
Chapter 3
Scintillation Detectors for Charged
Particles and Photons

P. Lecoq

3.1 Basic Detector Principles and Scintillator Requirements

3.1.1 Interaction of Ionizing Radiation with Scintillator
Material

As any radiation detector, a scintillator is an absorbing material, which has the
additional property to convert into light a fraction of the energy deposited by
ionizing radiation. Charged and neutral particles interact with the scintillator
material through the well-known mechanisms of radiation interactions in matter
described by many authors [1, 2]. Charged particles continuously interact with
the electrons of the scintillator medium through Coulomb interactions, resulting in
atomic excitation or ionization. Neutral particles will first have to undergo a direct
interaction with the nucleus producing recoil protons or spallation fragments, which
will then transfer their energy to the medium in the same way as primary charged
particles.

The rate of energy loss (−dE/dx) for charged particles is strongly energy
dependant. It is well described by the Bethe-Bloch formula (see Chap. 2) for
incoming particles in the MeV-GeV range, with atomic shell corrections at lower
energy and radiative loss corrections at higher energy. For heavy materials currently
used as scintillators with a density of 6–8 g/cm3, it is typically of the order of
10 MeV/cm for a minimum ionizing particle but it can be a factor up to 100 more at
very low or very high energy (radiative losses).
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In the case of X- or γ- rays, the three fundamental mechanisms of electromag-
netic interaction are [3]:

• Photo-absorption
• Compton scattering
• Electron-positron pair production

The dominant process at low energy (up to a few hundred keV for heavy
materials) is the photoelectric absorption. The interacting photon transfers its energy
to an electron from one of the electron shells of the absorber atom (usually
from a deep shell). The resulting photoelectron is ejected with a kinetic energy
corresponding to the incident photon energy minus the binding energy of the
electron on its shell. This is followed by a rapid reorganization of the electron cloud
to fill the electron vacancy, which results in the emission of characteristic X-Rays
or Auger electrons. The photoelectric process has the highest probability when the
incident photon has an energy comparable to the kinetic energy of the electron on
its shell. This is the origin of the typical peaks observed in the cross-section curve
corresponding to resonances for the different electron shells (Fig. 3.1). The general
trend of this cross-section is a rapid decrease with energy and a strong dependence
on the atomic number Z of the absorber explaining the preponderance of high-Z
materials for X- or γ-rays detection and shielding:

σph ∝ Z5

E
7/2
γ

(3.1)

Fig. 3.1 Energy dependence of photon total cross sections in Lead (from Particle Data Group)
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At energies above a few hundred keV, Compton scattering becomes predominant.
In this case, the incident photon transfers only part of its initial energy Eγ to an
electron of the atomic shells and is scattered at an angle θ with respect to its original
direction. The recoil electron is then rapidly absorbed by the scintillator and releases
an energy according to the formula:

Ee = Eγ − E′
γ − Eebinding (3.2)

where E′
γ is the energy of the scattered photon given by (with m0 the rest mass of

the electron):

E′
γ = Eγ

1 + Eγ

m0c
2 (1 − cos θ)

(3.3)

The energy released in the scintillator by the recoil electron is distributed on a
continuum between zero and a maximum up to Eγ − m0c2/2 = Eγ – 256 keV (for
gamma energy large compared to the rest mass of the electron).

The probability of Compton scattering is related to the electron density in the
medium and increases linearly with the atomic number of the absorber, favouring
therefore high Z materials.

Above a threshold of 1.02 MeV (twice the rest mass of the electron), the
mechanism of e+e− pair production can take place, predominantly in the electric
field of the nuclei, and to a lesser extent in the electric field of the electron cloud
(respectively κnuc and κe in Fig. 3.1). Similarly to photo-absorption and Compton
scattering this process has a higher probability for high Z materials as the cross
section is approximately given by the formula [4]:

σpair ∝ Z2 ln
(
2Eγ

)
(3.4)

Below the threshold of electron-positron pair production electrons will continue
to loose energy mainly through Coulomb scattering.

In the case of an ordered material like a crystal another mechanism takes place
at this stage. In the process of energy degradation the electrons in the keV range
start to couple with the electrons of the atoms of the lattice and excite the electrons
from the occupied valence or core bands to different levels in the conduction band.
Each of these interactions results in an electron-hole pair formation. If the energy
of the electron is high enough to reach the ionization threshold free carriers are
produced, which will move randomly in the crystal until they are trapped by a defect
or recombine on a luminescent centre. In the case the ionization threshold is not
reached the electron and hole release part of their energy by coupling to the lattice
vibration modes until they reach the top of the valence band for the hole and the
bottom of the conduction band for the electron. They can also be bound and form
an exciton whose energy is in general slightly smaller than the bandgap between
the valence and the conduction bands. At this stage the probability is maximum
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for their relaxation on luminescent centres through an energy or a charge transfer
mechanism.

For a material to be a scintillator it must contain luminescent centres. They are
either extrinsic, generally doping ions, or intrinsic i.e. molecular systems of the
lattice or of defects of the lattice, which possess a radiative transition between
an excited and a lower energy state. Moreover, the energy levels involved in the
radiative transition must be smaller than the forbidden energy bandgap, in order to
avoid re-absorption of the emitted light or photo-ionization of the centre.

In a way, a scintillator can be considered as a wavelength shifter. It converts the
energy (or wavelength) of an incident particle or energetic photon (UV, X-ray or
gamma-ray) into a number of photons of much lower energy (or longer wavelength)
in the visible or near visible range, which can be detected by photomultipliers,
photodiodes or avalanche photodiodes.

3.1.2 Important Scintillator Properties

Scintillators are among the most popular ionizing radiation detectors.
There are two main classes of scintillators: inorganic and organic. For the

inorganic systems (generally ionic crystals), scintillation arises from thermalized
electrons and holes, moved to the bottom of the conduction band or the top of
the valence band respectively, by scattering from the initially produced fast charge
carriers. For the organic systems, scintillation arises upon transition between an
excited molecular level and the corresponding electronic ground state. Inorganic
scintillators are generally brighter but with a slower decay time than organic ones.
However no “ideal” material exists and the choice of a scintillator depends on
the application, as it is generally driven by a trade-off between a number of
physico-chemical and optical parameters such as density, scintillation properties and
radiation hardness. The production and processing cost is also an important issue
taking into consideration the very large volumes required for some applications.

3.1.2.1 Physico-chemical Properties

Physico-chemical properties are related to the material composition, structure and
density, as well as to its chemical stability when exposed to different environmental
conditions: air, humidity, ionizing radiation.

Frequently the density and hence the compactness of the detector is essential
in order to reduce the detector volume and cost. This is achieved by using high
stopping power and therefore high density materials. This reduces the size of the
shower for high energy γ’s and electrons as well as the range of Compton scattered
photons for lower energy γ-rays. A dense material also reduces the lateral spread of
the shower, which is particularly important for the majority of High Energy Physics
detectors.
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Fig. 3.2 Density for various binary compounds as a function of the binding anion (courtesy P.
Derenbos, from ref. [5])

Crystals with a density higher than 8 g/cm3 are currently available, such as
Lead Tungstate (PWO: 8.28 g/cm3) or Lutetium Aluminium Perovskite (LuAP:
8.34 g/cm3). Materials of even higher density in the range of 10 g/cm3 are
being identified and studied, such as: Lutetium Oxyde: Lu2O3, Lutetium Hafnate:
Lu4Hf3O12, Lutetium Tantalate: Lu3TaO7, Lutetium Lead Tantalate: LuPb2TaO6,
Thorium Oxyde: ThO2. Scintillators are wide bandgap ionic materials and high
density implies the choice of anions and cations of high atomic number A (and
therefore high Z), as well as small ionic radius to increase the ionic density in the
crystal lattice. From this point of view, oxides are generally denser than iodides
because of the much smaller ionic radius of the oxygen compared to the iodine
ion and in spite of its lighter weight. Similarly, the oxidation potential of the anion
is important as it allows reducing the number of anions (generally light) needed
to compensate for the positive charge of the much heavier cation. For this reason
oxygen is a better ligand than the slightly heavier fluorine ion because of its higher
oxidation state (2 or 3 instead of 1). Figure 3.2 illustrates this effect for a number of
binary compounds as a function of the anion type.

High Z materials are also preferred for low and medium energy spectroscopy
because of the strong dependence of the photoelectric cross-section on Z (see Sect.
3.1.1). High density is also required at high energy to achieve a small radiation
length X0 (mean distance over which an electron loses 1/e of its energy) given as a
function of the density ρ, atomic mass A and atomic number Z by:

X0 = A

ρ

716.4gcm−2

Z (Z + 1) ln (287/Z)
(3.5)
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However, contrary to a common assumption, the optimum conditions are not
necessarily achieved with the highest Z ions, because in addition to a small X0, the
density ρ should be high. This reduces the lateral shower size given by the Moliere
radius:

RM ≈ X0· (Z + 1.2) /37.74 ∼ 1/ρ (3.6)

The stability of the physico-chemical parameters is also important for the
detector design. Scintillation crystals are very stable materials, at least in the bulk,
if grown under conditions allowing a good structural quality. This provides a high
degree of internal symmetry in the material together with high energetic stability.
However, the charge unbalance on the surface can be at the origin of different
problems, such as a concentration of impurities or crystallographic defects. As
a result, the material can interact with its environment and locally change its
properties. The majority of halide crystals have the anions weakly bound to the
cations at the surface. They are therefore easily replaced by OH− radicals from the
atmosphere, which have strong optical absorption bands in the visible spectrum.
This causes a progressive brownish discoloration of the crystal surface, a well know
feature of hygroscopic materials. Encapsulating the crystal in an inert atmosphere
avoids this effect.

