
Chapter 15
Statistical Issues in Particle Physics

Louis Lyons

15.1 Introduction

In recent years there has been a growing awareness by particle physicists of the
desirability of using good statistical practice. This is because the accelerator and
detector facilities have become so complex and expensive, and involve so much
physicist effort to build, test and run, that it is clearly important to treat the data with
respect, and to extract the maximum information from them. The PHYSTAT series
of Workshops and Conferences[1–12] has been devoted specifically to statistical
issues in particle physics and neighbouring fields, and many interesting articles can
be found in the relevant Proceedings. These meetings have benefited enormously
from the involvement of professional statisticians, who have been able to provide
specific advice as well as pointing us to some techniques which had not yet filtered
down to Particle Physics analyses.

Analyses of experimental data in Particle Physics have, perhaps not surprisingly,
tended to use statistical methods that have been described by other Particle Physi-
cists. There are thus several books written on the subject by Particle Physicists[13].
The Review of Particle Physics properties[14] contains a condensed review of
Statistics.

Another source of useful information is provided by the statistics committees
set up by some of the large collaborations (see, for example, refs. [15–18]). Some
conferences now include plenary talks specifically on relevant statistical issues
(for example, Neutrino 2017[19], NuPhys17 and NuPhys18[20]), and the CERN
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Summer Schools for graduate students regularly have a series of lectures on statistics
for Particle Physics[21].

This article is a slightly updated version of the one that appeared in ref. [22] in
2012.

15.1.1 Types of Statistical Analysis

There are several different types of statistical procedures employed by Particle
Physicists:

• Separating signal from background: Almost every Particle Physics analysis
uses some method to enhance the possible signal with respect to uninteresting
background.

• Parameter determination: Many analyses make use of some theoretical or
empirical model, and use the data to determine values of parameters, and their
uncertainties and possible correlations.

• Goodness of fit: Here the data are compared with a particular hypothesis, often
involving free parameters, to check their degree of consistency.

• Comparing hypotheses: The data are used to see which of two hypotheses is
favoured. These could be the Standard Model (SM), and some specific version of
new physics such as the existence of SUperSYmmetry (SUSY), or the discovery
of the Higgs boson[23].

• Decision making: Based on one’s belief about the current state of physics, the
value of possible discoveries and estimates of the difficulty of future experiments,
a decision is made on what should be thrust of future research. This subject is
beyond the scope of this article.

15.1.2 Statistical and Systematic Uncertainties

In general any attempt to measure a physics parameter will be affected by statistical
and by systematic uncertainties. The former are such that, if the experiment were
to be repeated, random effects would result in a distribution of results being
obtained. These can include effects due to the limited accuracy of the measurement
devices and/or the experimentalist; and also from the inherent Poisson variability
of observing a number of counts n. On the other hand, there can be effects that
shift the measurements from their true values, and which need to be corrected for;
uncertainties in these corrections contribute to the systematics. Another systematic
effect could arise from uncertainties in theoretical models which are used to interpret
the data. Scientists’ systematics are often ‘nuisance parameters’ for statisticians.

Consider an experiment designed to measure the temperature at the centre of
the sun by measuring the flux of solar neutrinos on earth. The main statistical
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uncertainty might well be that due to the limited number of neutrino interactions
observed in the detector. On the other hand, there are likely to be systematics from
limited knowledge of neutrino cross-sections in the detector material, the energy
calibration of the detector, neutrino oscillation parameters, models of energy con-
vection in the sun, etc. If some calibration measurement or subsidiary experiment
can be performed, this effectively converts a systematic uncertainty into a statistical
one. Whether this source of uncertainty is quoted as statistical or systematic is
not crucial; what is important is that possible sources of correlation between
uncertainties here and in other measurements (in this or in other experiments) are
well understood.

The magnitude of systematic effects in a parameter-determination situation can
be assessed by fitting the data with different values of the nuisance parameter(s),
and seeing how much the result changes1 when the nuisance parameter value is
varied by its uncertainty. Alternatively the nuisance parameter(s) for systematic
effects can be incorporated into the likelihood or χ2 for the fit; or a Bayesian method
involving the prior probability distribution for the nuisance parameter can be used.
(See Sects. 15.4.5 and 15.7.6 for ways of incorporating nuisance parameters in upper
limit and in p-value calculations respectively).

