
Chapter 2
The Interaction of Radiation with Matter

Hans Bichsel and Heinrich Schindler

2.1 Introduction

The detection of charged particles is usually based on their electromagnetic
interactions with the electrons and nuclei of a detector medium. Interaction with
the Coulomb field of the nucleus leads to deflections of the particle trajectory
(multiple scattering) and to radiative energy loss (bremsstrahlung). Since the latter,
discussed in Sect. 2.4.1, is inversely proportional to the particle mass squared, it is
most significant for electrons and positrons.

“Heavy” charged particles (in this context: particles with a mass M exceeding
the electron mass m) passing through matter lose energy predominantly through
collisions with electrons. Our theoretical understanding of this process, which has
been summarised in a number of review articles [1–7] and textbooks [8–13], is based
on the works of some of the most prominent physicists of the twentieth century,
including Bohr [14, 15], Bethe [16, 17], Fermi [18, 19], and Landau [20].

After outlining the quantum-mechanical description of single collisions in terms
of the double-differential cross section d2σ/ (dEdq), where E and q are the
energy transfer and momentum transfer involved in the collision, Sect. 2.3 discusses
algorithms for the quantitative evaluation of the single-differential cross section
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dσ/dE and its moments. The integral cross section (zeroth moment), multiplied
by the atomic density N , corresponds to the charged particle’s inverse mean free
path λ−1 or, in other words, the average number of collisions per unit track length,

λ−1 = M0 = N

Emax∫

Emin

dσ

dE
dE. (2.1)

The stopping power dE/dx, i.e. the average energy loss per unit track length, is
given by the first moment,

− dE

dx
= M1 = N

Emax∫

Emin

E
dσ

dE
dE. (2.2)

The integration limits Emin, max are determined by kinematics. Due to the stochastic
nature of the interaction process, the number of collisions and the sum � of energy
losses along a particle track are subject to fluctuations. Section 2.5 deals with
methods for calculating the probability density distribution f (�, x) for different
track lengths x. The energy transfer from the incident particle to the electrons of
the medium typically results in excitation and ionisation of the target atoms. These
observable effects are discussed in Sect. 2.6.

As a prologue to the discussion of charged-particle collisions, Sect. 2.2 briefly
reviews the principal photon interaction mechanisms in the X-ray and gamma ray
energy range.

Throughout this chapter, we attempt to write all expressions in a way independent
of the system of units (cgs or SI), by using the fine structure constant α ∼ 1/137.
Other physical constants used occasionally in this chapter include the Rydberg
energy Ry = α2mc2/2 ∼ 13.6 eV, and the Bohr radius a0 = h̄c/

(
αmc2

) ∼
0.529 Å. Cross-sections are quoted in barn (1 b = 10−24 cm2).

2.2 Photon Interactions

Photons interact with matter via a range of mechanisms, which can be classified
according to the type of target, and the effect of the interaction on the photon
(absorption or scattering) [9, 21]. At energies beyond the ultraviolet range, the
dominant processes are photoelectric absorption (Sect. 2.2.1), Compton scattering
(Sect. 2.2.2), and pair production (Sect. 2.2.3). As illustrated in Fig. 2.1, photoab-
sorption constitutes the largest contribution to the total cross section at low photon
energies, pair production is the most frequent interaction at high energies, and
Compton scattering dominates in the intermediate energy range.
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Fig. 2.1 The lower curve
shows, as a function of the
atomic number Z of the target
material, the photon energy E

below which photoelectric
absorption is the most
probable interaction
mechanism, while the upper
curve shows the energy above
which pair production is the
most important process. The
shaded region between the
two curves corresponds to the
domain where Compton
scattering dominates. The
cross sections are taken from
the NIST XCOM database
[24]
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Detailed descriptions of these processes can be found, for instance, in Refs. [8–
10, 12, 22, 23]. The focus of this section is on photoabsorption, the description of
which (as will be discussed in Sect. 2.3) is related to that of inelastic charged particle
collisions in the regime of low momentum transfer.

2.2.1 Photoabsorption

In a photoelectric absorption interaction, the incident photon disappears and its
energy is transferred to the target atom (or group of atoms). The intensity I of a
monochromatic beam of photons with energy E thus decreases exponentially as a
function of the penetration depth x in a material,

I (x) = I0e−μx,

where the attenuation coefficient μ is proportional to the atomic density N of the
medium and the photoabsorption cross section σγ ,

μ (E) = Nσγ (E) .

Let us first consider a (dipole-allowed) transition between the ground state |0〉
of an atom and a discrete excited state |n〉 with excitation energy En. The integral
photoabsorption cross section of the line is given by

∫
σ (n)

γ (E) dE = 2π2α (h̄c)2

mc2 fn.
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The dimensionless quantity

fn = 2mc2

3 (h̄c)2 En|〈n|
Z∑

j=1

ri |0〉|2, (2.3)

with the sum extending over the electrons in the target atom, is known as the dipole
oscillator strength (DOS). Similarly, transitions to the continuum are characterised
by the dipole oscillator strength density df/dE, and the photoionisation cross
section σγ (E) is given by

σγ (E) = 2π2α (h̄c)2

mc2

df (E)

dE
. (2.4)

The dipole oscillator strength satisfies the Thomas-Reiche-Kuhn (TRK) sum rule,

∑
n

fn +
∫

dE
df (E)

dE
= Z. (2.5)

For most gases, the contribution of excited states (
∑

fn) to the TRK sum rule is a
few percent of the total, e.g. ∼5% for argon and ∼7% for methane [25, 26].

As can be seen from Fig. 2.2, the photoabsorption cross section reflects the
atomic shell structure. Evaluated atomic and molecular photoabsorption cross
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Fig. 2.2 Photoabsorption cross sections of argon (solid curve) and neon (dashed curve) as a
function of the photon energy E [25, 26]
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sections (both for discrete excitations as well as transitions to the continuum) for
many commonly used gases are given in the book by Berkowitz [25, 26].

At energies sufficiently above the ionisation threshold, the molecular photoab-
sorption cross section is, to a good approximation, given by the sum of the
photoabsorption cross sections of the constituent atoms. A comprehensive com-
pilation of atomic photoabsorption data (in the energy range between ∼30 eV and
30 keV) can be found in Ref. [27]. Calculations for energies between 1 and 100 GeV
are available in the NIST XCOM database [24]. Calculated photoionisation cross
sections for individual shells can be found in Refs. [28–30]. At high energies, i.e.
above the respective absorption edges, photons interact preferentially with inner-
shell electrons. The subsequent relaxation processes (emission of fluorescence
photons and Auger electrons) are discussed in Sect. 2.6.

The response of a solid with atomic number Z to an incident photon of energy
E = h̄ω is customarily described in terms of the complex dielectric function ε(ω) =
ε1(ω) + iε2(ω). The oscillator strength density is related to ε(ω) by

df (E)

dE
= E

2Z

π
(
h̄
p

)2
ε2 (E)

ε2
1 (E) + ε2

2 (E)
= E

2Z

π
(
h̄
p

)2 Im

( −1

ε (E)

)
, (2.6)

where

h̄
p =
√

4πα (h̄c)3 NZ

mc2 (2.7)

is the plasma energy of the material, which depends only on the electron density
NZ. In terms of the dielectric loss function Im (−1/ε), the TRK sum rule reads

∫
dE Im

( −1

ε (E)

)
E = π

2

(
h̄
p

)2
. (2.8)

Compilations of evaluated optical data for semiconductors are available in
Ref. [32], and for solids in general in Ref. [31]. As an example, Fig. 2.3 shows
the dielectric loss function of silicon, a prominent feature of which is the peak at
∼17 eV, corresponding to the plasma energy of the four valence (M-shell) electrons.

