is clear in the main event as well as secondary challenges of the RoboCup com-
petition. Recent work has introduced new perspectives on this long-established
problem [1]. Nonetheless, the proposed solution is not mature enough to be inte-
grated in existing teams.

To bring the robotic soccer agents closer to their full potential, this paper
introduces a way of leveraging the Proximal Policy Optimization using the infor-
mation provided by the simulator for official RoboCup matches. To do this, our
algorithm uses a mix of raw, computed and internally generated data. To comple-
ment the sprinting stage, we also optimize a stopping algorithm which brings the
robot back to a stationary pose. We expect to improve the running performance
and bring a new pace for future RoboCup competitions.

In Sect. 2 we present some work related with the RoboCup competition.
Then, we introduce the methods used to train and test our approach (Sect. 3),
including a description of the simulator and agent, the employed state and action
spaces and the optimization method. In Sect. 4 we describe the results concerning
the learned sprinting and stopping behaviors. Then we discuss those results
(Sect. 5) and present some conclusions and future work (Sect. 6).

2 Related Work

RoboCup is an annual international robotics competition which gathers teams
from multiple countries annually since 1997 [2]. Since the adoption of the 3D
Soccer Simulation League (3DSSL) in 2004, low level behaviors have evolved
considerably. Every year, each participating team releases their binary to a pub-
lic repository [3], which contains every team until the 2018 champion [4]. This
repository is important to analyze competing teams and develop improved solu-
tions. One of the most important research fields in the competition is bipedal
locomotion. Contributions in this area extend over different areas, including
omnidirectional walk [8,9], contextual-based walking [10,11], and fast walking
[12]. Currently, there is a lot of room for improvement concerning running speed.

There is a RoboCup competition called Gazebo running challenge [5], which
tests the agents’ speed and stability using the Gazebo simulator. The last
RoboCup event that included this challenge was in 2017. Every participating
team would run for 20 s at the highest possible speed. Only two of the four partic-
ipants were able to complete the challenge [6]. UTAustinVilla averaged 1.19 m/s
on the best three of four runs, while magmaOffenburg averaged 0.38 m/s on the
same conditions. Previously, in 2014, the RoboCup’s running challenge was con-
ducted in SimSpark. In this version UTAustinVilla also had the best results,
achieving a speed of 1.343 m/s [7].
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Recent work on this subject has brought improvements to the running per-
formance [1]. The Proximal Policy Optimization algorithm was used to develop
running behaviors from scratch using data provided by the robot’s sensors, as
well as the real orientation and coordinates provided by the server. This last
type of data is not allowed in official RoboCup matches, and thus the resulting
behavior is not ready to be integrated in a team. Furthermore, some components
can be improved, including speed, stability and integration convenience.

3 Methods

Two complementary behaviors are being developed – sprinting and stopping.
The former is concerned with making the transition from a stationary position
to a running gait, while the latter is responsible for reversing that transition.
Most of the features introduced below while describing the used methods are
common for both behaviors.

3.1 Simulator and Agent

SimSpark [13] – the official simulator for the RoboCup 3D Soccer Simulation
League – was the chosen simulator to conduct the learning process. This option
ensures that the optimization results can run seamlessly in official RoboCup
matches. Also, SimSpark uses a realistic and stable physics engine – the Open
Dynamics Engine (ODE). The learning agent is a version of the NAO humanoid
robot [14], created by SoftBank Robotics.

Since the objective of this work is to integrate the learned behaviors in a
competing team, the simulator was configured with current official RoboCup
rules. However, during the learning stage, to accelerate the optimization, the real-
time mode was disabled to allow synchronous communication with the agent.
Comparing with previous work [1], in our approach, the noise was not disabled
and the visual perception was not extended (i.e., the position and orientation
were not obtained from the server, since this kind of features is not available
during the competition).