3.1.2.2 Optical Properties

Inorganic scintillators usually show wide emission bands because of multi-site
emission centres differently distorted by the crystal field, as well as by temperature
broadening of the optical transitions through vibronic coupling of the emission
centres with the crystal lattice. These emission bands are situated in the optical
window of the scintillator and produce light in the visible, near infrared or near
ultraviolet part of the spectrum. One of the objectives of scintillator development
is to design scintillators with emissions peaks matching the maximum quantum
efficiency of photodetectors, typically 250–500 nm for photomultipliers and 450–
900 nm for solid state photodetectors (pin diodes and avalanche photodiodes).

Light yield (LY) is an essential parameter for a scintillator as it directly influences
the energy resolution at low or medium energy through the photostatistic term
proportional to (LY)−1/2 and the timing resolution proportional to (τ sc/LY)−1/2, with
τ sc being the scintillation decay time. The scintillation mechanism is a multi-step
process, which will be described in detail in Sect. 3.2. The overall scintillation yield
is determined by the product of efficiencies for all these steps. The dominant factor,
which sets the fundamental limit on the light output of a given scintillator, is the
number neh of thermalized electron-hole pairs (active for scintillation) produced in
the ionization track of the incoming particle:

neh = Eα

β · Eg
(3.7)
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Fig. 3.3 Photon yield/keV of several scintillators as a function of the width of the forbidden band
(courtesy P. Dorenbos)

where β·Eg is the mean energy necessary for the formation of one thermalized
electron-hole pair in a medium with a forbidden zone of width Eg and Eα is
the absorbed energy. For ionic crystals, the factor β is usually close to 2.3 and
takes into account the energy loss through coupling with lattice phonons during
the thermalization process [5]. As shown on Fig. 3.3 low bandgap materials have
higher scintillation yields, although such materials are potentially more subject
to trap induced quenching, re-absorption phenomena and photo-ionization of the
luminescence centre. The ultimate light yield obtained for a material having a
bandgap of 3 eV and an emission wavelength of about 600 nm is in the range of
140 photons/keV. The observed signal in photoelectrons/MeV is much smaller, due
to losses in the light transport to the photodetector and the quantum efficiency of the
photodetector.

The scintillation kinetics is another important consideration as a fast response
and low dead time is frequently required for high detection rates. It is related to the
rate of decrease of the population of the excited luminescent centres. For a simple
process, with only one radiating centre and no interaction between luminescent
centres and traps, the decay is exponential and characterized by a time constant
τsc, the time after which the population has decreased by a factor e. For two
independent radiating centres the same description with two exponentials holds.
Real cases are however very often more complex, involving energy transfer between
centres and quenching mechanisms, and the resulting light emission is strongly non-
exponential. It is nevertheless common practice to describe this complex emission
curve by a sum of exponentials with different time constants. This has in most of
the cases no physical justification but simplifies the calculations. If we assume a
very fast transfer of the electrons and holes to the luminescent centres the ultimate
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limit for the scintillation decay time is given by the transition probability between
its excited and ground states:


 = 1

τsc
∝ n

λ3
em

(
n2 + 2

3

)2 ∑

f

|〈f | μ |i〉|2 (3.8)

where n is the refractive index of the crystal, λem the emission wavelength of the
transition, f and i the wave functions of the final and initial states respectively. The
strength of the dipole operator μ connecting the initial and final state determines
the decay time of the transition. This matrix element can only be sufficiently large
for a transition between two states with different parity (parity allowed transition).
This is in particular the case for the 5d to 4f transition in commonly used activators
like Ce3+, Pr3+, Nd3+ and Eu3+. Forbidden transitions are generally characterized
by long decay times, unless a competitive non-radiative relaxation channel exists,
which will contribute to the decrease of the population of excited states:

dne

dt
= −ne

τ
− αnee− E

kT (3.9)

Here ne represents the electronic density of the excited state, which is depopu-
lated through two competing decay channels, the first one radiative with a rate 1/τ
and the second one, non-radiative, through a thermal quenching mechanism. E is
the thermal energy barrier and α expresses the balance between the two channels.
Fast scintillation can therefore be obtained for intrinsically slow transitions at the
expense of a loss in light output. This is the case of Lead Tungstate (PWO) with a
low light yield but 10 ns decay time at room temperature to be compared to a 25
times larger light yield but 6 μs decay time at 80◦K [6]). More details about thermal
quenching will be given in Sect. 3.2.

Special attention must be given to afterglow, which limits the counting rate
of scintillation detectors. Afterglow is a phosphorescence mechanism induced by
the thermal release of charge carriers from traps. These carriers will eventually
recombine on luminescence centres, causing a delayed luminescence, which can
reach several percent after 1 ms for NaI(Tl) or CsI(Tl). Other crystals have a much
lower level of afterglow, such as BGO (Bismuth Germanate): 0.005% after 3 ms,
and CsF (Cesium Fluoride): 0.003% after 6 ms [7].

3.1.2.3 Radiation Hardness

Inorganic scintillators have in general a good stability of their scintillation properties
even in the presence of intense ionizing radiation environment. This property
is crucially important for detectors in space, oil well logging and high-energy
physics experiments at high luminosity accelerators. The radiation hardness of the
scintillation mechanism is related to the strong electrostatic field of the crystal



3 Scintillation Detectors for Charged Particles and Photons 53

lattice, which shields the luminescent centres. However, the transport of light
through the crystal may be affected by the production of colour centres, which
absorb part of the scintillation light on its way to the photodetector. The formation
of colour centres results from the trapping of electric charges by crystal structural
defects or impurities and is therefore directly correlated to the quality of the raw
material and of the growth technology. A large effort is needed to purify the raw
materials to the required quality and to minimize the amount of structural defects
during the crystal growth. However, in some cases, a specific doping of the crystal
has proven to be an efficient and economical way of significantly increasing the
radiation hardness [8].

3.1.3 Scintillator Requirements for Various Applications

The choice of a scintillator depends on the energy of the ionizing radiation to be
detected and on constraints specific to the application. It is therefore tailored to the
user requirements considering the relative importance of several parameters, such
as density, light yield, scintillation kinetics, emission spectrum, radiation hardness.
Ruggedness, hygroscopic behaviour and production cost are also important param-
eters. In practice, it is impossible to find a scintillator, which combines all the most
desirable properties. Besides a number of industrial applications for process control,
container inspection, thickness gauging, ore processing and oil well logging a large
fraction of the scintillator market is driven by X-ray and γ-ray spectroscopy in the
following areas:

• High and medium energy physics particle detectors;
• Astrophysics and space applications;
• Spectrometry of low energy γ-quanta;
• Medical imaging;
• Safety Systems and Homeland Security.

The most important user requirements for each of these categories are detailed
below.

3.1.3.1 High and Medium Energy Physics Particle Detectors

Scintillators are used in High Energy Physics for compact, high precision, homo-
geneous electromagnetic calorimetry. The purpose is to measure with the highest
achievable precision the energy of electrons and photons, generally the decay
products of unstable heavier particles, over the widest possible energy range.

The first important requirement is a high density material. High energy implies
a high particle multiplicity of the particle collisions and requires a high granularity
with good lateral containment of the particle initiated showers in order to minimize
overlapping showers and to ease event reconstruction. A small Moliere radius is
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therefore required, which will also improve the electron identification and allow
π0 rejection with good efficiency in high multiplicity events. More generally, a
high stopping power is mandatory to longitudinally contain high energy showers
in a reasonable volume and cost (typically 20–25 X0 are needed in high energy
calorimeters to contain at least 95% of the shower). Total lateral and longitudinal
containment of the showers is a prerequisite to minimize leakage fluctuations and to
achieve good energy resolution.

Fast scintillation is also an important parameter. In the search for rare events,
and at hadron colliders, one operates at high collision rates, which requires a
short time response of the detectors. Decay times of the order of the bunch
crossing time (typically 25 ns) or even less are necessary. Only optically allowed
(inter-configuration) transitions (like the transition 5d → 4f for Ce3+), cross-
luminescence, which is intrinsically fast and temperature independent as observed
in Barium Fluoride (BaF2), and strongly quenched intrinsic luminescence (as for
PWO) can give rise to a fast light signal.

The demand for a high light yield is less stringent at high energy (GeV range)
than at low energy (MeV range), because of the high number of scintillation photons
produced even by a poor scintillator, allowing a good signal detection above the
electronic noise. Such low light yield scintillators can therefore also be used for
calorimetric applications in magnetic spectrometers due the rapid development of
silicon photomultipliers (SiPM), with a gain comparable to photomultiplier tubes
(PMT) and with the additional advantages of being very compact and immune to
strong magnetic fields.

However, the high track density and event pile-up at high luminosity colliders
pose serious challenges for physics event reconstruction and analysis. At the Large
Hadron Collider (LHC) at CERN up to 40 pile-up events and more can be produced
at each bunch crossing at the design luminosity of 2.1034 cm–2 s–1, which will reach
200 pile-up events when the luminosity will be increased to 1035 cm–2 s–1 at the
High Luminosity LHC [9]. For a collision region of about 10 cm (bunch length)
the collisions will be distributed over 300 ps (Fig. 3.4 left panel). Precise temporal
association of collision tracks or jets would help mitigate the pile-up. If this can
be done for charged particles at high transverse momentum with particle tracking
detectors this approach will be much more difficult in the forward-backward region
and even impossible for neutral particles. In this case only time-of-flight (TOF)
techniques can be applied as shown on the right panel of Fig. 3.4, where the two
crossing bunches are symbolized by blue and red bars while their overlapping area
is represented by a white bar. Events generated in the centre of the detector (z = 0)
will generate tracks arriving at the same time in the forward and backward regions.
On the other hand, events generated at any time off-centre of the bunch-overlapping
region will exhibit a TOF difference for the tracks generated in the forward and
backward regions, as shown on Fig. 3.4 (t2–t4, t5–t7, t8–t10). A mitigation factor of
one order of magnitude necessitates a TOF precision of at least 30 ps [9].
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Fig. 3.4 Schematics of
bunch crossing and TOF in
the forward and backward
directions of particles
generated by events created in
different positions of the
overlap region

Excellent timing resolution is therefore needed. It can be shown [10] that it is
related to the time density of the detected scintillation photons in the leading edge
of the scintillation pulse, which is given by the following formula:

σt ≈
√

τrτd

/

Npe

where τr and τd are the scintillator rise time and decay time respectively and Npe is
the number of photoelectrons produced in the photodetector, which is proportional
to the light yield of the scintillator. A high light yield is therefore mandatory to
minimize the photo-statistic fluctuation influencing the time jitter of the detector.
An emission spectrum in the visible region is preferred as the quantum efficiency
of the majority of photodetectors is higher and the light is generally less attenuated
than in the UV region and hence more easily collected.