2.2.2 Compton Scattering

Compton scattering refers to the collision of a photon with a weakly bound electron,
whereby the photon transfers part of its energy to the electron and is deflected with
respect to its original direction of propagation. We assume in the following that
the target electron is free and initially at rest, which is a good approximation if
the photon energy E is large compared to the electron’s binding energy. Due to
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Fig. 2.3 Dielectric loss
function Im (−1/ε (E)) of
solid silicon [31] as a function
of the photon energy E
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conservation of energy and momentum, the photon energy E′ after the collision and
the scattering angle θ of the photon are then related by

E′ = mc2

1 − cos θ + (1/u)
, (2.9)

where u = E/
(
mc2

)
is the photon energy (before the collision) in units of the

electron rest energy.
The kinetic energy T = E − E′ imparted to the electron is largest for a head-

on collision (θ = π ) and the energy spectrum of the recoil electrons consequently
exhibits a cut-off (Compton edge) at

Tmax = E
2u

1 + 2u
.

The total cross section (per electron) for the Compton scattering of an unpo-
larised photon by a free electron at rest, derived by Klein and Nishina in 1929 [33],
is given by

σ (KN) = 2π

(
αh̄c

mc2

)2 (1 + u

u2

[
2 (1 + u)

1 + 2u
− ln (1 + 2u)

u

]
+ ln (1 + 2u)

2u
− 1 + 3u

(1 + 2u)2

)
.

(2.10)

At low energies (u � 1), the Klein-Nishina formula (2.10) is conveniently
approximated by the expansion [34]

σ (KN) = 8π

3

(
αh̄c

mc2

)2

︸ ︷︷ ︸
Thomson cross section

1

(1 + 2u)2

(
1 + 2u + 6

5
u2 + . . .

)
,
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while at high energies (u � 1) the approximation [8, 10, 22]

σ (KN) ∼ π

(
αh̄c

mc2

)2 1

u

(
ln (2u) + 1

2

)

can be used.
The angular distribution of the scattered photon is given by the differential cross

section

dσ (KN)

d (cos θ)
= π

(
αh̄c

mc2

)2 [ 1

1 + u (1 − cos θ)

]2 (1 + cos2 θ

2

)

×
(

1 + u2 (1 − cos θ)2(
1 + cos2 θ

)
[1 + u (1 − cos θ)]

)
,

which corresponds to a kinetic energy spectrum [22]

dσ (KN)

dT
= π

(
αh̄c

mc2

)2 1

u2mc2

(
2 +

(
T

E − T

)2 [ 1

u2 + E − T

E
− 2 (E − T )

uT

])

of the target electron.
The cross section for Compton scattering off an atom scales roughly with the

number of electrons in the atom and, assuming that the photon energy is large
compared to the atomic binding energies, may be approximated by

σ (Compton) ∼ Zσ(KN).

Methods for including the effects of the binding energy and the internal motion of
the orbital electrons in calculations of atomic Compton scattering cross sections are
discussed, for instance, in Ref. [35].

2.2.3 Pair Production

For photon energies exceeding 2mc2, an interaction mechanism becomes possible
where the incoming photon disappears and an electron-positron pair, with a total
energy equal to the photon energy E, is created. Momentum conservation requires
this process, which is closely related to bremsstrahlung (Sect. 2.4.1), to take place in
the electric field of a nucleus or of the atomic electrons. In the latter case, kinematic
constraints impose a threshold of E > 4mc2.
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At high photon energies, the electron-positron pair is emitted preferentially in
the forward direction and the absorption coefficient due to pair production can be
approximated by

μ = Nσ(pair production) = 7

9

1

X0
,

where X0 is a material-dependent parameter known as the radiation length (see
Sect. 2.4.1). More accurate expressions are given in Ref. [8]. Tabulations of cal-
culated pair-production cross sections can be found in Ref. [36] and are available
online [24].

2.3 Interaction of Heavy Charged Particles with Matter

The main ingredient for computing the energy loss of an incident charged particle
due to interactions with the electrons of the target medium is the single-differential
cross section with respect to the energy transfer E in a collision. In this section, we
discuss the calculation of dσ/dE and its moments for “fast”, point-like particles.
To be precise, we consider particles with a velocity that is large compared to the
velocities of the atomic electrons, corresponding to the domain of validity of the
first-order Born approximation.

In the limit where the energy transfer E is large compared to the atomic binding
energies, dσ/dE approaches the cross section for scattering off a free electron. For
a spin-zero particle with charge ze and speed βc, the asymptotic cross section (per
electron) towards large energy transfers is given by [8]

dσ

dE
= 2πz2 (αh̄c)2

mc2β2

1

E2︸ ︷︷ ︸
Rutherford cross section

(
1 − β2 E

Emax

)
= dσR

dE

(
1 − β2 E

Emax

)
. (2.11)

Similar expressions have been derived for particles with spin 1 and spin 1/2 [8]. The
maximum energy transfer is given by the kinematics of a head-on collision between
a particle with mass M and an electron (mass m) at rest,

Emax = 2mc2β2γ 2
(

1 + 2γ
m

M
+
(m

M

)2
)−1

, (2.12)

which for M � m becomes Emax ∼ 2mc2β2γ 2.
These so-called “close” or “knock-on” collisions, in which the projectile interacts

with a single atomic electron, contribute a significant fraction (roughly half) to the
average energy loss of a charged particle in matter but are rare compared to “distant”
collisions in which the particle interacts with the atom as a whole or with a group of



2 The Interaction of Radiation with Matter 13

atoms. For an accurate calculation of dσ/dE, the electronic structure of the target
medium therefore needs to be taken into account.

In the non-relativistic first-order Born approximation, the transition of an atom
from its ground state to an excited state |n〉 involving a momentum transfer q is
characterised by the matrix element (inelastic form factor)

Fn0 (q) = 〈n|
Z∑

j=1

exp

(
i

h̄
q · rj

)
|0〉,

which is independent of the projectile. The differential cross section with respect
to the recoil parameter Q = q2/ (2m), derived by Bethe in 1930 [16], is given by
[1–3, 16]

dσn

dQ
= 2πz2 (αh̄c)2

mc2β2

1

Q2 |Fn0 (q)|2 = 2πz2 (αh̄c)2

mc2β2

fn (q)

QEn

,

where fn (q) denotes the generalised oscillator strength (GOS). In the limit q → 0
it becomes the dipole oscillator strength fn discussed in Sect. 2.2.1. The double-
differential cross section for transitions to the continuum (i.e. ionisation) is given
by

d2σ

dEdQ
= 2πz2 (αh̄c)2

mc2β2

1

QE

df (E, q)

dE
, (2.13)

where df (E, q) /dE is the generalised oscillator strength density. The GOS is
constrained by the Bethe sum rule [2, 16] (a generalisation of the TRK sum rule),

∑
n

fn (q) +
∫

dE
df (E, q)

dE
= Z, ∀q. (2.14)

Closed-form expressions for the generalised oscillator strength (density) exist
only for very simple systems such as the hydrogen atom (Fig. 2.4). Numerical
calculations are available for a number of atoms and molecules (see e.g. Ref. [37]).
A prominent feature of the generalised oscillator strength density is the so-called
“Bethe ridge”: at high momentum transfers df (E, q) /dE is concentrated along
the free-electron dispersion relation Q = E.

In order to calculate dσ/dE, we need to integrate the double-differential cross-
section over Q,

dσ

dE
=

Qmax∫

Qmin

dQ
d2σ

dEdQ
, Qmin ∼ E2

2mβ2c2
. (2.15)
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Fig. 2.4 Generalised
oscillator strength density
df (E, q) /dE of atomic
hydrogen [2, 3, 16], for
transitions to the continuum

For this purpose, it is often sufficient to use simplified models of the generalised
oscillator strength density, based on the guidelines provided by model systems like
the hydrogen atom, and using (measured) optical data in the low-Q regime.

Equation (2.13) describes the interaction of a charged particle with an isolated
atom, which is a suitable approximation for a dilute gas. In order to extend it to
dense media and to incorporate relativistic effects, it is convenient to use a semi-
classical formalism [19, 38]. In this approach, which can be shown to be equivalent
to the first-order quantum mechanical result, the response of the medium to the
incident particle is described in terms of the complex dielectric function.