3.2 State Space

The state space is composed of 80 continuous variables represented by the single-
precision (32b) floating-point data type. These variables are grouped in Table 1,
according to their meaning. The gyroscope, accelerometer and joints data is
obtained directly from the simulator. There are a total of 22 joints in the NAO
robot version without toes, as seen in Fig. 1, from which only 20 are being opti-
mized. The head pitch and yaw are excluded from the state space. The feet force
data is acquired directly when the feet are touching the ground, and it includes
3D contact coordinates and 3D force vectors for each foot. When the agent’s
feet are not touching the ground, SimSpark will not provide information in the
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Table 1. State parameters

Parameter Data size (×32b) Acquisition method

counter 1 generated

z-coordinate 1 computed

orientation* 1 computed

gyroscope* 3 raw

accelerometer* 3 raw

feet force* 12 raw

joint’s position* 20 raw

*differentiation 39 computed

*differentiation is performed on parameters followed by an
asterisk

Fig. 1. NAO robot – joints and actuators (adapted from [22])

respective cycle and our agent assumes that the corresponding variables are all
set to zero.

The counter is generated by the agent. It starts from zero, when the robot
is stopped, and it is incremented at every 3 time steps (which is related to the
control cycles explained in the next section). This counter works like a timer for
the optimization algorithm, and, during our preliminary tests, its inclusion in
the state space yielded about 20% of speed improvement after the optimization
was concluded. In this phase, we also attested the importance of the robot torso’s
z-coordinate and orientation. The former provides useful information when the
feet data is unavailable and the orientation is essential to keep the robot aligned
with the objective.

The orientation is easily determined from the visual references provided by
the simulator. However, these references are not good enough to provide accu-
rate z-coordinate estimates. Therefore, this variable is computed with a linear
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predictor function that was modeled using linear regression on some of the other
state space variables. The best single features and features crosses were initially
filtered based on their correlation with the ground-truth, which was obtained
directly from SimSpark. Then, an algorithm based on the Akaike information
criterion was used to refine the feature selection [15,16]. Currently, this predictor
uses 368 features (including raw observations and feature crosses). In a new data
set, corresponding to a reinforcement learning optimization with 20M time steps,
it yielded an average absolute error of 0.011 m. This is accurate, considering that
all the data provided to the agent by SimSpark (under the configuration for offi-
cial matches) has an associated error of 0.005 units, due to rounding precision.

Finally, the variables in Table 1 followed by an asterisk are differentiated with
respect to time, considering the length of one time step (20 ms). The majority of
them constitute first-order derivatives of linear or angular positions. The excep-
tions are the rate of force change (df/dt); the torso’s angular acceleration; and
the torso’s jerk (time derivative of acceleration).

3.3 Action Space

All joints of the simulated NAO robot (Fig. 1) have an associated actuator.
Analogously to the state space, 20 actuators were used. The head pitch and yaw
actuators were excluded since their optimization was not part of the objective.
To control each actuator, the simulator requires angular speeds between −7◦/s
and +7◦/s, provided through continuous variables. Our agent produces these val-
ues through an indirect control approach [1], where the optimization algorithm
produces target angles for each joint instead of speed values for each actuator.
The scaled target angle for joint i (θtarget

i ) and the output angular speed for
actuator i at time step t (ωt

i) are obtained by the following equations:

θtarget
i = (xi + 1) ∗ bi − ai

2
+ ai,

ωt
i = (θtarget

i − θt−1
i )/k, (1)

where xi is the optimization algorithm output value for joint i, clipped to the
range [−1, 1]; ai and bi are the lower and upper bounds, respectively, of the joint’s
angular range; θt−1

i is the angular position of joint i in the previous time step;
and k is a constant that adjusts the speed at which the target angle is reached.
Finally, ωt

i is clipped to the range [−7, 7] before being sent to the simulator.
After a random search, k was set to 7.

In official RoboCup matches, the NAO robot’s vision perception is limited
to an interval of 3 time steps, and all observations are delayed 1 time step. The
latter limitation allows the simulator to process the current action at the same
time the agents compute the next action using the last available observations.
This improves computational time but hinders the performance of reinforcement
learning algorithms, since the current action must take into account the last
action without knowing its result. To manage these issues, the agent control
cycle was synchronized with the arrival of visual information. The observations
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fed to the optimization algorithm carry information about the last action, and
the following yielded action is repeated for the next 3 time steps. This solves the
disruption of time continuity and reduces computational requirements from the
agent’s side.