The energy resolution of the calorimeter is affected by all possible sources of
non-uniformity. The light collection in a pointing geometry of tapered crystals
introduces non-uniformity due to a focusing effect through the successive reflections
of the light on the lateral faces, which depends on the refractive index of the
crystal. Fluoride crystals and glasses, with low refractive index (around 1.5) have
smaller non-uniformities (and therefore are easier to correct) than BGO (index
2.15) or PWO (index 2.3). The material can be intrinsically luminescent if it holds
luminescent molecular complexes or ions, or is doped with a scintillating activator.
Intrinsic scintillators are generally preferred, as it is easier to control the light yield
uniformity in long crystals. On the other hand, a controlled distribution of the doping
could help correcting for the non-uniformity caused by the light collection in a
pointing geometry. Furthermore, the scintillation yield should be as independent as
possible from temperature. Large temperature coefficients increase the complexity
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of the detector design and of the software corrections, and temperature gradients
between the front and back face of the crystals introduce non-uniformity affecting
the resolution.

Finally, for large scintillator volumes cost considerations are of importance.
The abundance of the raw materials, the facility to purify them against the most
detrimental impurities to achieve good radiation hardness, a low temperature
melting point to save on the energy cost, a high growing and mechanical processing
yield are all parameters, which deserve particular attention.

3.1.3.2 Astrophysics and Space

Increasingly crystal-based calorimeters are embarked on satellites to study galactic
and extra-galactic X- and γ-ray sources. This requires excellent energy resolution
over a wide energy spectrum, typically from a few KeV to several TeV (see for
instance Fig. 2.16 of ref. [11] for a list of different space missions with their
respective energy range). One major aim of these measurements is the determination
of the direction of the γ-ray source. Two classes of position sensitive devices have
been developed in the last decades. These designs are using continuous scintillation
crystal or pixilated detector geometries [12]. The required angular resolution is
achieved with multilayer calorimeters or readout schemes to provide depth of
interaction (DOI) information or using coded aperture masks.

The low orbit satellites are shielded by the earth magnetic field, relaxing therefore
the requirement for radiation hardness of the scintillation material. Most of the
scintillation materials can be used depending on the energy range of the detected
γ-radiation. However, the payload is limiting the size of such detectors and not too
dense materials are sometimes selected to reduce the weight.

In the interplanetary space the sun wind from charged particles strongly influ-
ences the detecting requirements of the scintillation materials. For these missions,
high radiation hardness to ionizing radiation and low level of induced radioactivity
are required. The same applies to detectors for planetary missions.

The general trend is to select high light yield, fast and not necessarily ultra-
dense scintillators such as CsI or YAP. The very bright LaBr3 is likely to find
some applications in this domain because of its excellent low energy resolution
(comparable to solid state detectors). BGO is very often used in veto counters for
the rejection of Compton events.

3.1.3.3 Spectrometry of Low Energy γ-Quanta

This is probably the most important application domain for inorganic scintillators.
The key requirement concerns energy resolution on the photopeak. It is therefore
essential to maximize the photofraction and high Z materials are clearly preferred
(see Sect. 3.1.1).
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The energy resolution is driven by several factors and a detailed discussion is
given in Sect. 3.1.1. However, two important parameters are playing an essential
role. The first one is the light yield. One contribution to the energy resolution is
the statistical fluctuation of the number of photoelectrons, npe, produced in the
photodetector. Therefore a high light yield will reduce this statistical contribution
like (npe)−1/2.

The second parameter concerns the deviations from the linearity of response
at low energy. Most crystals exhibit a non-proportionality behaviour for energies
below 100 keV. The relative light yield can show either relative increase with
decreasing energy, as is the case for halide crystals, or a decrease, as for the majority
of oxides and fluorides. Only few crystals have an almost linear response down
to about 10 keV, such as YAlO3 (YAP), LuAlO3 (LuAP), LuYAlO3 (LuYAP),
LaBr3. Given that the energy loss mechanisms—photoelectric, Compton scattering
and pair production—are energy dependent, the total energy deposit in a crystal
detector will be a mix of these contributions varying with energies. The non-linearity
affects therefore the energy resolution, as is illustrated by the examples of Lutetium
orthosilicate (LSO) and Lutetium Aluminium Perovskite (LuYAP). For the same
detector volume, LuYAP achieves similar energy resolution (9%@511KeV) as LSO
despite a three times lower light yield [13], as a result of a more linear response at
low energy, as shown on Fig. 3.5.

Fig. 3.5 Relative low energy response for LSO and LuYAP crystals, normalized to the 137Cs
energy peak (from ref [13])
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3.1.3.4 Medical Imaging

Scintillators are widely used in medical imaging for X-ray radiology (digital
radiography and CT scanners) and for emission tomography (PET and SPECT) with
a market exceeding several hundred tons per year (see Sect. 20.1).

The choice of the scintillator for medical imaging devices is determined by the
stopping power for the energy range of X and γ-rays to be considered, or more
precisely the conversion efficiency. Materials with high Z and high density are
favoured but the energy of the K-edge is also important as can be seen in Fig.
3.6. For low energy X-ray imaging (below 63 keV) the attenuation coefficient of
Yttrium, Cesium and Iodine are quite high and crystals like YAP and CsI are good
candidates for soft tissue X-ray imaging like mammography. Above the K-edge of
Lu (63 keV) and Bismuth (90 keV) the situation is quite different and BGO and
Lutetium based crystals are favored for bone, dental X-ray, 99Tc (90 keV) SPECT
and PET scanners (511 keV). Heavy scintillators have smaller thickness, reducing
parallax errors in ring imagers and maintaining a good spatial resolution over the
whole field of view (Sect. 7.1).

A high light yield is also mandatory for good energy resolution. Better energy
resolution increases rejection of Compton events, improves the spatial resolution
and the sensitivity. The sensitivity is a critical parameter as it determines the number
of useful events per unit of injected dose. A higher sensitivity means a smaller
injected dose or a better image contrast.

A short scintillation decay time reduces the dead time and therefore increases
the maximum counting rate. In PET scanners for instance reducing the coincidence

Fig. 3.6 Attenuation coefficients in several high Z materials
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Fig. 3.7 Energy dependence of the timing resolution of a ClearPEM 2 × 2 × 20 mm3 LSO pixel
coupled to an Hamamatsu avalanche photodiode (courtesy J. Varela)

window improves the signal to background ratio and increases the sensitivity and
image contrast. Very fast scintillators open the way to scanners using the time-
of-flight information, which helps reducing the background by selecting a narrow
region of interest along the coincidence line. In the range of energies considered
for medical imaging, the timing resolution is limited by the Poisson distribution of
photons arrival time on the photodetector, even for bright scintillators like LSO.
Figure 3.7 shows the 1/

√
E dependence of the timing resolution of a ClearPEM

[14] detector head made of 2 × 2 × 20 mm3 LSO pixels coupled to a 32-channel
Hamamatsu APD matrix, when excited by sources at different energies E.

Commercial PET scanners achieve about 500 ps FWHM coincidence time
resolution (CTR) in the difference of detection time of the two 511 KeV gamma
rays resulting from the positron annihilation. This allows a significant image quality
improvement particularly for over-weighted patients. Ideally, one would like to
achieve 100 ps FWHM CTR resolution, which would correspond to a centimetre
resolution along the line of response (LOR) corresponding to the coincidence
detection of the two gamma rays. It improves by an additional factor 5 the image
signal-to-noise ratio. Thus a TOF-PET system with 100 ps CTR can either give a
five times shorter examination time of the patient or a five times lower radiation
dose at constant image quality.

As mentioned in Sect. 3.1.2.2, in first approximation (assuming single photon
detection) the CTR for a scintillators with a scintillator rise time τr and a decay time
τd, is given by:

CT R ∝
√

τrτd

Nphe
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where Nphe is the number of photoelectrons readout from the crystal. Clearly, there
is a premium for a high photon rate in the leading edge of the scintillation pulse, a
high light yield as well as a short rise and decay times for improving the CTR.

3.1.3.5 Safety Systems and Homeland Security

Scintillators are used in three main types of equipment related to safety and
homeland security: express control of luggage and passengers, search for explosive
materials and remote detection of fissile materials.

Luggage inspection requires the highest possible throughput to quickly identify
a suspect luggage in a few cubic meter large container moving across the inspection
device. The spatial resolution is determined by the need to quickly localize and
identify the suspect object in a large container. Fast scintillation kinetics with no
afterglow is therefore the most important parameter.

For the remote detection of explosives the most attractive methods are based on
the detection of natural or induced characteristic neutron and γ-rays under activation
by a neutron source, either with fast neutrons from the 252Cf radioisotope or fast-
thermal neutrons from a pulsed electronic neutron generator. Neutrons initiate
nuclear reactions in some elements, some of them producing characteristic γ-
rays. Plastic explosives for instance are generally rich in nitrogen. The nitrogen
(n,γ) reaction has a cross section of 75 mb and produces a characteristic γ-ray of
10.83 MeV.

For such applications, the most important scintillation crystal parameters are:
high stopping power to improve the detector sensitivity; high light yield to improve
the detector energy selectivity; fast scintillation decay time to allow time-of-flight
analysis with pulsed neutron generators to increase the signal to noise ratio. Good
stability of the scintillator parameters under ionizing and neutron irradiation allows
the use of strong activation sources for a better sensitivity.