2.3.1 Dielectric Theory

Revisiting the energy loss of charged particles in matter from the viewpoint of
classical electrodynamics, we calculate the electric field of a point charge ze moving
with a constant velocity βc through an infinite, homogeneous and isotropic medium,
that is we solve Maxwell’s equations

∇ · B = 0 , ∇ × E = −1

c

∂B
∂t

,

∇ × B = 1

c

∂D
∂t

+ 4π

c
j , ∇ · D = 4πρ,

for source terms

ρ = zeδ3 (r − βct) , j = βcρ.
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The perturbation due to the moving charge is assumed to be weak enough such
that there is a linear relationship between the Fourier components of the electric
field E and the displacement field D,

D (k, ω) = ε (k, ω) E (k, ω) ,

where ε (k, ω) = ε1 (k, ω) + iε2 (k, ω) is the (generalized) complex dielectric
function.

The particle experiences a force zeE (r = βct, t) that slows it down, and the
stopping power is given by the component of this force parallel to the particle’s
direction of motion,

dE

dx
= zeE · β

β
.

Adopting the Coulomb gauge k ·A = 0, one obtains after integrating over the angles
(assuming that the dielectric function ε is isotropic),

dE

dx
= −2z2e2

β2π

∫
dω

∫
dk

×
[

ω

kc2
Im

( −1

ε (k, ω)

)
+ ωk

(
β2 − ω2

k2c2

)
Im

(
1

−k2c2 + ε (k, ω) ω2

)]
.

(2.16)

The first term in the integrand represents the non-relativistic contribution to the
energy loss which we would have obtained by considering only the scalar potential
φ. It is often referred to as the longitudinal term. The second term, known as the
transverse term, originates from the vector potential A and incorporates relativistic
effects.

On a microscopic level, the energy transfer from the particle to the target medium
proceeds through discrete collisions with energy transfer E = h̄ω and momentum
transfer q = h̄k. Comparing Eq. (2.2) with the macroscopic result (2.16), one
obtains

d2σ

dEdq
= 2z2α

β2πh̄cN

×
[

1

q
Im

( −1

ε (q,E)

)
+ 1

q

(
β2 − E2

q2c2

)
Im

(
1

−1 + ε (q, E) E2/
(
q2c2

)
)]

.

(2.17)
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The loss function Im (−1/ε (q,E)) and the generalized oscillator strength density
are related by

df (E, q)

dE
= E

2Z

π
(
h̄
p

)2 Im

( −1

ε (q,E)

)
. (2.18)

Using this identity, we see that the longitudinal term (first term) in Eq. (2.17) is
equivalent to the non-relativistic quantum mechanical result (2.13). As is the case
with the generalized oscillator strength density, closed-form expressions for the
dielectric loss function Im (−1/ε (q,E)) can only be derived for simple systems
like the ideal Fermi gas [39, 40]. In the following (Sects. 2.3.2 and 2.3.3), we discuss
two specific models of Im (−1/ε (q,E)) (or, equivalently, df (E, q) /dE).

2.3.2 Bethe-Fano Method

The relativistic version of Eq. (2.13) or, in other words, the equivalent of Eq. (2.17)
in oscillator strength parlance, is [1, 41]

d2σ

dEdQ
= 2πz2 (αh̄c)2

mc2β2
Z

⎡
⎢⎣ |F (E, q)|2

Q2
(

1 + Q

2mc2

)2
+ |βt · G (E, q)|2[

Q
(

1 + Q

2mc2

)
− E2

2mc2

]2

⎤
⎥⎦
(

1 + Q

mc2

)

(2.19)

where Q
(
1 + Q/2mc2

) = q2/2m, β t is the component of the velocity perpendic-
ular to the momentum transfer q, and F (E, q) and G (E, q) represent the matrix
elements for longitudinal and transverse excitations.

Depending on the type of target and the range of momentum transfers involved,
we can use Eqs. (2.13), (2.19) or (2.17) as a starting point for evaluating the single-
differential cross section. Following the approach described by Fano [1], we split
dσ/dE in four parts. For small momentum transfers (Q < Q1 ∼ 1 Ry), we can use
the non-relativistic expression (2.13) for the longitudinal term and approximate the
generalised oscillator strength density by its dipole limit,

dσ (1)

dE
= 2πz2 (αh̄c)2

mc2β2

1

E

df (E)

dE

Q1∫

Qmin

dQ

Q
= 2πz2 (αh̄c)2

mc2β2

1

E

df (E)

dE
ln

Q12mc2β2

E2
.

(2.20)

In terms of the dielectric loss function, one obtains

dσ (1)

dE
= z2α

β2πh̄cN
Im

( −1

ε (E)

)
ln

Q12mc2β2

E2 .
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For high momentum transfers (Q > Q2 ∼ 30 keV), i.e. for close collisions where
the binding energy of the atomic electrons can be neglected, the longitudinal and
transverse matrix elements are strongly peaked at the Bethe ridge Q = E. Using [1]

|F(E, q)|2 ∼ 1 + Q/
(
2mc2

)
1 + Q/

(
mc2

) δ(E − Q),

|β t · G (E, q)|2 ∼ β2
t

1 + Q/
(
2mc2

)
1 + Q/

(
mc2

) δ(E − Q)

and

β2
t = 1

1 + Q/
(
2mc2

) −
(

1 − β2
)

one obtains (for longitudinal and transverse excitations combined),

dσ (h)

dE
= 2πz2 (αh̄c)2

mc2β2

Z

E

(
1 − E

(
1 − β2

)
2mc2

)
. (2.21)

In the intermediate range, Q1 < Q < Q2, numerical calculations of the generalised
oscillator strength density are used. An example of df (E, q) /dE is shown in
Fig. 2.5. Since the limits Q1,Q2 do not depend on the particle velocity, the integrals

dσ (2)

dE
= 2πz2 (αh̄c)2

mc2β2

1

E

Q2∫

Q1

dQ

Q

df (E, q)

dE

need to be evaluated only once for each value of E. The transverse contribution can
be neglected1 [41].

The last contribution, described in detail in Ref. [1], is due to low-Q transverse
excitations in condensed matter. Setting Im (−1/ε (E, q)) = Im (−1/ε (E)) in the
second term in Eq. (2.17) and integrating over q gives

dσ (3)

dE
= z2α

β2πNh̄c

×
[

Im

( −1

ε (E)

)
ln

1∣∣1 − β2ε (E)
∣∣ +

(
β2 − ε1 (E)

|ε (E)|2
)(

π

2
− arctan

1 − β2ε1 (E)

β2ε2 (E)

)]
.

(2.22)

1For particle speeds β < 0.1, this approximation will cause errors, especially for M0.



18 H. Bichsel and H. Schindler
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Fig. 2.5 Generalized oscillator strength density for Si for an energy transfer E = 48 Ry to the
2p-shell electrons [41–44], as function of ka0 (where k2a2

0 = Q/Ry). Solid line: calculated with
Herman-Skilman potential, dashed line: hydrogenic approximation [45, 46]. The horizontal and
vertical line define the FVP approximation (Sect. 2.3.3)

We will discuss this term in more detail in Sect. 2.3.3. The total single-differential
cross section,

dσ

dE
= dσ (1)

dE
+ dσ (2)

dE
+ dσ (3)

dE
+ dσ (h)

dE
,

is shown in Fig. 2.6 for particles with βγ = 4 in silicon which, at present, is the
only material for which calculations based on the Bethe-Fano method are available.