3.4 Optimization Method

We chose the Proximal Policy Optimization (PPO), introduced by Schulman
et al. [17], as the preferred optimization method. This decision was based on its
simplicity and good performance on producing high quality behaviors [17].

The chosen implementation was obtained from OpenAI baselines [18], which
uses the clipped surrogate objective:

L(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât],

where rt(θ) =
πθ(at|st)
πθold(at|st)

, (2)

where Ât is an estimator of the advantage function at timestep t. The clip
function clips the probability ratio rt(θ) in the interval given by [1−ε, 1+ε]. This
implementation alternates between sampling data from multiple parallel sources,
and performing several epochs of stochastic gradient ascent on the sampled data,
to optimize the objective function.

Hyperparameter optimization requires a large number of iterations to cover
a significant part of the hyperparameter space. Therefore, due to the similarity
between case studies, we opted to base our hyperparameter tuning on the best
solution found by OpenAI, when training the mujoco 3D humanoid [18]. They
proposed the optimization of a multilayer perceptron with two hidden layers
with 64 neurons. On top of that solution, we changed to 4096 time steps per
actor batch and increased the maximum number of time steps to 200M (to learn
the sprinting behavior) and 40M (to learn the stopping behavior).

3.5 Experimental Setup and Testing

The simulator was configured identically for the experimental and test setups.
The real-time mode was switched on during testing to allow for visual inspection
of the resulting behavior. Otherwise, it remained off to reduce computational
time. For the sprinting behavior, the experimental and test setups were the
same. The agent is initially placed near the field’s left goal at (−14 m, 0 m),
facing the field’s right goal. The initial pose is shown in Fig. 2a. To achieve this
pose all joints must be set to 0◦, with the exception of: knees pitch (−60◦), hips
pitch (30◦), ankles pitch (30◦), shoulders pitch (−90◦), elbows yaw (L: −90◦,
R: 90◦), elbows roll (L: −90◦, R: 90◦). The agent is encouraged to run as fast
as possible in a straight line since the reward is only given by the robot torso’s
x-coordinate difference from the last time step. As the traveled distance in the
x-axis increases, so does the reward. The episode ends if the robot falls (torso’s



Learning to Run Faster Through RL 9

Fig. 2. Initial poses for the sprinting (a) and stopping (b) behaviors

z-coordinate is below 0.27 m) or reaches the finish line (torso’s x-coordinate is
above 14 m).

The stopping behavior is trained after the optimization of the sprinting
behavior. It does not have a fixed initial position or pose. The robot starts
from a stopped position and runs for a random period of time. Then, the control
of the robot is assumed by the stopping optimization algorithm, which must
ensure that it goes back to a stationary position without falling. One possible
initial position and pose is shown in Fig. 2b. The reward is given by the differ-
ence between the distance of the current joint’s position to the desired pose, and
the distance of the previous joint’s position to the desired pose. In other words,
the agent is compensated for getting closer to the desired pose, and penalized for
getting farther. Furthermore, it also receives a fixed unitary bonus for surviving
another control cycle without falling.

The target pose is the same as shown in Fig. 2a but with both arms lowered
to bring the center of mass down and increase stability. To ensure that the final
pose is completely achieved, after the episode reaches 50 time steps (1 s), an
algorithm gradually takes over (using a weighted average) to force the joints to
the desired angles. This also means that if the robot is not stable in under a
second, it will probably fall and the episode will end. If successful, the episode
ends when the robot achieves the final pose and remains stable for 100 time
steps (2 s), receiving a fixed unitary bonus per control cycle.