Remote detection and fissile materials warhead inspection has been for a long
time restricted to the detection of neutrons, as the γ-channel would have easily
revealed secret characteristics of the nuclear device. This has changed recently and
opens new possibilities to detect the radiation emitted by Nuclear Explosive Devices
(NED) based on enriched uranium or plutonium. The most useful energy range to
detect fissile material is Eγ ≥ 3 MeV because of (1) the absence in this range of
natural radioactive sources and therefore an acceptable signal to background ratio;
(2) the high penetration power of these energetic γ-quanta making the deliberate
concealment of the intrinsic NED radiation more difficult.

Here, the most important parameters are sensitivity to allow detection at large
distance (at least several meters) and good background rejection. High stopping
power (and therefore high density) is mandatory. However, the crystals should be
made from materials with very low natural radioactivity, which restricts the choice
of heavy materials to the ones with no unstable isotopes. As the counting rates
are usually low, there is no need for ultra-fast scintillators. A phoswich geometry
based on two different crystals on top of each other can be an attractive solution for
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improved low energy background rejection. A first thin scintillator layer detects (and
rejects) the low energy background activity, whereas a thicker layer on the back will
be mainly sensitive to the 3–10 MeV range of interest. The two scintillators must
have different emission wavelength and/or decay time for a good identification of
the hit source.

3.1.4 Organic Material, Glass and Condensed Gases

There is a particular class of scintillators, which does not require a regular lattice to
produce scintillation light when excited by ionizing radiation. These are organic
solid and liquid materials, condensed gases as well as scintillating glasses. A
common feature of all these materials is that scintillation (also called fluorescence
in this case) results from a direct excitation of a molecule and does not involve the
transport of the excitation energy through the material. As the molecule is directly
excited and the coupling with the host material is minimal, the fluorescence decay
time is solely determined by the quantum numbers of the excited and ground states.
If properly chosen the molecule will emit between two singlet states giving rise to a
fast emission (usually not more than a few ns).

Different material combinations can be engineered, in particular in plastic scin-
tillators, to meet specific requirements. The most popular one concerns wavelength
shifters. Binary or even ternary solutions of different fluors can be dissolved in a
plastic base containing aromatic molecules. After excitation by ionizing radiation,
these aromatic rings will relax the stored energy by emitting UV photons. Properly
chosen additional fluors can absorb these photons and reemit them at longer
wavelength, e.g. to better match the quantum efficiency of a photodetector. As there
are only energy transfer and no charge transfer mechanisms involved, the whole
process is very fast.

Plastic scintillators can be easily machined in any shape, including in the form
of fibres, one important advantage. However, these materials are intrinsically light
(density around 1–1.2 g/cm3) and therefore are not suitable for homogeneous
calorimetry. They find a number of applications in sampling calorimetry and
tracking. More information can be found in ref. [15].

3.2 Scintillation and Quenching Mechanisms in Inorganic
Scintillators

3.2.1 The Five Steps in Scintillation Process

In contrast to luminescence (such as in lasers), where the excitation source is
tuned to the energy levels of the luminescent centres, scintillation is the result of a
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complex chain of processes, each of them characterized by a specific time constant
and efficiency factors [16]. This is summarized in Fig. 3.8, where the valence and
conduction bands of an insulator with a bandgap width Eg (forbidden band) are
represented. The upper level core band (energy Ec and bandwidth �Ec) is also
shown.

The sequence of processes is shown as a function of time and can be qualitatively
divided into five main phases:

• The first one is the energy conversion phase and the subsequent production
of primary excitations by interaction of ionizing particles with the material.
For an incident particle energy in the keV range or higher, the excitations are
essentially deep holes h created in inner core bands and hot electrons e in the
conduction band. Subsequently, on a very short time scale (10−16–10−14 s), a
large number of secondary electronic excitations are produced through inelastic
electron-electron scattering and Auger processes with creation of electrons in the
conduction band and holes in core and valence bands. At the end of this stage,
the multiplication of excitations stops. All electrons in the conduction band have
an energy smaller than 2Eg (e-e scattering threshold) and all holes occupy the
valence band if there is no core band lying above the Auger process threshold
(general case).

• The second stage is the thermalization of electronic excitations through a phonon
coupling mechanism with the crystal lattice, leading to low kinetic energy
electrons in the bottom of the conduction band and of holes in the top of the
valence band. This thermalization phase takes place in the sub-picosecond range,
typically between 10−14 and 10−12 s.

• The next stage, between 10−12 and 10−10 s, is characterized by the localization
of the excitations through their interaction with stable defects and impurities of
the material. For example, electrons and holes can be captured by different traps
or self-trapped in the crystal lattice. Excitons, self-trapped excitons, self-trapped
holes (VK centers) can be formed with emission of phonons. Localization of
excitations can be sometimes accompanied by displacements of atoms (defect
creation, photo-stimulated desorption).

• The transfer of excitations to the luminescent centres through the sequential
capture of charge carriers or different energy transfer mechanisms takes place
during the following 10−10 and 10−8 s.

• Finally, the radiative relaxation of the excited luminescent enters produces the
light signal with an efficiency and time structure, which is given by the quantum
selection rules of the transition. Parity allowed transitions with more than 3 eV
energy gaps are generally preferred as they give rise to fast luminescence.
However, smaller energy gaps (2–3 eV) are likely to favour higher light yield,
as discussed in Sect. 3.1.2.2.

The scheme depicted in Fig. 3.8 describes the scintillation mechanisms in the
case of ionic crystals with simple energy structures. However, important groups of
scintillators exhibit a more complicated band structure.
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One such case are so-called cross-luminescent materials, of which one well-
known example is Barium Fluoride (BaF2). Such systems are characterized by a
specific configuration of the energy bands, such that the width of the forbidden gap
(between the valence and conduction bands) is larger than the energy gap between
the uppermost core band (5pBa in the case of BaF2) and the bottom of the valence
band. When a hole produced in this core band recombines with an electron of the
valence band there is not enough energy available to eject an Auger electron from
the valence to the conduction band. The core-valence transition can therefore only
be radiative giving rise to a scintillation in the UV, which is usually very fast (sub-
nanosecond).

3.2.2 Scintillation Efficiency

The overall scintillation efficiency η is generally given by the product of three terms:

η = β· S·Q (3.10)

where β represents the conversion efficiency for the production of electron-hole
pairs, S the excitation transport efficiency, including thermalization of electric
carriers, localization and transfer to the luminescent centre, and Q is is the quantum
efficiency of the radiative transition of the luminescent centre. If we consider, as
discussed in Sect. 3.1.2.2, the number of 140,000 ph/MeV as an upper limit for the
scintillation yield of an ideal scintillator with an emission peak around 600 nm the
maximum scintillation efficiency is less than 30%. In reality, for the majority of
existing scintillators it is less than 5%, mostly because of important losses during
the thermalization and transport process.

At the end of the first phase of inelastic scattering the holes and electrons have
reached an energy below the Auger and ionization thresholds respectively. Their
thermalization to the top of the valence band for holes and to the bottom of the
conduction band for electrons can only take place by heat dissipation through
coupling to the phonon modes of the lattice. This is an unavoidable part of energy
loss for the scintillation process. The energy gap between these two thresholds being
of the order of 2.3Eg for ionic crystals one concludes that an ideal scintillator cannot
convert more than 43% of the absorbed energy into light.

Another important loss is related to the transfer of the excitations to the
luminescent centres. A frequent channel of excitation for acceptors is a charge
transfer process with a sequential capture of charge carriers. In Ce3+-doped crystals,
the hole is first captured with its capture probability strongly depending on the
position of the Ce3+ ground level (4f) in the forbidden band gap. In cerium-doped
oxides and halides, this level is usually lying very low in the gap close to the top
of the valence band, and these systems can lead to very efficient scintillation (LSO,
LuAP, LaCl3, etc.). On the other hand, Ce3+-doped fluoride crystals cannot exhibit
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very high light yield because the Ce3+ 4f is lying around 3–4 eV above the valence
band, which strongly reduces the hole capture probability.

It is also important to avoid the delocalization of electrons from the activator
excited state to the conduction band. This is achieved if the energy gap �E between
the radiating level of the doping ion and the bottom of the conduction band is large
enough. If �E >> kT, or the radiative decay τγ << τ d, where the delocalization time
τ d ≈ (1/S)exp(–�E /kT), with S—the frequency factor, k—the Boltzman constant,
and T—the temperature, the scintillation yield is not strongly dependent on the
temperature. In the reverse case one can expect a reduction of the scintillation
yield when the temperature increases (temperature quenching). Similarly, when the
ground state is located in or very close to the valence band, the hole is weakly
trapped and can be easily delocalized to the valence band.

Besides these different processes, a number of competing channels can limit the
probability of charge carrier capture by the luminescent centres. Impurities or ions
in the lattice can act as specific killer ions and compete with active ions for the
capture of charge carriers and/or interact with them, inducing severe limitations
in scintillation efficiency. For example, in cerium-doped crystals the presence of
ions or molecular groups with two or more stable valence states is generally to be
avoided. This is due to the fact that cerium has two stable valence states, Ce3+
and Ce4+, but Ce3+ only gives rise to luminescence. If a possibility exists for
Ce3+ to transfer one electron to these killers it will transform into Ce4+ and no
longer scintillate. This is the case for Ce-doped tungstates and vanadates, which
do not exhibit cerium scintillation because of such Ce-W and Ce-V interactions.
For the same reason the good electron acceptor Yb3+ severely quenches the Ce3+
scintillation.

Self-trapping is also a very frequent source of efficiency loss in insulating
materials. Indeed, some of the electrons and holes can be trapped by impurity
or crystal defect related acceptors and cannot excite directly luminescent centres
through sequential capture. If the trap is very shallow it will quickly release the
charge carriers and will slightly delay scintillation. However, in deep traps strong
quenching of the fast luminescence components is observed. Very long components
in the fluorescence decay appear when the temperature is raised to the point, where
trapped electrons can be released by thermal energy (glow peaks).