How to assess systematics was much discussed at the first Banff meeting[6] and
at PHYSTAT-LHC[24–26]. A special session of the recent PHYSTATν meeting at
CERN[12] was devoted to systematics. Many reviews of this complex subject exist
and can be traced back via ref. [27].

In general, much more effort is involved in estimating systematic uncertainties
than for parameter determination and the corresponding statistical uncertainties; this
is especially the case when the systematics dominate the statistical uncertainty.

Cowan[35] has considered the effect of having an uncertainty in magnitude of a
systematic effect. As Cox has remarked[36], there is a difference in knowing that a
correction has almost precisely a 20% uncertainty, or that it is somewhere between
0% and 40%.

15.1.3 Bayes and Frequentism

These are two fundamental approaches to making inferences about parameters or
whether data support particular hypotheses. There are also other methods which do
not correspond to either of these philosophies; the use of χ2 or the likelihood are
examples.

Particle physicists tend to favour a frequentist method. This is because in many
cases we really believe that our data are representative as samples drawn according
to the model we are using (decay time distributions often are exponential; the counts

1If the simulation yields a change in the result of a ± b, there is much discussion about how the
contribution to the systematic uncertainty should be assessed in terms of a and b—see ref. [27].
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in repeated time intervals do follow a Poisson distribution; etc.), and hence we
want to use a statistical approach that allows the data “to speak for themselves”,
rather than our analysis being sensitive to our assumptions and beliefs, as embodied
in the assumed Bayesian priors. Bayesians would counter this by remarking that
frequentist inference can depend on the reference ensemble, the ordering rule, the
stopping rule, etc.

With enough data, the results of Bayesian and frequentist approaches usually
tend to agree. However, in smallish data samples numerical results from the two
approaches can differ.

15.1.3.1 Probability

There are at least three different approaches to the question of what probability is.
The first is the mathematical one, which is based on axioms e.g. it must lie in the
range 0–1; the probabilities of an event occurring and of it not occurring add up to
1; etc. It does not give much feeling for what probability is, but it does provide the
underpinning for the next two methods.

Frequentists, not surprisingly, define probability in terms of frequencies in a
long series of essentially identical repetitions2 of the relevant procedure. Thus the
probability of the number 5 being uppermost in throws of a die is 1/6, because that
is the fraction of times we expect (or approximately observe) it to happen. This
implies that probability cannot be defined for a specific occurrence (Will the first
astronaut who lands on Mars return to earth alive?) or for the value of a physical
constant (Does Dark Matter contribute more than 25% of the critical density of the
Universe?).

In contrast, Bayesians define probability in terms of degree of belief. Thus
it can be used for unique events or for the values of physical constants. It can
also vary from person to person, because my information may differ from yours.
The numerical value of the probability to be assigned to a particular statement is
determined by the concept of a ‘fair bet’; if I think the probability (or ‘Bayesian
credibility’) of the statement being true is 20%, then I must offer odds of 4-to-1, and
allow you to bet in either direction.

This difference in approach to probability affects the way Bayesians and
frequentists deal with statistical procedures. This is illustrated below by considering
parameter determination.

15.1.3.2 Bayesian Approach

The Bayesian approach makes use of Bayes’ Theorem:

p(A|B) = p(B|A) × p(A)/p(B), (15.1)

2Bayesians attack this concept of ‘essentially identical trials’, claiming that it is hard to define it
without using the concept of probability, thus making the definition circular.
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where p(A) is the probability or probability density of A, and p(A|B) is the
conditional probability for A, given that B has happened. This formula is acceptable
to frequentists, provided the probablities are frequentist probabilities. However
Bayesians use it with A = parameter (or hypothesis) and B = data. Then

p(parameter|data) ∝ p(data|parameter) × p(parameter), (15.2)

where the three terms are respectively the Bayesian posterior, the likelihood function
and the Bayesian prior. Thus Bayes’ theorem enables us to use the data (as
encapsulated in the likelihood) to update our prior knowledge (p(parameter)); the
combined information is given by the posterior.