2.3.3 Fermi Virtual-Photon (FVP) Method

In the Bethe-Fano algorithm discussed in the previous section, the dielectric
function ε (q,E) was approximated at low momentum transfer by its optical limit
ε (E). In the Fermi virtual-photon (FVP) or Photoabsorption Ionisation (PAI)
model [6, 47, 48], this approximation is extended to the entire domain q2 <

2mE. Guided by the shape of the hydrogenic GOS, the remaining contribution to
Im (−1/ε (q,E)) required to satisfy the Bethe sum rule

∞∫

0

E Im

( −1

ε (q,E)

)
dE = π

2

(
h̄
p

)2 ∀q, (2.23)
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Fig. 2.6 Differential cross section dσ/dE, divided by the Rutherford cross section dσR/dE, for
particles with βγ = 4 in silicon, calculated with two methods. The abscissa is the energy loss E

in a single collision. The Rutherford cross section is represented by the horizontal line at 1.0. The
solid line was obtained [41] with the Bethe-Fano method (Sect. 2.3.2). The cross section calculated
with the FVP method (Sect. 2.3.3) is shown by the dotted line. The functions all extend to Emax ∼
16 MeV. The moments are M0 = 4 collisions/μm and M1 = 386 eV/ μm (Table 2.2)

is attributed to the scattering off free electrons (close collisions). This term is
thus of the form Cδ

(
E − q2/ (2m)

)
, with the factor C being determined by the

normalisation (2.23),

C = 1

E

E∫

0

E′Im
( −1

ε (E′)

)
dE′.

Combining the two terms, the longitudinal loss function becomes

Im

( −1

ε (q,E)

)
= Im

( −1

ε (E)

)
�

(
E − q2

2m

)
+

δ
(
E − q2

2m

)

E

E∫

0

E′Im
( −1

ε (E′)

)
dE′.

In the transverse term, the largest contribution to the integral comes from the
region E ∼ qc/

√
ε, i.e. from the vicinity of the (real) photon dispersion relation,

and one consequently approximates ε (q,E) by ε (E) throughout.
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Fig. 2.7 Differential cross section dσ/dE (scaled by the energy loss E) calculated using the FVP
algorithm, for particles with βγ = 4 (left) and βγ = 100 (right) in argon (at atmospheric pressure,
T = 20 ◦C). The upper, unshaded area corresponds to the first term in Eq. (2.24), i.e. to the
contribution from distant longitudinal collisions. The lower area corresponds to the contribution
from close longitudinal collisions, given by the second term in Eq. (2.24). The intermediate area
corresponds to the contribution from transverse collisions

The integration over q can then be carried out analytically and one obtains for
the single-differential cross section dσ/dE

dσ

dE
= z2α

β2πNh̄c

⎡
⎣Im

( −1

ε (E)

)
ln

2mc2β2

E
+ 1

E2

E∫

0

E′Im
( −1

ε (E′)

)
dE′
⎤
⎦+ z2α

β2πNh̄c

×
[

Im

( −1

ε (E)

)
ln

1∣∣1 − β2ε (E)
∣∣ +

(
β2 − ε1 (E)

|ε (E)|2
)(

π

2
− arctan

1 − β2ε1 (E)

β2ε2 (E)

)]

(2.24)

The relative importance of the different terms in Eq. (2.24) is illustrated in Fig. 2.7.
The first two terms describe the contributions from longitudinal distant and close
collisions. The contribution from transverse collisions (third and fourth term) is
identical to dσ (3)/dE in the Bethe-Fano algorithm. As can be seen from Fig. 2.7, its
importance grows with increasing βγ . The third term incorporates the relativistic
density effect, i.e. the screening of the electric field due to the polarisation of the
medium induced by the passage of the charged particle. In the transparency region
ε2 (E) = 0, the fourth term can be identified with the cross section for the emission
of Cherenkov photons. It vanishes for β < 1/

√
ε; above this threshold it becomes

dσ (C)

dE
= α

Nh̄c

(
1 − 1

β2ε

)
∼ α

Nh̄c
sin2 θC,
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where

cos θC = 1

β
√

ε
.

Cherenkov detectors are discussed in detail in Chap. 7 of this book.
In the formulation of the PAI model by Allison and Cobb [6], the imaginary part

ε2 of the dielectric function is approximated by the photoabsorption cross section
σγ ,

ε2 (E) ∼ Nh̄c

E
σγ (E) (2.25)

and the real part ε1 is calculated from the Kramers-Kronig relation

ε1 (E) − 1 = 2

π
P

∞∫

0

E′ε2
(
E′)

E′2 − E2
dE′.

In addition, the approximation |ε (E)|2 ∼ 1 is used. These are valid approximations
if the refractive index2 is close to one (n ∼ 1) and the attenuation coefficient
k is small. For gases, this requirement is usually fulfilled for energies above the
ionisation threshold.

Requiring only optical data as input, the FVP/PAI model is straightforward to
implement in computer simulations. In the HEED program [49], the differential
cross section dσ/dE is split into contributions from each atomic shell, which
enables one to simulate not only the energy transfer from the projectile to the
medium but also the subsequent atomic relaxation processes (Sect. 2.6). The
GEANT4 implementation of the PAI model is described in Ref. [50]. For reasons of
computational efficiency, the photoabsorption cross section σγ (E) is parameterised
as a fourth-order polynomial in 1/E. FVP calculations for Ne and Ar/CH4 (90:10)
are discussed in Ref. [51].

2.3.4 Integral Quantities

For validating and comparing calculations of the differential cross section, it is
instructive to consider the moments Mi of Ndσ/dE, in particular the inverse mean
free path M0 and the stopping power M1.

2The complex refractive index and the dielectric function are related by n + ik = √
ε.
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2.3.4.1 Inverse Mean Free Path

In the relativistic first-order Born approximation, the inverse mean free path for
ionising collisions has the form [1, 2]

M0 = 2πz2 (αh̄c)2

mc2β2
N
[
M2
(

ln
(
β2γ 2

)
− β2

)
+ C

]
, (2.26)

where

M2 =
∫

1

E

df (E)

dE
dE, C = M2

(
ln c̃ + ln

4

α2

)
,

and c̃ is a material-dependent parameter that can be calculated from the generalised
oscillator strength density. Calculations can be found, for example, in Refs. [53, 54].
As in the Bethe stopping formula (2.28) discussed below, a correction term can be
added to Eq. (2.26) to account for the density effect [55].

The inverse mean free path for dipole-allowed discrete excitations is given by [2]

M
(n)
0 = 2πz2 (αh̄c)2

mc2β2 N
fn

En

[
ln
(
β2γ 2

)
− β2 + ln c̃n + ln

4

α2

]
.

We can thus obtain a rough estimate of the relative frequencies of excitations and
ionising collisions from optical data. In argon, for instance, the ratio of

∑
fn/En

and M2 is ∼20% [25].
For gases, M0 can be determined experimentally by measuring the inefficiency

of a gas-filled counter operated at high gain (“zero-counting method”). Results
(in the form of fit parameters M2, C) from an extensive series of measurements,
using electrons with kinetic energies between 0.1 and 2.7 MeV, are reported in
Ref. [52]. Other sets of experimental data obtained using the same technique can
be found in Refs. [56, 57]. Table 2.1 shows a comparison between measured and
calculated values (using the FVP algorithm) of M0 for particles with βγ = 3.5
at a temperature of 20 ◦C and atmospheric pressure. The inverse mean free path is

Table 2.1 Measurements
[52] and calculations (using
the FVP algorithm as
implemented in HEED [49])
of M0 for βγ = 3.5 at
T = 20 ◦C and atmospheric
pressure

M0 [cm−1]

Gas Measurement FVP

Ne 10.8 10.5

Ar 23.0 25.4

Kr 31.5 31.0

Xe 43.2 42.1

CO2 34.0 34.0

CF4 50.9 51.8

CH4 24.6 29.4

iC4H10 83.4 90.9
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Fig. 2.8 Inverse ionisation mean free path (left) and stopping power (right) of heavy charged
particles in silicon as a function of βγ , calculated using the Bethe-Fano algorithm (solid line) and
the FVP model (dashed line). The two stopping power curves are virtually identical

sensitive to the detailed shape of the differential cross section dσ/dE at low energies
and, consequently, to the optical data used.

Figure 2.8(left) shows M0 in solid silicon as a function of βγ , calculated using
the Bethe-Fano and FVP algorithms. The difference between the results is ∼6 −
8%, as can also be seen from Table 2.2. Owing to the more detailed (and more
realistic) modelling of the generalised oscillator strength density at intermediate Q,
the Bethe-Fano algorithm can be expected to be more accurate than the FVP method.