The interaction between closely spaced electronic excitations (in a few nanome-
tre range) may lead to luminescence quenching, also-called local density-induced
quenching. For electronic excitations created through the different mechanisms of
photon absorption, the probability to produce excitations at such short distances is
very low if the excitation source has a limited intensity. On the contrary, secondary
electronic excitations created by inelastic scattering of photoelectrons or Auger
decay of core holes can be quite closely spaced. In these clusters of high local e and
h density, the interaction between excitations can modify their localization and can
even create defects in crystals. In addition, these clusters can excite closely spaced
luminescent centres, which can interact with each-others, giving rise to faster and
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Fig. 3.9 The configurational
coordinate diagram. The
energy E is plotted versus the
coordinate Q (configurational
coordinate in the lattice). The
ground state g and one
excited state e are represented
by potential curves with offset
�Q. Absorption and emission
transitions are indicated

non-exponential decay time and total or partial luminescence quenching. The first
evidence of such effect was observed in CeF3 [17].

Another type of thermal quenching can occur related to electron-phonon cou-
pling. The different electronic configuration of the ground and excited states of
the activator generally induces an exchange of phonons and the relaxation of the
position of the activator ion when it is excited. As a result, the emission transition
from the relaxed excited state is shifted towards lower energy than the absorption
transition. This is the well-known Stokes shift illustrated in Fig. 3.9. The Stokes
shift is a measure of the interaction between the emitting centre and the vibrating
lattice. The stronger the electron-phonon coupling the larger the Stokes shift. For
weak coupling, the potential curves are not significantly shifted and the emission
spectra show narrow lines (case of f-f transitions of rare earth ions). In the case
of intermediate coupling for which the parabolas are weakly shifted, vibronic
spectra of broad emission lines are observed reflecting the progression in stretching
vibration of the luminescent ion (case of uranyl pseudo-molecules in oxides, like
UO2

2+).
In the case of strong coupling (shown in Fig. 3.8) the relaxed excited state may

decay non-radiatively to the ground state if the temperature is high enough to allow
the excitation to reach the crossing of the two parabolas.

In practice, the relevant parameter is the light yield efficiency Y, which is the
product of the scintillation yield η by the light transport and collection efficiency
ηcol to the photodetector. A number of parameters influence ηcol: the crystal shape,
its optical transparency to the scintillation wavelength, the presence of scatters and
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different optical defects in the bulk of the crystal, the surface state and wrapping
conditions of the faces of the crystal, the coupling face to the photodetector, the
surface matching between the coupling face and the photodetector, the crystal index
of refraction. Heavy scintillators generally have a high index of refraction (larger
than 2 in many cases) and the light collection efficiency is limited to 10–30% for the
majority of existing detectors. New approaches based on nanostructured surfaces,
in particular photonic crystals, are presently being explored [18]. Significant light
extraction gains of more than 50% have been obtained as well as a strong reduction
of the photon transit time spread in the crystal associated to the higher extraction
probability of the photons at their first hit on the coupling face to the photodetector
(reduction of multiple bouncing) [19].

The fact that some self-activated scintillators, like PbWO4, exhibit fast room
temperature scintillation in the ns-range is only the consequence of a luminescence
quenching mechanism competing with the radiative relaxation of the excitation. In
this case the decay is non-exponential, which is a common signature of temperature
quenched scintillators.

3.2.3 Response Linearity and Energy Resolution

The ultimate energy resolution (FWHM) of a perfect scintillator based detector is
given by the well-known Poisson law:

Rlim = 2.35

√
1 + v(PD)

Npe
(3.11)

where v(PD) is the variance of the photodetector gain and Npe is the number
of photoelectrons emitted by the photodetector. As the number of photoelectrons
is proportional to the number of photons Nph produced by the scintillator, the
resolution should be driven by the photostatistics of the scintillator light production.
However, several other factors contribute to the practical resolution R:

R2 = R2
lim + R2

inh + R2
tr + R2

np (3.12)

where Rinh reflects homogeneities of the crystal, inducing local variations of the
scintillations efficiency, Rtr is related to the light transport and collection by the
photodetector and Rnp is a factor of non-proportionality, which accounts for the fact
that for some scintillators, the number of emitted photons is not strictly proportional
to the incident energy.

Non-linear response has been first reported for NaI(Tl) and CsI(Tl); the response
per unit deposited energy decreases continuously from X- and γ-rays to electrons,
protons, α particles, and fission fragments. Moreover, this trend is strongly cor-
related with the ionization density dE/dx [20]. In other words, the response of
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a scintillator depends not only on the total amount of energy but also on the
mechanisms of the energy deposit. There is common agreement that this is related
to the saturation of response of the luminescent centres in the presence of a high
density of charge carriers. This is parameterized by Birks law, which postulates a
non-radiative relaxation of excitons interacting with each others in the case of high
ionization density:

Nph

(
dE

dx

)
= N0

ph

1 + aB
dE
dx

(3.13)

where N◦
ph is the light yield in the absence of saturation, Nph is the actual light yield

and aB is the Birks parameter.
When combining the 1/β2 ionization density increase for low energy particles

of decreasing velocity β (Bethe Bloch formula) with the Birks saturation law one
obtains the typical scintillator non-linear response at low energy as illustrated on
Fig. 3.10 in the case of NaI(Tl) [21].

It remains, however, to be explained why some scintillators are more affected by
this saturation effect than others.

Each of the steps of the conversion process described in the previous section can
be characterized by a certain degree of non-linearity. It seems, however, that last
stages of thermalization and capture are the most affected by non-linear phenomena.
Indeed, as long as the kinetic energy of electrons and holes is large relative to the
bandgap Eg the excess energy will be used to produce secondary e-h pairs and this
energy conversion process is intrinsically linear. On the other hand the stability of
the thermalized excitons in its crystallographic environment is very much dependant
on the energy band structure of the material as well as on the density of luminescent
centres or defects. This stability is related to the correlation distance between the
electron and hole, which is energy and temperature dependant.

Fig. 3.10 Measured electron response for NaI(Tl) scintillator (from ref [21])
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Fig. 3.11 Probability of binding or separation of an e-h pair as a function of energy (courtesy A.
Vasiliev)

Two competing recombination processes can take place, both being intrinsically
non-linear with energy as shown on Fig. 3.11, and inducing therefore a non-linear
energy response of the scintillator. The first one is the self-trapping of the exciton
in the vicinity of a luminescent centre which decreases rapidly with the e-h pair
energy. The second one is the direct capture of the separate electron and/or hole by
defects or luminescent centres and increases with the kinetic energy of the electron
and hole.

The energy threshold between these two mechanisms is related to the correlation
distance R0 between the electron and hole, which is temperature dependant. As a
result, the energy dependence of the scintillator response to thermalized e-h pars
is strongly non-linear as shown on Fig. 3.10, which also shows the influence of
the defects (crystal quality) on the excitation transfer efficiency to the luminescent
centres.

The quantitative link between the low energy non-linearity of the scintillator
response and the deviation of its energy resolution from the predicted counting
statistics is far from being fully understood. It has however its seed in the fact that for
the same total amount of deposited energy both photons and electrons release this
energy in a number of quanta over a large energy range and that the light response for
each of these quanta has different proportionality constants as a function of energy.
The event-to-event variation of this cascade process induces a spread in the energy
response, which deteriorates the energy resolution.

This is obvious in the case of Compton scattering. In a detector of a finite size,
the events in the photopeak result from the sum of true photoelectric events and
of events having undergone single or multiple Compton scattering interactions all
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contained in the detector block. The total energy deposited in the detector block is
the same whether it results from a single or multiple interactions. The light response
may however differ due to the non-linear response of the scintillator. As a result,
the event-to-event statistical variation of the energy deposition mechanism induces
a broadening of the resolution.

As pointed out in ref. [22] one would expect an improvement of the resolution
by reducing the detector size, as the fraction of fully contained Compton events
decreases and consequently the proportion of true photoelectric events increases.
This is actually not the case, because photoelectric events may result at the atomic
scale from a complex cascade mechanism. Indeed, the photoelectric interaction of
an X- or γ-ray produces a mono-energetic electron from one of the inner shells
of the atoms of the absorber. However, this electron can be ejected not only from
the K shell but also from a L or even a M shell (although the cross-section rapidly
decreases for higher core levels) of the different atoms of the crystal. In the sequence
of photon detection, recoil electrons with different energies are produced, each
carrying the incident photon energy minus the binding energy of the shell, from
which it has been ejected. Moreover, the deep hole produced in the inner shell
will be filled by an electron from outer shells, which in turn will be replaced by
electrons rom even lower bound shells through a cascade of relaxation events, each
of them producing an X-Ray or an Auger electron converting in the crystal following
the same mechanisms. Figure 3.12 depicts a part of this cascade process for LSO
crystals, commonly used in medical imaging cameras.

Finally, the recoil electrons, as well as all charged particles detected in a
scintillator, slow down through a sequence of energy transfers to the absorber with
a progressively increasing ionization density.

The energy resolution of calorimeters used in high or medium energy physics is
generally parametrized as a function of energy according to the following formula:

σ(E)

E
= a√

E
⊕ b

E
⊕ c (3.14)

where a is the statistical term, b the noise term and c a constant term, which takes
into account all the systematics (intercalibration error, temperature effects, light
yield non-uniformity in the crystal, shower leakage, etc.).

At high energy, the constant term is predominant and it requires a challenging
engineering effort to reach the sub-percent level for large detector systems with tens
of thousands of channels. This has been achieved for the LEP L3 BGO calorimeter
(with 12,000 crystals) with a high energy resolution of 1% and in the LHC CMS
PWO calorimeter (77,000 crystals) with a constant term of better than 0.5%.

At lower energy, the electronic noise plays an increasing role. The noise
contribution, which is energy independent, contributes therefore to the relative
energy resolution (3.14) as 1/E.