During testing, the only difference is the extent of the running stage, before
the stopping algorithm takes control. Instead of randomly assigning a value to
the extent, it was gradually increased from 0.42 s to 1.80 s, allowing 100 episodes
to run before incrementing 0.06 s (3 time steps). This test was implemented to
compare the stopping behavior performance under different initial conditions.

4 Results

This section presents the results obtained while testing the sprinting and testing
behaviors, according to the conditions established in Sect. 3.5. A video demon-
stration is available online at https://youtu.be/lkSVad tjOY.

https://youtu.be/lkSVad_tjOY
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4.1 Sprinting

The learning process took 73 h on a single Intel Xeon E5-2620 v3 at 2.40 GHz.
The results for this experiment were averaged over 1000 episodes executed under
the conditions specified in Sect. 3.5. After the optimization was concluded, the
trained agent deviated, on average, −3◦ from the x-axis, with a standard devia-
tion (SD) of ±5.9× 10−2◦. This bias was compensated by adjusting the orienta-
tion observation on the opposite direction. The following results were obtained
after this fix was implemented.

Figure 3 shows the robot’s average speed along the x-axis (x-speed) from a
given starting line (perpendicular to the x-axis) until the end of the episode.
When the starting line is defined at 0 m, the average x-speed covers the entire
episode, including the initial stopped position. If the line is defined at 1 m, only
the trajectory performed after the robot torso’s center crosses it is considered
for the average x-speed computation.
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Fig. 3. Average robot speed along the x-axis from a given starting line (perpendicular
to the x-axis) until the end of the episode (blue line). The dashed red lines represent
the minimum and maximum values. These results were averaged over 1000 episodes.
(Color figure online)

In this experiment, the robot has not fallen once in 1000 episodes. Considering
the entire trajectory, from a stopped position until the robot travels 28 m, the
average x-speed ranged between 2.37 m/s and 2.38 m/s, with a SD of ±2.8 mm/s.
Using the technique employed by the magmaChallenge benchmark tool [19],
which starts measuring the robot’s x-speed after it crosses the 0.5 m line, our
approach averaged 2.45 m/s on SimSpark, with a SD of ±2.1 mm/s. After 2.5 m
the agent stabilizes at around 2.49 m/s.

Figure 4 allows the analysis of a single episode. Figure 4a shows the instan-
taneous x-speed, represented by a continuous blue line. The average speed is
defined by a dotted red line. It is computed by considering the current time
instant t until the episode’s end T , where the travelled distance is given, analo-
gously, from xt until xT , as denoted by (xT −xt)/(T−t). Note that this expression
is dependent on time instants instead of x-coordinates.
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Fig. 4. Robot’s speed along the x-axis in a single episode, on top (a). The continuous
blue line indicates the instantaneous speed while the dotted red line represents the
average speed from the current time value t until the end of the episode T . A sequence
of frames from that episode is shown on the bottom (b). Each frame corresponds to
one of the numbered time steps in (a). (Color figure online)

Initially, the robot was standing still. Then it accelerated and crossed the
0.5 m imaginary line. At that moment, 0.54 s had passed, and the robot’s instan-
taneous x-speed (for which we consider the last 3 steps = 60 ms) was 1.23 m/s.
This point in the graph is near a local minimum, which is explained by the
current running gait cycle. By observing Fig. 4b, it is possible to study the
movement dynamics which leads to the speed oscillations while running.

As Adelaar and Novacheck defined [20,21], running, in comparison with walk-
ing, is characterized by longer double floating periods, where there is no support
from any limb. This characteristic is seen during 27% of the time for the episode
shown in Fig. 4. The sequential frames displayed on the figure’s bottom corre-
spond to the numbered time steps on top. Each pose is associated with a specific
cycle of the running gait. The lowest speed is registered when the robot is still
floating (frame no. 3).