2.3.4.2 Stopping Power

Let us first consider the average energy loss of a non-relativistic charged particle in
a dilute gas, with the double-differential cross section given by Eq. (2.13),

−dE

dx
= 2πz2 (αh̄c)2

mc2β2 N

Emax∫

Emin

dE

Qmax∫

Qmin

dQ

Q

df (E, q)

dE
.

As an approximation, we assume that the integrations over Q and E can be
interchanged and the integration limits Qmin,Qmax (which depend on E) be
replaced by average values Qmin = I 2/

(
2mβ2c2

)
,Qmax = Emax [58]. Using the

Bethe sum rule (2.23), we then obtain

−dE

dx
= 2πz2 (αh̄c)2

mc2β2 NZ ln
2mc2β2Emax

I 2 ,



24 H. Bichsel and H. Schindler

where the target medium is characterised by a single parameter: the “mean
ionisation energy” I , defined by

ln I = 1

Z

∫
dE ln E

df (E)

dE

in terms of the dipole oscillator strength density, or

ln I = 2

π
(
h̄
p

)2
∫

dE E Im

( −1

ε (E)

)
ln E. (2.27)

in terms of the dielectric loss function.
In the relativistic case, one finds the well-known Bethe stopping formula

− dE

dx
= 2πz2 (αh̄c)2

mc2β2
NZ

[
ln

2mc2β2γ 2Emax

I 2
− 2β2 − δ

]
, (2.28)

where δ is a correction term accounting for the density effect [59].
Sets of stopping power tables for protons and alpha particles are available

in ICRU report 49 [60] and in the PSTAR and ASTAR online databases [61].
Tables for muons are given in Ref. [62]. These tabulations include stopping power
contributions beyond the first-order Born approximation, such as shell corrections
[42, 45, 46] and the Barkas-Andersen effect [63–65].

The stopping power in silicon obtained from the Bethe-Fano algorithm
(Sect. 2.3.2) has been found to agree with measurements within ±0.5% [41]. As
can be seen from Table 2.2 and Fig. 2.8, FVP and Bethe-Fano calculations for M1
in silicon are in close agreement, with differences <1%.

In addition to M0,M1, Table 2.2 also includes the most probable value of the
energy loss spectrum in an 8 μm thick layer of silicon. For thin absorbers, as will be
discussed in Sect. 2.5, the stopping power dE/dx is not a particularly meaningful
quantity for characterising energy loss spectra. Because of the asymmetric shape of
the differential cross section dσ/dE, the most probable value �p of the energy loss
distribution is typically significantly smaller than the average energy loss 〈�〉 =
M1x.

2.4 Electron Collisions and Bremsstrahlung

The formalism for computing the differential cross section dσ/dE for collisions
of heavy charged particles with the electrons of the target medium, discussed in
Sect. 2.3, is also applicable to electron and positron projectiles, except that the
asymptotic close-collision cross section (2.11) is replaced by the Møller and Bhabha
cross sections respectively [8, 66]. When evaluating the inverse mean free path M0
or the stopping power M1, we further have to take into account that the energy loss



2 The Interaction of Radiation with Matter 25

Table 2.2 Integral properties of collision cross sections for Si calculated with Bethe-Fano (B-F)
and FVP algorithms

M0 [μm−1] M1 [eV/μm] �p/x [eV/μm]

βγ B-F FVP B-F FVP B-F FVP

0.316 30.325 32.780 2443.72 2465.31 1677.93 1722.92

0.398 21.150 22.781 1731.66 1745.57 1104.90 1135.68

0.501 15.066 16.177 1250.93 1260.18 744.60 765.95

0.631 11.056 11.840 928.70 935.08 520.73 536.51

0.794 8.433 9.010 716.37 720.98 381.51 394.03

1.000 6.729 7.175 578.29 581.79 294.54 304.89

1.259 5.632 5.996 490.84 493.65 240.34 249.25

1.585 4.932 5.245 437.34 439.72 207.15 215.02

1.995 4.492 4.771 406.59 408.70 187.39 194.60

2.512 4.218 4.476 390.95 392.89 176.30 183.06

3.162 4.051 4.296 385.29 387.12 170.70 177.16

3.981 3.952 4.189 386.12 387.89 168.59 174.81

5.012 3.895 4.127 391.08 392.80 168.54 174.63

6.310 3.865 4.094 398.54 400.24 169.62 175.60

7.943 3.849 4.076 407.39 409.07 171.19 177.10

10.000 3.842 4.068 416.91 418.58 172.80 178.66

12.589 3.839 4.064 426.63 428.29 174.26 180.06

15.849 3.839 4.063 436.30 437.96 175.45 181.24

19.953 3.839 4.063 445.79 447.44 176.36 182.14

25.119 3.840 4.063 455.03 456.68 177.04 182.79

31.623 3.840 4.064 463.97 465.63 177.53 183.28

39.811 3.841 4.064 472.61 474.27 177.86 183.61

50.119 3.842 4.065 480.93 482.58 178.09 183.83

63.096 3.842 4.065 488.90 490.55 178.22 183.95

79.433 3.842 4.065 496.52 498.17 178.32 184.06

100.000 3.842 4.066 503.77 505.42 178.38 184.10

125.893 3.843 4.066 510.66 512.31 178.43 184.15

158.489 3.843 4.066 517.20 518.84 178.44 184.17

199.526 3.843 4.066 523.40 525.05 178.47 184.18

251.189 3.843 4.066 529.29 530.94 178.48 184.18

316.228 3.843 4.066 534.91 536.56 178.48 184.21

398.107 3.843 4.066 540.28 541.92 178.48 184.22

501.187 3.843 4.066 545.43 547.08 178.48 184.22

630.958 3.843 4.066 550.40 552.05 178.48 184.22

794.329 3.843 4.066 555.21 556.86 178.48 184.22

1000.000 3.843 4.066 559.89 561.54 178.48 184.22

The third column shows the most probable value �p of the energy loss spectrum divided by the
track length x, for x = 8 μm. The minimum values for M0 are at βγ ∼ 18, for M1 at βγ ∼ 3.2,
for �p at βγ ∼ 5. The relativistic rise for M0 is 0.1%, for M1 it is 45%, for �p it is 6%
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of an electron in an ionising collision is limited to half of its kinetic energy,

Emax = 1

2
mc2 (γ − 1) , (2.29)

as primary and secondary electron are indistinguishable. Stopping power tables for
electrons are available in ICRU report 37 [67] and in the ESTAR database [61].

The other main mechanism by which fast electrons and positrons lose energy
when traversing matter is the emission of radiation (bremsstrahlung) due to
deflections in the electric field of the nucleus and the atomic electrons.

2.4.1 Bremsstrahlung

Let us first consider electron-nucleus bremsstrahlung, the first quantum-mechanical
description of which was developed by Bethe and Heitler [68]. The differential cross
section (per atom) for the production of a bremsstrahlung photon of energy E by an
incident electron of kinetic energy T is given by [8, 68]

dσrad

dE
= 4α3

(
h̄c

mc2

)2

Z2 F (u, T )

E
, (2.30)

where u = E/
(
γmc2

)
denotes the ratio of the photon energy to the projectile

energy. Expressions for the function F (u, T ) are reviewed in Ref. [69] and can be
fairly complex. Amongst other parameters, F (u, T ) depends on the extent to which
the charge of the nucleus is screened by the atomic electrons. In the first-order Born
approximation and in the limit of complete screening, applicable at high projectile
energies, one obtains [8, 68, 69]

F (u) =
(

1 + (1 − u)2 − 2

3
(1 − u)

)
ln

183

Z1/3
+ 1

9
(1 − u) . (2.31)

The theoretical description of electron-electron bremsstrahlung is similar to the
electron-nucleus case, except that the differential cross section is proportional
to Z instead of Z2. To a good approximation, we can include electron-electron
bremsstrahlung in Eq. (2.30) by replacing the factor Z2 by Z (Z + 1).