An interesting example is given in Fig. 3.13 for two heavy Lutetium based
crystals popular for medical imaging devices, LSO and LuYAP. In spite of a light
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Fig. 3.12 Electron cascade following photoelectric absorption in LSO Crystal. E refers to the
photoelectrically absorbed photon energy (ref. [22])

yield nearly three times lower LuYAP achieves a comparable energy resolution than
LSO because of a much more linear behavior at low energy (see Fig. 3.4).

3.2.4 Scintillation Kinetics and Ultrafast Emission
Mechanisms

Achieving ultimate time resolution on scintillator-based detectors requires a parallel
effort on the light production mechanisms, light transport optimization to reduce
the travel time spread of the photons on their way to the photodetector, on the
photoconversion system as well as on the readout electronics.

As shown in Sect. 3.2.1 the radiative transition on the activator ion or on the
intrinsic luminescent center only takes place after a complex relaxation mechanism
of the primary electron-hole pairs that can last several nanoseconds. In this process
large statistical fluctuations are therefore induced for the generation of the first
scintillation photons, which influence the observed rise time. This presents an
intrinsic limit to the achievable time resolution in a scintillator. It is related to the
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Fig. 3.13 Energy resolution for 137Cs photons obtained with 2 × 2 × 10 mm3 Ce doped LSO
and LuYAP crystals measured in horizontal and vertical position. The electronic gain for LuYAP
is three times higher to compensate for the lower light yield (6000 pe/MeV and 2000 pe/MeV for
LSO and LuYAP, respectively, in horizontal position)

time fluctuations in the relaxation process that can be estimated to be of the order of
100 ps.

For sub-100 ps time resolution mechanisms involving the production of prompt
photons need to be considered. Cherenkov emission and cross-luminescent mate-
rials can offer a solution. However, the number of Cherenkov photons from the
recoil electrons resulting from a 511 KeV γ conversion is very small, of the order
of 20 photons in crystals like LSO, LuAP and GSO. Moreover, these photons
are preferentially emitted in the UV part of the spectrum, where the optical
transmittance and the photodetector quantum efficiency are generally low. The same
applies for cross-luminescent materials characterized by a reasonably fast emission
(600 ps for BaF2) which emit in the 100–250 nm spectral range. However, some
transient phenomena in the relaxation process that can be possibly exploited for
the generation of prompt photons. From this point of view, an interesting phase
of the relaxation mechanism is the thermalization step when the hot electrons and
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Fig. 3.14 Schematic description of the hot intraband luminescence, showing the competition of
radiative and non-radiative (phonon-assisted) decay channels in the case of a non-uniform density
of states in the conduction band. From Ref [23]

holes have passed the ionization threshold. The coupling to acoustic and optical
phonons in the lattice is the source of hot intraband luminescence (HIBL) that
could be exploited to obtain a time tag for the interaction of ionizing radiation
with a precision in the picosecond range [23, 24]. This emission is rather weak
but extremely fast (sub-ps) and is characterized by a flat spectrum in the visible
for the electron-induced HIBL in the conduction band with an onset in the near
infrared attributed to the hole HIBL in the valence band. Work is ongoing to
engineer scintillators with a non-uniform density of states in the conduction and/or
the valence band which may result in a more intense HIBL emission (Fig. 3.14).
Already a few hundred prompt photons would suffice to significantly improve the
time resolution of scintillators like LSO in the low energy (MeV) regime.

Hetero-structures based on a combination of standard scintillators (such as LSO
or LYSO) and nanocrystals may be another way to produce prompt photons.
Nanocrystals have gained considerable attention over the last two decades because
of their excellent fluorescence properties. In such systems quantum confinement
offers very attractive properties, among which a very high quantum efficiency and
ultrafast decay time. Moreover, they have a broadband absorption and narrow emis-
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sion, enhanced stability compared to organic dyes, and the fluorescence is tunable
from the UV to the near-infrared spectral range (300–3000 nm) by nanocrystal size
and material composition.

A novel route towards the realization of ultrafast timing resolution is possi-
ble with the use of colloidal CdSe nanosheets (CQwells) [24], a new class of
two-dimensional materials. CQwells are solution-processed analogs to epitaxial
quantum wells (Qwells). However, being synthesized in solution, they can be
deposited on any substrate with arbitrary geometrical configuration. Further, a large
dielectric mismatch between the inorganic CdSe CQwells and the surrounding
organic environment results in much stronger quantum confinement than in epitaxial
Qwells. This mismatch combined with very little dielectric screening due to the
1.5 nm CQwell thickness results in strongly enhanced exciton and biexciton binding
energies of 132 and 30 meV, respectively, making both populations stable at room
temperature.

The strong electron and hole confinement in one dimension and free motion
in the plane has several important consequences, including strict momentum
conservations rules (in contrast to quantum dots) and a giant oscillator strength
transition. Momentum conservation in CQwells limits the available states for
Auger transitions, reducing the recombination rate of this nonradiative channel. In
addition to the enhanced exciton and biexciton binding energies, a giant oscillator
transition results in radiative lifetimes that are significantly shorter than in bulk
CdSe (~400 and ~100 ps, respectively). All of these properties contribute to the
ultralow threshold stimulated emission (or superluminescence) with sub-ps decay
time that has been observed with these CQwells (Fig. 3.15). Such systems could find

Fig. 3.15 Time-resolved spectral decay under femtosecond excitation (a) Streak image showing
the spectral decay of exciton (X) and biexciton (XX) emission from CdSe CQwells. (b) Stimulated
emission at an ultralow excitation fluence of F0 = 6 μJ/cm2, with characteristic spectral narrowing
and lifetime shortening. From Ref [24]
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interesting applications in ultrafast X-Ray imaging as well as providing a fast time
tag in γ imaging if used in hetero-structures in combination with dense scintillators
like LSO with a structuration dimension of the order of the recoil electron range, as
suggested in Ref [25].

3.3 Role of Defects on Scintillation Properties
and on Radiation Damage in Inorganic Scintillators

3.3.1 Structural Defects in a Crystal

The properties of a scintillator strongly depend on the structural quality of the
crystal lattice. The presence of defects influences all stages of the scintillation
process. They play also an important role in the light transport to the photodetector,
as well as in the generation of optically active defects under radiation exposure.
They continuously exchange charge carriers and phonons with the crystal lattice
and are therefore in thermodynamic equilibrium with the medium. This can have
a number of consequences such as reduced or enhanced scintillation efficiency if
the charge carriers are channelled through these defects to non-radiative or radiative
traps respectively, modification of the scintillation kinetics, afterglow, creation of
perturbed emission centres, self-absorption, emission wavelength shift, radiation
damage, radiation damage recovery. Depending on their size and physical nature,
one can distinguish two main classes of structural defects, namely point size defects
and impurities. Larger scale defects such as dislocations, twins, voids and other
macroscopic defects also exist. They will not be described here, as their influence
on the crystal properties is usually limited to the mechanical ruggedness and to a
small extent to the optical homogeneity.

3.3.1.1 Point Size Defects

A perfect crystal is a virtual object that can only exist at absolute zero temperature.
At higher temperature, a thermodynamic equilibrium is obtained by exchange of
energy quanta (in the form of phonons) between the environment and the crystal
lattice. Moreover, the finite dimensions of the crystal imposes conditions on the
surface to compensate the electrostatic field unbalance for the atoms at the interface.
This requires some level of plasticity of the lattice, which is generally achieved by
a certain concentration of cation and anion vacancies. Thermodynamics imposes
a relatively low concentration of such defects at room temperature, typically of
the order of 1012 cm−3. For comparison, the atomic density of the majority of
known heavy scintillators is about 1023 cm−3. In practise, the concentration of
vacancies is determined by the crystal growth technology. The melt is a mixture
of several chemical components, each of them with a different melting temperature
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and vapour pressure, which leads to segregational evaporation of some components.
Furthermore, close-to-surface vacancies can be partially compensated by absorption
of ions or radicals from the surrounding atmosphere. Typically the concentration
of such defects is at the level of 1018 cm−3 (10 ppm atomic) or even more.
At such concentration, some collective effects can take place, leading to more
complex molecular or cluster defects. Another typical point defect results from
the displacement of an ion of the lattice to an interstitial position. The electrically
neutral system behaves as a dipole and is called a Frenkel defect. In the case of Lead
Tungstate an oxygen-based Frenkel defect is responsible for an absorption band at
360 nm and for an increased susceptibility to radiation damage.

3.3.1.2 Impurities

Impurities are ions of different nature than the constituents of the crystal lattice.
They are generally introduced from imperfectly purified raw materials or by
contamination, for instance from the crucible material, during the crystal growth
process. Doping ions acting as luminescence activators, such as Ce3+ in LSO,
LuAP and many other fast scintillators, can be considered as impurities with a
positive role. Ions from the lattice, but in a different valence state than required
by the electric charge balance, are another type of impurity. As an example, Ce4+
has been considered by some authors as a possible scintillation quencher in CeF3
crystals. Two important parameters influence the way impurities can be introduced
in a crystal: their electric charge and their ionic radius. If the ionic radius is close to
the one of ions from the lattice, impurities can easily replace these ions, producing
only a small distortion of the lattice. Isovalent ions will then easily produce a solid
solution as is the case for LYSO or LuYAP when Y3+ ions substitute Lu3+ in
LSO and LuAP crystals, producing locally a mixed compound of LSO-YSO and
LuAP-YAP, respectively. If heterovalent impurities are introduced in the crystal their
charge excess or deficit must be compensated by other impurities or by lattice ion
vacancies. This mechanism can be used to suppress the detrimental role of some
defects, which cannot be eliminated. A good example are the lead vacancies in
PWO, which are efficient hole traps responsible for radiation damage and which can
be compensated by substituting trivalent ions such as Y3+ or La3+ to neighbouring
Pb2+ ions in the lattice.

Impurities with too large an ionic radius have generally little chance to be
introduced in the lattice, whereas small ions can find interstitial positions and create
strong local distortion of the crystal electronic configuration.