4.2 Stopping

The stopping behavior is coordinated with the sprinting behavior to bring the
robot, once again, to a stationary pose. The results for this experiment were
averaged over 2400 episodes executed under the conditions specified in Sect. 3.5.
Figure 5 shows the stopping behavior results for different initial conditions. The
robot has not fallen once during this evaluation. In the first batch of 100 episodes,
the robot ran for 0.42 s, achieving an average maximum speed of 1.24 m/s. After
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Fig. 5. Stopping results as a function of the initial running extent. The robot starts
from a stopped position and runs for a certain extent, between 0.42 s and 1.80 s. Then,
the stopping algorithm (SA) tries to bring the robot back to a predefined stationary
pose. The max. x-speed ±1 SD (dashed blue line) is obtained immediately before the
SA starts. The stopping distance ±1 SD (cont. red line) is the 2D Euclidean distance
traveled by the robot while the SA is operating. Analogously, the angle deviation ±1
SD (green dots) is the absolute rotation angle measured while the SA is running. In
total, 24 running extents were tested, with 100 episodes each, totalling 2400 episodes.
(Color figure online)

that moment, the stopping algorithm took control and stopped the robot, on
average, in 0.39 m with an angle deviation of 115◦. In the following batches, the
initial speed increases, although not monotonically, for the reasons already stated
in Sect. 4.1. The fastest initial speed was obtained for a running extent of 1.74 s,
for which the average max. speed was 2.79 m/s. With these initial conditions,
the robot stopped, on average, in 0.72 m with an angle deviation of 109◦.

5 Discussion

Regarding the sprinting behavior, the obtained results were a considerable
improvement over current RoboCup standards. Our agent is 82% faster than the
2014 RoboCup’s running challenge champion [7]. It is also considerably faster
than the 2017’s champion [6], although the comparison is not entirely fair due to
differences between SimSpark and Gazebo. To the best of our knowledge, there
is currently no team in the RoboCup 3D Soccer Simulation League that can run
at a similar speed. Also, in comparison with previous work [1], several metrics
were improved. The average speed after the robot crosses the 0.5 m line increased
from 1.46 m/s to 2.45 m/s and the standard deviation reduced from 0.13 m/s to
0.002 m/s. This can be translated as greater speed, determinism and reliability,
which is supported by the fact that the robot did not fall in 1000 consecutive
episodes. The conditions tested in this work were harder, since the agent had
no access to the original robot torso’s x, y and z coordinates. However, this
also made the solution more robust, since it is easier to run towards a different



Learning to Run Faster Through RL 13

direction without having to align the Cartesian plane with the agent’s initial ori-
entation. Two factors that largely contributed to the optimization quality were
the new initial pose introduced in Sect. 3.5 and the longer optimization session
with 200M time steps.

The stopping behavior is directly linked with the running style, and it is
harder to compare with existing solutions. From the obtained results, it is pos-
sible to conclude that the agent learned to rotate its body approximately 100◦,
while trying to stop, to avoid falling. From a physics standpoint, this trick seems
logical. The NAO robot is more prone to tip forward than sideways, because its
base is wider than it is long. Nonetheless, this is not ideal, since most times the
agent is expected to end the sprint with the same orientation that it had on the
beginning. We tried penalizing the orientation deviation but the quality of the
solution decreased, as the robot would sometimes fall after the optimization was
concluded. Despite this limitation, the proposed solution always kept control of
the robot, which did not fall in 2400 consecutive episodes.

6 Conclusion and Future Work

We have successively trained a sprinting and stopping behavior that is now inte-
grated into our team and can be used in official RoboCup matches. This solution
was obtained from scratch using the Proximal Policy Optimization algorithm.
The sprinting performance is highly stable. It is largely superior to previous
running challenge champions and, to the best of our knowledge, it is also con-
siderably better than current running algorithms used by RoboCup 3D Soccer
Simulation League teams.

Regarding the stopping behavior, there is still room for improvement on mul-
tiple fronts. Despite its impeccable ability to stop the agent without falling, its
ending orientation is, on average, very different from when the stopping algo-
rithm takes control. Moreover, the stopping distance can also be improved.

On the future, the focus will be set on improving the stopping algorithm
and expanding both behaviors to other versions of the NAO robot, with special
emphasis on the version with controllable toes. We expect that the larger solution
space may produce even better results.
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