The inverse mean free path for the emission of a bremsstrahlung photon with
energy E > Ecut is given by

λ−1 = M0 = N

T∫

Ecut

dσrad

dE
dE.
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If we neglect the term (1 − u) /9 in Eq. (2.31), we find for the radiative stopping
power at T � mc2

− dE

dx
= M1 = N

T∫

0

E
dσrad

dE
dE ∼ T

X0
, (2.32)

where the parameter X0, defined by

1

X0
= 4α3

(
h̄c

mc2

)2

NZ (Z + 1) ln
183

Z1/3 , (2.33)

is known as the radiation length. Values of X0 for many commonly used materials
can be found in Ref. [70] and on the PDG webpage [71]. Silicon, for instance, has a
radiation length of X0 ∼ 9.37 cm [71].

Being approximately proportional to the kinetic energy of the projectile, the
radiative stopping power as a function of T increases faster than the average
energy loss due to ionising collisions given by Eq. (2.28). At high energies—
more precisely, above a so-called critical energy (∼38 MeV in case of silicon
[71])—bremsstrahlung therefore represents the dominant energy loss mechanism
of electrons and positrons.

2.5 Energy Losses Along Tracks: Multiple Collisions and
Spectra

Consider an initially monoenergetic beam of identical particles traversing a layer of
material of thickness x. Due to the randomness both in the number of collisions and
in the energy loss in each of the collisions, the total energy loss � in the absorber
will vary from particle to particle. Depending on the use case, the kinetic energy of
the particles, and the thickness x, different techniques for calculating the probability
distribution f (�, x)—known as “straggling function” [72]—can be used.

Our focus in this section is on scenarios where the average energy loss in the
absorber is small compared to the kinetic energy T of the incident particle (as is
usually the case in vertex and tracking detectors), such that the differential cross
section dσ/dE and its moments do not change significantly between the particle’s
entry and exit points in the absorber. The number of collisions n then follows a
Poisson distribution

p (n, x) = 〈n〉n
n! e−〈n〉, (2.34)

with mean 〈n〉 = xM0. The probability f (1) (E) dE for a particle to lose an amount
of energy between E and E + dE in a single collision is given by the normalised
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differential cross section,

f (1) (E) = 1

M0
N

dσ

dE
,

and the probability distribution for a total energy loss � in n collisions is obtained
from n-fold convolution of f (1),

f (n) (�) =
(
f (1) ⊗ f (1) ⊗ · · · ⊗ f (1)

)
︸ ︷︷ ︸

n times

(�) =
∫

dE f (n−1) (� − E) f (1) (E) ,

as illustrated in Figs. 2.9 and 2.10.
The probability distribution for a particle to suffer a total energy loss � over a

fixed distance x is given by [72, 73]

f (�, x) =
∞∑

n=0

p (n, x) f (n) (�) , (2.35)

where f (0) (�) = δ (�). Equation (2.35) can be evaluated in a stochastic manner
(Sect. 2.5.1), by means of direct numerical integration (Sect. 2.5.2), or by using
integral transforms (Sect. 2.5.3).
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Fig. 2.9 Distributions f (n) of the energy loss in n collisions (n-fold convolution of the single-
collision energy loss spectrum) for Ar/CH4 (90:10)
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Fig. 2.10 Distributions f (n) of the energy loss in n collisions for solid silicon. The plasmon peak
at ∼17 eV appears in each spectrum at E ∼ n × 17 eV, and its FWHM is proportional to

√
n. The

structure at ∼2 eV appears at 2 + 17(n − 1) eV, but diminishes with increasing n. For n = 6 (not
shown) the plasmon peak (at 102 eV) merges with the L-shell energy losses at 100 eV, also see
Fig. 2.12

2.5.1 Monte Carlo Method

In a detailed Monte Carlo simulation, the trajectory of a single incident particle is
followed from collision to collision. The required ingredients are the inverse mean
free path M

(i)
0 and the cumulative distribution function,

�(i) (E) = 1

M
(i)
0

E∫

0

N
dσ (i)

dE′ dE′, (2.36)

for each interaction process i (electronic collisions, bremsstrahlung, etc.) to be
taken into account in the simulation. The distance �x between successive collisions
follows an exponential distribution and is sampled according to

�x = − ln r

λ−1 ,

where r ∈ (0, 1] is a uniformly distributed random number and

λ−1 =
∑

i

M
(i)
0
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is the total inverse mean free path. After updating the coordinates of the particle,
the collision mechanism to take place is chosen based on the relative frequencies
M

(i)
0 /λ−1. The energy loss in the collision is then sampled by drawing another

uniform random variate u ∈ [0, 1], and determining the corresponding energy loss
E from the inverse of the cumulative distribution,

E = �−1 (u) .

In general, the new direction after the collision will also have to be sampled from
a suitable distribution. The above procedure is repeated until the particle has left
the absorber. The spectrum f (�, x) is found by simulating a large number of
particles and recording the energy loss � in a histogram. Advantages offered by the
Monte Carlo approach include its straightforward implementation, the possibility of
including interaction mechanisms other than inelastic scattering (bremsstrahlung,
elastic scattering etc.), and the fact that it does not require approximations to the
shape of dσ/dE to be made.

For thick absorbers, detailed simulations can become unpractical due to the large
number of collisions, and the need to update the inverse mean free path M0 and the
cumulative distribution �(E) following the change in velocity of the particle.

In “mixed” simulation schemes, a distinction is made between “hard” collisions
which are simulated individually, and “soft” collisions (e.g. elastic collisions with a
small angular deflection of the projectile, or emission of low-energy bremsstrahlung
photons) the cumulative effect of which is taken into account after each hard
scattering event. Details on the implementation of mixed Monte Carlo simulations
can be found, for example, in the PENELOPE user guide [74].

2.5.2 Convolutions

For short track segments, one can calculate the distributions f (n) explicitly by
numerical integration and construct f (�, x) directly using Eq. (2.35). A compu-
tationally more efficient approach is the absorber doubling method [41, 75], which
proceeds as follows. Consider a step x that is small compared to the mean free path
such that 〈n〉 � 1 (in practice: 〈n〉 < 0.01 [76]). Expanding Eq. (2.35) in powers of
〈n〉 and retaining only constant and linear terms gives

f (E, x) ∼ (1 − 〈n〉) f (0) (E) + 〈n〉f (1) (E) .

The straggling function for a distance 2x is then calculated using

f (�, 2x) =
�∫

0

f (� − E, x) f (E, x) dE.
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This procedure is carried out k times until the desired thickness 2kx is reached.
Because of the tail of f (1) (E) towards large energy transfers, the numerical
convolution is performed on a logarithmic grid. More details of the implementation
can be found in Refs. [75, 76].

2.5.3 Laplace Transforms

In the Laplace domain, Eq. (2.35) becomes

F (s, x) = L{f (�, x)} = e−〈n〉
∞∑

n=0

〈n〉n
n! L{f (1) (�)}n

= exp

⎡
⎣−Nx

∞∫

0

dE
(

1 − e−sE
) dσ

dE

⎤
⎦ .

Following Landau [20], we split the integral in the exponent in two parts,

Nx

∞∫

0

dE
(

1 − e−sE
) dσ

dE
= Nx

E1∫

0

dE
(

1 − e−sE
) dσ

dE
+ Nx

∞∫

E1

dE
(

1 − e−sE
) dσ

dE
,

where E1 is chosen to be large compared to the ionisation threshold while at the
same time satisfying sE1 � 1. For energy transfers exceeding E1, the differential
cross section is assumed to be given by the asymptotic expression for close
collisions (2.11); for E < E1, it is not specified.

Using exp (−sE) ∼ 1 − sE, we obtain for the first term

I1 = Nx

E1∫

0

dE
dσ

dE

(
1 − e−sE

)
∼ Nxs

E1∫

0

dE
dσ

dE
E.