In practice it is difficult, or at least very expensive, to purify raw materials
to the sub-ppm level. Most of the scintillators grown in good conditions have
therefore an impurity concentration of about 10−17–10−19 cm−3, comparable to
the concentration of point defects.
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3.3.2 Impact of Defects on Optical Properties

Defects in a crystal influence its optical properties in a number of ways, affecting
the charge carriers or the photon transport.

3.3.2.1 Charge Carrier Traps

Most point defects or impurities are electron or hole traps. They reduce therefore
the transfer efficiency of charge carriers to the luminescent centres and therefore
also the scintillation efficiency. For good quality crystals the density of defects
(at 1–100 ppm level) is several orders of magnitude smaller than the density of
luminescent centres, which is very high for intrinsic scintillators (about 1022 cm−3)
but also quite high for extrinsic scintillators, for which the activator concentration is
typically at the atomic percent level. Under normal excitation conditions, it would
look therefore rather unlikely that charge carriers are trapped by defects before they
convert on luminescent centres. This does not take into account the charge carrier
capture cross-section, which can vary by large factors for different kinds of traps. A
typical example is given by the molybdenum molecular complex MoO4

2−, which
is a very efficient and stable electron trap with a radiative decay at 508 nm in PWO.
At the level of only a few ppm it gives rise to a slow (500 ns) additional green
component to the regular fast PWO emission band at 420 nm. As molybdenum is
isomorphic to tungsten it can easily enter into the PWO lattice and locally produce
a solid solution (PbWO4-PbMoO4). This slow green component is negligible if the
molybdenum contamination of the tungsten oxide raw material is less than 1 ppm
[26].

In some cases, the traps are non-radiative but have energy levels close enough
to the valence or conduction bands so that the carriers can be released by thermal
activation, eventually converting on the luminescent centres. If the trap is close to
the radiative centre this thermally assisted transfer can take place directly between
them without involving the valence or conduction bands. As a result, the regular
emission will take place but with some delay associated with the transit of the carrier
via the trap. This is the origin of the well-known afterglow or phosphorescence.
When afterglow effects are undesirable, for instance for high X-ray counting rates in
CT scanners, additional impurities can help opening some non-radiative relaxation
channels for these traps. As an example, afterglow in (Y,Gb)2O3:Eu scintillators
can be significantly reduced by the addition of heterovalent Pr3+ or Tb3+ ions to
the lattice [27]. The Pr3+ and Tb3+ additives readily trap holes to form Pr4+ and
Tb4+, which compete with the intrinsic traps responsible for afterglow. This energy
trapped in the Pr or Tb sites decays non-radiatively in the presence of the Eu3+ ion.
As a consequence, afterglow emission is suppressed by one order of magnitude or
more.
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3.3.2.2 Defect Associated Absorption Bands

Defects have generally energy levels in the forbidden band, which reduce the
optical transparency of the crystal. Small perturbations of the crystal lattice are
energetically the most probable ones and give rise to a number of energy levels
near the conduction and the valence bands. There is nearly a continuum of such
levels, which reduces the optical transparency window of the crystal. For this reason,
the shape of the optical transmission of a crystal near the band-edge is usually
a good probe of its structural quality. Crystals with UV emission bands near the
fundamental absorption edge are strongly affected by the optical transitions between
these levels resulting in increased absorption.

Cross-luminescent crystals such as Barium Fluoride (BaF2) are illustrative
examples to demonstrate the role of impurities on the crystal properties. Their deep
UV fast emission band (220 nm for BaF2) requires a very good UV transmission to
detect efficiently the light at the photodetector. Unfortunately, alkali earth fluorides
are easily contaminated by oxygen and hydroxyl ions, causing strong absorption
bands in the UV. A theoretical study of the charge state stability and electronic
structure of O0, O− and O2− centres in BaF2 identified a large number of transitions
from 2p to 3s and 5s states. In ref. [28] Hartree-Fock-Slatter local density discrete
variation cluster calculations were made to obtain the energy levels of Hs

−, Os
− and

Os
2− ions in BaF2 crystals. Table 3.1 summarizes the optical absorption bands in

the VUV and UV ranges.
As far as O− and O2− ions are concerned, the absorption bands are mainly

the result of cross transitions between oxygen ions and Ba2+ or F− ions, which
significantly contribute to absorption around 200–240 nm.

These theoretical calculations are in good agreement with experimental results,
confirming the existence of strong absorption bands overlapping the fast emission
band in hydrolysed BaF2 crystals, see Fig. 3.16.

Table 3.1 Calculated optical
absorption band of Hs, Os

–

and Os
2– -contaminated BaF2

[28]

Impurities λabs. [nm] hν [eV] Cross transitions

HS
− 209 5.9 H− (1s) → H− (2s)

OS
− 230 5.4 F− (2p) → O− (2p,3p)

175 7.2 F− (2p) → O− (3p)
170 ≈ 175 7.0 ≈ 7.2 O− (2p) → Ba2+ (5d)

OS
2− 292 4.2 F− (2p) → O2− (3p)

200 6.2 O2− (2p) → Ba2+ (6s)
130 9.5 O2− (2p) → Ba2+ (5d)
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Fig. 3.16 Absorption spectra for different hydrolysed BaF2 (ref. [28])

3.3.3 Radiation Damage

The exposure of crystals to ionizing or neutron radiation can induce a number of
modifications of the crystal lattice with potential consequences for the scintillation
efficiency and the light transport. These modifications can be related to pre-existing
crystal defects, when exposed to a high density of charge carriers that are easily
trapped producing colour centres with radiation-induced absorption bands. They can
also be associated to the production of new defects by elastic or knock-on collisions
of incident particles with the lattice ions resulting in a local modification of the
lattice structure. Finally, heavy energetic charged particles or neutrons may produce
dramatic events, such as heavily ionizing fission fragments. This last phenomenon is
usually of little concern in the majority of applications, even for the new generation
of high luminosity particle physics colliders, as it requires an enormous integral
fluence (1017–1018 cm−2) to become significant. Indeed, it requires the formation
of about 1017 cm−3 such defects to reach a 1 ppm contamination in the majority of
scintillator materials. However, such defects are by nature irrecoverable and their
progressive accumulation may affect parts of detectors highly exposed for very long
periods of time.

The situation is different for the majority of other cases (charge trapping or
ion displacement), for which relaxation processes play a fundamental role in the
kinetics of damage build-up. These defects introduce a local perturbation in the
crystal and do not change the main structure parameters and particularly the spatial
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symmetry group. However, they locally modify the electronic configuration and
affect the macroscopic crystal parameters, such as optical transmission, conductiv-
ity, thermo-luminescence properties, because these volume properties are sensitive
to the microscopic structure modifications. In ionic crystals, containing anions and
cations, five possible simple point defects of the crystalline structure have been
observed: anion vacancy Va, cation vacancy Vc, cation replacement by impurity
ions, extrinsic atoms in inter-site positions and Frenkel type defects (anions and
cations displaced to interstitial sites).

All these defects are efficient charge carrier traps and can be stabilized by
capturing excess electrons or holes released by irradiation in the conduction or
valence band respectively. In oxide compounds for instance, the oxygen vacancies
are charge compensated by the capture of one or two electrons, which are in excess
in the conduction band after irradiation. The resulting F+: (Va + e–) and F: (Va+2
e–) electron centres play an important role in radiation damage effects. The captured
electron or hole in these so-called recharged defects has generally a number of
discrete energy levels available in the electrostatic environment of the defect and
optical transitions to upper energy levels induce absorption bands in the crystal
transparency window. These bands are the source of the crystal colouring under
irradiation and justify the name of colour canters for these defects.

The main consequence of irradiating a crystal is to produce radiation induced
absorption bands, which absorb a fraction of the scintillation light on its pathway to
the photodetector. The light collected on the photodetector becomes therefore:

Irad =
∫

λ

I0 (λ) e−(μ0(λ)+μrad(λ))Ldλ (3.15)

where Irad is the intensity of the transmitted light after irradiation, I0(λ) is the
intensity of transmitted light at the wavelength λ before irradiation, μ0(λ) and
μrad(λ) are, respectively, the intrinsic and radiation induced absorption coefficient at
the wavelength λ and L is the mean path-length of optical photons from the emission
point to the crystal exit surface. Dense and small radiation length crystals have an
obvious advantage as for the same stopping power the path-length L is reduced as
compared to lighter materials. Moreover, non-uniformities introduced by different
path-lengths as a function of the position of the scintillation emission point are also
reduced. Figure 3.17 shows the radiation induced absorption coefficient spectrum
for PWO crystals as a function of the accumulated 60Co dose.

At radiation levels currently experienced in particle physics detectors and in
X-ray imaging devices the radiation damage only affects the optical transparency
of the majority of known scintillators, but not the scintillation mechanism. One
exception is CsI(Tl), characterized by an overlap of the radiation induced hole
centres absorption maximum in CsI with the excitation spectrum of the Tl+ ions.
The presence of stable hole centres causes a fraction of excitations to be trapped
rather than transferred to TI+ thereby causing non-radiative losses. As a result,
the efficiency of energy transfer to luminescence centres drops, decreasing the
scintillation efficiency. Similarly, radiation-induced charge transfer processes can
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Fig. 3.17 Wavelength dependent absorption coefficient of PWO crystals as a function of the
absorbed 60Co dose (courtesy CMS collaboration)

modify the charge state of activator ions. This is seen for instance in some Ce3+
doped scintillators, such as YAP and LuYAP, when grown in vacuum or inert
atmosphere, where up to several percent of the scintillating Ce3+ ions can be
reduced under irradiation to the Ce2+ non-scintillating state, decreasing by the same
amount the scintillation efficiency. Annealing the crystals under oxygen atmosphere
restores the scintillation efficiency by re-oxidizing the Ce2+ ions. Ref. [11] provides
more details.