We can therefore evaluate I1 by subtracting the contribution due to energy transfers
between E1 and Emax according to Eq. (2.11) from the total average energy loss
xdE/dx = 〈�〉,

I1 ∼ s〈�〉 − sξ

(
ln

Emax

E1
− β2

)
,

where we have introduced the variable

ξ = x
2πz2 (αh̄c)2 NZ

mc2β2 .
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For evaluating the second integral, we approximate dσ/dE by the Rutherford
cross section dσR/dE ∝ 1/E2. Because of the rapid convergence of the integral
for sE � 1, we further assume that the upper integration limit can be extended to
infinity (instead of truncating dσ/dE at Emax). Integrating by parts and substituting
z = sE yields

I2 = ξ

∞∫

E1

dE
1 − e−sE

E2 = ξ
1 − e−sE1

E1︸ ︷︷ ︸
∼s

+ξs

∞∫

sE1

dz
e−z

z
∼ ξs

⎛
⎜⎝1 +

1∫

sE1

dz

z
− C

⎞
⎟⎠ ,

where C ∼ 0.577215665 is Euler’s constant.3 Combining the two terms I1 and I2,
one obtains

F (s, x) = exp

[
−ξs

(
1 − C + 〈�〉

ξ
− ln sEmax + β2

)]
,

and, applying the inverse Laplace transform,

f (�, x) = L−1{F (s, x)} = 1

ξ
φL (λ) , (2.37)

where

φL (λ) = 1

2π i

c+i∞∫

c−i∞
du eu ln u+λu. (2.38)

is a universal function of the dimensionless variable

λ = � − 〈�〉
ξ

− (1 − C) − β2 − ln
ξ

Emax
.

The maximum of φL(λ) is located at λ ∼ −0.222782 and the most probable energy
loss is, consequently, given by

�p ∼ 〈�〉 + ξ
(

0.2 + β2 + ln κ
)

, (2.39)

3

−C =
1∫

0

dz
e−z − 1

z
+

∞∫

1

dz
e−z

z
= −0.577215665 . . .
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where κ = ξ/Emax. The full width at half maximum (FWHM) of the Landau
distribution4 (2.37) is approximately 4.02ξ .

A somewhat unsatisfactory aspect of φL (λ) is that its mean is undefined (a con-
sequence of allowing arbitrarily large energy transfers E > Emax). This deficiency
was overcome by Vavilov [77] who, taking account of the kinematically allowed
maximum energy transfer Emax and using the differential cross section (2.11) in I2,
obtained

f (�, x) = 1

ξ
φV (λ) , φV (λ) = 1

2π i
eκ
(
1+β2C

) c+i∞∫

c−i∞
exp (ψ (u) + λu) du,

where

ψ (u) = u ln κ +
(
u + β2κ

)
⎛
⎜⎝

∞∫

u/κ

e−t

t
dt + ln

u

κ

⎞
⎟⎠− κe−u/κ .

For small values of κ (κ < 0.01 [77]) the Vavilov distribution tends to the
Landau distribution, while for κ � 1 it approaches a Gaussian distribution with
σ 2 = ξEmax

(
1 − β2/2

)
[78]. Algorithms for the numerical evaluation of φL and

φV and for drawing random numbers from these distributions are discussed e.g. in
Refs. [78–81] and are implemented in ROOT [82].

Attempts have been made [83, 84] to improve the Landau-Vavilov method with
respect to the treatment of distant collisions by including the second order term in
the expansion of exp (−sE) in I1. The results are akin to convolving φL or φV with
a Gaussian distribution (expressions for estimating the standard deviation σ of the
Gaussian are reviewed in Ref. [41]).

2.5.4 Examples

Let us first consider track segments for which the projectile suffers on average only
tens of collisions. At the minimum of M0, 〈n〉 = 10 corresponds to a track length
x ∼ 4 mm for argon (at atmospheric pressure, T = 20 ◦C) and x ∼ 2 μm for
silicon (Tables 2.1 and 2.2). As can be seen from Figs. 2.11 and 2.12, the features
of the differential cross section dσ/dE are clearly visible in the straggling functions
f (�, x). These spectra cannot be described by a Landau distribution (or variants
thereof) and need to be calculated using Monte Carlo simulation or numerical
convolution.

4In high-energy physics parlance, the term “Landau distribution” is sometimes used for energy loss
spectra f (�, x) in general. In this chapter, it refers only to the distribution given by Eq. (2.37).



34 H. Bichsel and H. Schindler

Δ [eV]

f [
Δ]

1 mm

2 mm

1.0

0.8

0.6

0.4

0.2

0.0
10 20 50 100 200 500 1000 2000

3 mm 4 mm

5 mm

c

d

Fig. 2.11 Straggling functions for singly charged particles with βγ = 4.48 traversing segments
of length x = 1 . . . 5 mm in Ar. The inverse mean free path M0 is 30 collisions/cm. The functions
are normalised to unity at the most probable value. The broad peak at ∼17 eV is due to single
collisions, see Fig. 2.9. For two collisions it broadens and shifts to about 43 eV, marked c, and for
n = 3 it can be seen at d. It may be noted that the peak at 11.7 eV (if the function is normalised
to unit area) is exactly proportional to 〈n〉 exp (−〈n〉), as expected from Eq. (2.35). Energy losses
to L-shell electrons of Ar (with a binding energy of ∼250 eV) appear at e, for x = 1 mm they
have an amplitude of 0.04. For x > 2 mm, peak c disappears, and peak d becomes the dominant
contribution defining the most probable energy loss �p. The buildup for peak e at 440–640 eV is
the contribution from L-shell collisions. It appears roughly at 250 eV+�p. The inverse mean free
path for collisions with E > 250 eV is only 1.7 collisions/cm, thus the amplitude of the peak e is
roughly proportional to x. The Bethe mean energy loss is 250 eV/mm

With increasing number of collisions, the detailed features of the differential
cross section become “washed out” and the energy loss spectra f (�, x) tend
to the Landau shape but are typically broader, as shown in Figs. 2.13 and 2.14.
Reasonable agreement with measured energy loss spectra for thin absorbers can
often be achieved by fit functions based on the convolution of a Landau/Vavilov
distribution and a Gaussian distribution. For a predictive calculation of f (�, x),
however, numerical convolution or a Monte Carlo simulation are usually needed.

2.5.5 Methods for Thick Absorbers

In order to compute the energy loss distribution for a layer of material in which
the kinetic energies T of the traversing particles change considerably (i.e. by
more than 5–10% [86]), we divide the absorber in segments of length x that are
sufficiently small such that the straggling function f (�, x) can be calculated using
the methods for thin absorbers described above. Let φ (y, T ) be the distribution of
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Fig. 2.12 Straggling in 1 μm of Si (〈n〉 = 4) for particles with βγ = 2.1, compared to the
Landau function (dashed line). The Bethe mean energy loss is 〈�〉 = 400 eV. Measured straggling
functions of this type are given in Ref. [85]
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Fig. 2.13 Straggling function f (�) for particles with βγ = 3.6 traversing 1.2 cm of Ar gas
(〈n〉 = 36) calculated using the convolution method (solid line) compared to the Landau
distribution (dashed line). Parameters describing f (�) are the most probable energy loss �p, i.e.
the position of the maximum of the straggling function, at 1371 eV, and the full width at half
maximum (FWHM) w = 1463 eV. The Bethe mean energy loss is 〈�〉 = 3044 eV. The peak of
the Landau function is at 1530 eV
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Fig. 2.14 Relative width
(full width at half maximum
w divided by the most
probable value �p) of the
straggling spectrum f (�, x)

as function of the absorber
thickness x, for particles with
βγ ∼ 3.16 in silicon. The
dashed line corresponds to
the relative width of the
Landau distribution. Circles
represent results of a Monte
Carlo simulation using the
Bethe-Fano differential cross
section
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kinetic energies at a distance y in the absorber. If f (�, x) is known for all T , the
spectrum of kinetic energies at y + x can be calculated using

φ (y + x, T ) =
∫

φ (y, T + �)f (�, x; T + �) d�.

Scaling relations, discussed in Ref. [51], can be used to limit the number of thin-
absorber distributions f (�, x; T ) that need to be tabulated.

In a “condensed history” Monte Carlo simulation [87], the energy loss spectrum
is calculated stochastically by sampling the energy loss over a substep x from a
suitable thin-absorber distribution (e.g. a Vavilov function), and updating the kinetic
energy T of the projectile after each substep.

2.6 Energy Deposition

Leaving the emission of Cherenkov radiation and other collective effects aside,
charged-particle collisions with electrons in matter result in the promotion of one of
the electrons in the target medium to a bound excited state or to the continuum. Both
effects (excitation and ionisation) can be exploited for particle detection purposes.
In scintillators, discussed in Chap. 3 of this book, part of the energy transferred
to excitations is converted to light. Detectors based on ionisation measurement in
gases and semiconductors are discussed in Chaps. 4 and 5. In the following we
briefly review the main mechanisms determining the number of electron-ion pairs
(in gases) or electron-hole pairs (in semiconductors) produced in the course of an
ionising collision, along with their spatial distribution.
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Fig. 2.15 After the ejection of an inner-shell electron, the resulting vacancy is filled by an
electron from a higher shell. The energy released in the transition can either be carried away by a
fluorescence photon (left) or be transferred to an electron in a higher shell (Auger process, middle).
Coster-Kronig transitions (right) are Auger processes in which the initial vacancy is filled by an
electron from the same shell

2.6.1 Atomic Relaxation

If a charged-particle collision (or a photoabsorption interaction) ejects an inner-
shell electron from an atom, the resulting vacancy will subsequently be filled by an
electron from a higher shell, giving rise to a relaxation chain which can proceed
either radiatively, i.e. by emission of a fluorescence photon, or radiation-less (Auger
effect). The two processes are illustrated schematically in Fig. 2.15. Fluorescence
photons can in turn ionise another atom in the medium or, with a probability
depending on the geometry of the device, escape from the detector. The fluorescence
yield, i.e. the probability for a vacancy to be filled radiatively, increases with the
atomic number Z: in silicon, for example, the average fluorescence yield is ∼5%,
compared to ∼54% in germanium [88]. Compilations of fluorescence yields can be
found in Refs. [88–91]. Tabulations of transition probabilities are available in the
EADL database [92, 93].

2.6.2 Ionisation Statistics

The “primary” ionisation electron knocked out in a collision (and also the Auger
electrons) may have kinetic energies exceeding the ionisation threshold of the
medium and thus undergo further ionising collisions along their path. Electrons with
a kinetic energy T that is large compared to the ionisation threshold are referred to as
“delta” electrons; their energy distribution follows approximately the close-collision
differential cross section, given by Eq. (2.11) for spin-zero particles. The number of
electrons ne produced in the energy degradation cascade of a delta electron with
initial kinetic energy T is subject to fluctuations. The mean and variance of the
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distribution of ne are described by the average energy W required to produce an
electron-ion (electron-hole) pair,

〈ne〉 = T

W
, (2.40)

and the Fano factor F [94],

σ 2 = 〈(n − 〈n〉)2〉 = F 〈ne〉, (2.41)

respectively. Both W and F are largely determined by the relative importance of
ionising and non-ionising inelastic collisions, the latter including e.g. excitations
or phonon scattering. If the cross sections for these processes are known, the
distribution of ne can be calculated using detailed Monte Carlo simulations. An
example is the MAGBOLTZ program [95, 96], which includes the relevant cross
sections for many commonly used detection gases. Inelastic cross sections of delta
electrons in solids can be calculated based on the dielectric formalism discussed in
Sect. 2.3.1 (in its non-relativistic version), often making using of optical data and
a suitable model of the q-dependence of Im (−1/ε (q,E)) as, for instance, in the
Penn algorithm described in Ref. [97].

Measurements of W for electrons in gases as a function of the electron’s
initial kinetic energy are reported in Refs. [98–100, 102, 103]. As can be seen
from Fig. 2.16, which shows measurements and calculations for CO2, W increases
towards low kinetic energies, while in the keV range and above it depends only
weakly on T . For most gases and semiconductors typically used as sensitive
media in particle detectors, the asymptotic (high-energy) W values are fairly
well established. A compilation of recommended average W values, based on
experimental data until 1978, is given in ICRU report 31 [101]. Critical reviews of W

values and Fano factors including also more recent data can be found in Ref. [104]

Fig. 2.16 W value for
electrons in CO2 as a function
of the electron’s initial kinetic
energy according to
measurements by Combecher
[98] (circles), Smith and
Booz [99] (triangles), and
Waibel and Grosswendt [100]
(squares). The grey band
represents results of a Monte
Carlo calculation using the
cross sections implemented in
MAGBOLTZ [96]. The
hatched band corresponds to
the high-energy value
recommended in Ref. [101]
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Table 2.3 Asymptotic W

values and Fano factors for
different gases and for solid
silicon (at T = 300 K)

W [eV] F

Ne 35.4 ± 0.9 [101] 0.13–0.17 [104]

Ar 26.4 ± 0.5 [101] 0.15–0.17 [104]

Kr 24.4 ± 0.3 [101] 0.17–0.21 [104]

Xe 22.1 ± 0.1 [101] 0.124–0.24 [104]

CO2 33.0 ± 0.7 [101] 0.32 [104]

CH4 27.3 ± 0.3 [101] 0.22–0.26 [104]

iC4H10 23.4 ± 0.4 [101] 0.261 [106]

CF4 34.3 [107]

Si 3.67 ± 0.02 [108] <0.1 [104]

Except for CF4, the values shown are for measure-
ments using electrons

and, with emphasis on noble gases, in Ref. [105]. Parameters for silicon and some
commonly used gases are listed in Table 2.3.

Analogously to Eqs. (2.40) and (2.41) one can define W values and Fano factors
characterising the distribution of the number of electrons produced by a heavy
charged particle (provided that it is stopped completely in the medium) or by the
absorption of a photon. The asymptotic W values for electrons and photons at high
energies are in general very similar.

In gas mixtures without excitation transfers, the W value and Fano factor are,
to a good approximation, given by the values in the pure gases, weighted by their
respective concentrations. In mixtures where one of the components has excited
states with energies exceeding the ionisation threshold of another component,
excitation transfer can lead to a significant reduction of W and F with respect to
the pure gases (“Jesse effect” [109]). Results for a number of binary gas mixtures
from measurements with α particles can be found in Ref. [110].

2.6.3 Range

The spatial distribution of secondary ionisations produced by a delta electron can be
characterised in terms of the electron range, i.e. the typical path length travelled by
an electron before its energy falls below the ionisation threshold. In the literature,
a number of different definitions of “range” exist, two of which—the fractional
ionisation range Rx and the practical range Rp—are illustrated in Fig. 2.17. If
the cross sections (including those for elastic scattering) are known, the range of
delta electrons and, more generally, the ionisation pattern produced by a charged-
particle collision, can be calculated using Monte Carlo techniques. As an example,
Fig. 2.18 shows measurements of the 95% range in CH4 as a function of the primary
electron energy [102], together with calculated values based on the cross sections
implemented in MAGBOLTZ.
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Fig. 2.17 Distribution of the coordinates (projected on the electron’s initial direction) of ionising
collisions by a T = 1 keV electron and its secondaries in methane (at atmospheric pressure, T =
20 ◦C), calculated using the cross sections implemented in MAGBOLTZ. The fractional ionisation
range Rx is defined as the projected distance along the electron’s initial direction within which the
fraction x of the total ionisation is produced [102]. The practical range Rp is determined by linear
extrapolation from the region of steepest descent to the horizontal axis
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Fig. 2.18 Measurements [102] (squares) and MAGBOLTZ calculations (circles) of the 95%
fractional ionisation range of electrons in methane (at atmospheric pressure)

In the absence of a detailed calculation, the semi-empirical formula by Kobetich
and Katz [111, 112] can be used to estimate the practical range,

ρRp (T ) = AT

(
1 − B

1 + CT

)
,
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where the parameters A,B,C are given by [112]

A =
(

0.81Z−0.38 + 0.18
)

× 10−3g cm−2 keV−1,

B = 0.21Z−0.055 + 0.78,

C =
(

1.1Z0.29 + 0.21
)

× 10−3 keV−1.
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