The kinetics of the radiation damage build-up and recovery is determined by
the depth of the traps at the origin of colour centres. Very shallow traps induce
transient absorption bands, which recover so quickly that the monitoring of the
crystal transparency becomes very difficult. Much attention has been paid when
optimizing PWO crystals for the CMS calorimeter at LHC to suppress as much
as possible such defects or to compensate their effect by specific doping [8, 29].
On the other hand, deep traps are generally very stable and are characterized by
a continuous increase of the corresponding absorption bands, even at low dose
rate, until they are completely saturated. The monitoring of the crystal transparency
allows correcting for light yield variations but the concentration of such defects
must be maintained small enough to minimize the loss in light yield. For most of
the known scintillators a concentration of such defects at the ppm level can produce
a radiation induced absorption coefficient limited to about 1 m−1.

At room temperature a large fraction of the radiation induced defects are
metastable. Temperature dependant relaxation processes take place in the crystal
lattice so that these defects, once produced, are ionized at a rate, which depends
on their energy depth and the temperature following the Boltzmann law. As a
consequence, the transmission damage reaches a saturation level, which is dose-
rate-dependent up to the point where the rate of trapping of the charge carriers
induced by radiation is exactly balanced with the rate of spontaneous relaxation at
this working temperature. For a uniform distribution of defects of type i in the crystal
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and in the absence of an interaction between them the kinetics of the concentration
of damaged centres of type i is described by the following differential equation:

dNi

dt
= −ωiNi + S

di

(
N∗

i − Ni

)
(3.16)

where Ni is the amount of damaged centres of type i at time t, ωi is their recovery
rate, S is the dose rate, Ni∗ is the amount of pre-existing defects of type i and di is
a damage constant, which depends on the capture cross-section of free carriers by
the centres of type i. The induced absorption coefficient μ produced by irradiation
is proportional to the concentration of absorbing centres N through μ = σN, where
σ is the cross-section of the absorbing centre. The solution of this equation gives
the kinetics of the induced absorption build-up:

μ = μsat
S

S + ωd

{
1 − exp

[
−

(
ω + S

d

)
t

]}
(3.17)

where μsat = N∗σ corresponds to the maximum possible saturation when all centres
are damaged. The recovery of the transmission after the end of the irradiation at time
t0 is described by:

μ = μsat
S

S + ωd

{
1 − exp

[
−

(
ω + S

d

)
t0

]}
exp (−ω (t − t0)) (3.18)

Figure 3.18 illustrates the impact of this behaviour on the light output of a 23 cm
long PWO crystal exposed to a cycle of several irradiations separated by periods of
recovery.

There are two ways to increase the radiation hardness of scintillating crystals.
The first one is to make every effort to reduce the density of point charge defects

Fig. 3.18 Variations of light out-put for a PWO crystal exposed to a cycle of several irradiations
separated by periods of recovery at 18◦C (courtesy CMS collaboration)
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related to structural defects, impurities and anion or cation vacancies induced by
differential evaporation of the chemical components during the crystal growth. This
can be achieved for the majority of crystals, through different cycles of purification
of the raw materials, multiple crystal growth and annealing of the crystals in
specific atmosphere and temperature conditions. This approach is however costly
and limited to defect concentration levels in the ppm range. For some applications,
such as in high luminosity collider experiments, this is sometimes not enough to
guarantee the optical stability of the crystals over long periods.

In another approach additional well selected defects are produced in the crystal,
which compete with the uncontrollable defects and reduce their influence. This
so-called co-doping strategy has been the result of improved understanding of the
mechanisms of light production and charge carrier transport and trapping, opening
the way to a defect engineering of the crystals. It has been shown for instance that
divalent doping with Ca2+ or Mg2+ in some Ce3+ activated crystals (in particular
in ortho-silicates and aluminium garnets), not only increases the light yield, but also
suppresses slow scintillation components and improves the radiation hardness [30].
This is the result of easier charge carrier transport to the luminescent centres through
the energy levels of these impurities and easier delocalization of trapped carriers due
to the smaller energy gap between these traps and the conduction band, which may
even absorbed in the conduction band.

3.4 Crystal Engineering. Impact of New Technologies

The conditions of synthesis of the chemical components of a crystal are governed
by thermodynamic relations between composition, temperature and pressure of the
mixture. At a given pressure, the composition-temperature equilibrium for both
the liquid and solid phases is represented by a phase diagram. The phase diagram
shows the domains of stability of a given chemical composition and the influence
of deviations from stoichiometry (composition of the mixture), unwanted impurities
or specific doping. An example of such a phase diagram is shown in Fig. 3.19 for
PWO crystals.

Two stable compositions can be grown from a PbO-WO3 mixture, namely
PbWO4 (PWO) and Pb2WO5. The PbWO4 melts congruently, i.e. without decom-
position of the compound, at 1123◦C. The analysis of this phase diagram helps to
define some practical parameters for the PbWO4 crystals. First of all the melting
temperature restricts the choice of the crucibles to metals with melting points
much higher than 1123◦C, such as platinum, iridium and their various alloys.
Moreover, such crucibles must be chemically inert with melts of similar oxides
like PbMoO4, CaMoO4, ZnWO4, as Mo, Ca and Zn are impurities likely to be
present in the raw materials. Secondly, the possibility to deviate from the perfect
stoichiometric composition of the raw material with some excess of either WO3, or
PbO is of great importance to compensate for a strong differential evaporation of
the different components of the melt during the growth process. An initial deviation
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Fig. 3.19 Phase diagram of the PbO-WO3 system

from the perfect stoichiometry can compensate non-stoichiometry defects. Some
restrictions can appear because of segregation processes of additional doping ions.
The segregation coefficient k defines how the concentration of doping ions or
impurities will vary along the crystal according to the formula:

Cs = kC0

1 − (1 − k) g
(3.19)

where g is the fraction of the melt already crystallized, CS is the impurity
concentration in the melt at some point, C0 is the initial impurity concentration
in the melt, k is the segregation coefficient. If the segregation coefficient k is too
different from 1, as a result of too small or too large ionic radii or different valence
states as compared to the ions of the crystal lattice, the doping ion will be pumped
in or repelled from the crystal during the growth process.

The majority of crystal growth methods are based on the principle of oriented
crystallization. An oriented seed (a small piece of the same crystal or of different
composition but similar lattice parameters) is introduced in contact with the melt to
initiate the growth process. A temperature gradient is applied so that heat transfer
is used as the driving force of crystallization. Several crystallization methods have
been developed, which differ in the way the heat transfer and the hydrodynamic
conditions are applied:

• Establishing a temperature gradient between the crystal and the melt by heat
transfer from the seed. Such heat transfer methods occurred in nature to form
crystals and are still used for cheap crystal production, when the requirements on
quality are not too high.

• Floating temperature gradient through the melt (Bridgeman and Stockbarger
methods). The raw material is placed in a closed crucible, at the end of which
a seed has been placed. The crucible is moved through a thermal gradient zone,
where the temperature is lowered below the melting point. This is the area where
the crystallization takes place. The volume of the melt will therefore decrease
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continuously and the growing crystal starts substituting for the melt. This method
is relatively inexpensive and multiple crystal pulling is possible by moving
several crucibles together through the temperature gradient zone of a single
oven [31]. If the simplicity and reliability of the Bridgeman and Stockbarger
methods make them particularly attractive for many applications, these methods
suffer from several drawbacks, such as large variations of the temperature
field parameters during the crystal growth and strong non-uniformities in the
distribution of doping ions, impurities and defects in the crystal.

• Establishing a temperature gradient between the crystal and the melt in an
open crucible by progressive cooling of the melt after seeding or extracting the
growing crystal from melt (Kyropoulos and Czochralski methods, respectively).
In the classical Kyropolos method [32] the entire crystallization process starts
with the seeding and propagates through the melt as a result of a continuous
temperature decrease applied during the process. There is no relative movement
of the seed and the crucible. In the Czochralski method [33] the crystal is pulled
from the melt. The seed is attached to a Platinum rod and put in contact with
the melt in the crucible. The rod or the crucible (sometimes both) are rotating
at a few rpm to maintain a good homogeneity of the melt in contact with the
crystallized phase. The rod is simultaneously pulled up at a speed of typically
1–10 mm/h depending on the crystal. This method is the most widely used for
growing oxide scintillators and several other types of scintillators because of its
potential to grow high quality crystals by concentrating impurities and defects in
the bottom part of the crucible.

More details about crystal engineering techniques are given in ref. [11].
Technologies for the production of crystals are rapidly evolving. The impressive

progress in nanotechnologies in particular open new perspectives for the production
of pre-reacted raw materials of excellent quality with a high uniformity of the grain
sizes. With these new materials, transparent ceramics of heavy scintillators can be
produced (Fig. 3.20), with the advantage over standard crystal growth techniques to
be much more cost effective: not only the scintillator can be produced to its final
shape, saving on the cost of mechanical processing, but also the temperature for
sintering is usually much lower than for standard crystal growth.

The recently developed pulling-down technology from a shape-controlled cap-
illary die gives the possibility to produce elongated crystals with dimensions that
are not accessible using traditional cutting and polishing of bulk crystals grown by
the more standard Czochralski or Bridgeman methods (Fig. 3.21). This approach
has important advantages, such as growing the crystal in the final shape (round,
oval, square, rectangular, hexagonal), very rapidly (several millimeters per minute
instead of millimeters per hour), simultaneous multifibre pulling, increased activator
doping concentration, etc. Excellent quality BGO, YAG and LSO fibers have been
grown with a length of up to 2 m and a diameter between 0.3 and 3 mm. Some
other materials are being studied, in particular from the very interesting perovskite
family: YAP and LuAP [34].
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Fig. 3.20 Transparent ceramics of different heavy scintillators prepared with pre-reacted
nanopowders

Fig. 3.21 The micro-pulling down crystal growth technology (courtesy Fibercryst)

3.5 Table of Commonly Used Scintillators

Inorganic scintillators generally considered for a majority of applications, and in
particular, for particle physics detectors and medical imaging cameras are listed
in Table 3.2 with their most important physico-chemical and optical properties.
A much more exhaustive list of scintillators classified according to their chemical
structure is presented in ref. [11].
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