Frequentists object to the use of probability for physical parameters. Further-
more, even Bayesians agree that it is often hard to specify a sensible prior. For a
parameter which has been well determined in the past, a prior might be a gamma
function or log-normal or a (possibly truncated) Gaussian distribution of appropriate
central value and width, but for the case where no useful information is available the
choice is not so clear; it is easier to parametrise prior knowledge than to quantify
prior ignorance. The ‘obvious’ choice of a uniform distribution has the problem of
being not unique (Should our lack of knowledge concerning, for example, the mass
of a neutrino mν be parametrised by a uniform prior for mν or for m2

ν or for log mν ,
etc?). Also a uniform prior over an infinite parameter range cannot be normalised.
For situations involving several parameters, the choice of prior becomes even more
problematic.

It is important to check that conclusions about possible parameter ranges are
not dominated by the choice of prior. This can be achieved by changing to other
‘reasonable’ priors (sensitivity analysis); or by looking at the posterior when the
data has been removed.

15.1.3.3 Frequentist Approach: Neyman Construction

The frequentist way of constructing intervals completely eliminates the need for
a prior, and avoids considering probability distributions for parameters. Consider a
measurement x which provides information concerning a parameter μ. For example,
we could use a month’s data from a large solar neutrino detector (x) to estimate the
temperature at the centre of the sun (μ). It is assumed that enough is known about
solar physics, fusion reactions, neutrino properties, the behaviour of the detector,
etc. that, for any given value of μ, the probability density for every x is calculable.
Then for that μ, we can select a region in x which contains, say, 90% of this
probability. If we do this for every μ, we obtain a 90% confidence band; it shows
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Fig. 15.1 The Neyman construction for setting a confidence range on a parameter μ. At any value
of μ, it is assumed that we know the probability density for obtaining a measured value x. (For
example, μ could be the temperature of the fusion reactor at the centre of the Sun, while α is the
solar neutrio flux, estimated by operating a large underground solar neutrino detector for 1 month.)
We can then choose a region in x which contains, say, 90% of the probability; this is denoted by the
solid part of the horizontal line. By repeating this procedure for all possible μ, the band between
the curved lines is constructed. This confidence band contains the likely values of x for any μ. For
a particular measured value x2, the confidence interval from μl to μu gives the range of parameter
values for which that measured value was likely. For x2, this interval would be two-sided, while
for a lower value x1, an upper limit would be obtained. In contrast, there are no parameter values
for which x0 is likely, and for that measured value the confidence interval would be empty

the values of x which are likely results3 of the experiment for any μ, assuming the
theory is correct (see Fig. 15.1). Then if the actual experiment gives a measurement
x2, it is merely necessary to find the values of μ for which x2 is in the confidence
band. This is the Neyman construction.

Of course, the choice of a region in x to contain 90% of the probability is not
unique. The one shown in Fig. 15.1 is a central one, with 5% of the probability on
either side of the selected region. Another possibility would be to have a region with
10% of the probability to the left, and then the region in x extends up to infinity. This
choice would be appropriate if we always wanted to quote upper limits on μ. Other
choices of ‘ordering rule’ are also possible (see, for example, Sect. 15.4.3).

The Neyman construction can be extended to more parameters and measure-
ments, but in practice it is very hard to use it when more than two or three
parameters are involved; software to perform a Neyman construction efficiently in
several dimensions would be very welcome. The choice of ordering rule is also
very important. Thus from a pragmatic point of view, even ardent frequentists

3The adjective ‘likely’ is appropriate for central intervals. For upper limits on μ, however, the
accepted values of x for a given μ extend to infinity, and so ‘preferred results for the given ordering
rule’ would be more appropriate.
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are prepared to use Bayesian techniques for multidimensional problems (e.g. with
systematics). They would, however, like to ensure that the technique they use
provides parameter intervals with reasonable frequentist coverage.

15.1.3.4 Coverage

One of the major advantages of the frequentist Neyman construction is that it
guarantees coverage. This is a property of a statistical technique4 for calculating
intervals, and specifies how often the interval contains the true value μt of the
parameter. This can vary with μt .

For example, for a Poisson counting experiment with parameter μ and observed
number n, a (not very good) method for providing an interval for μ is n±√

n. Thus
an observed n = 2 would give a range 0.59–3.41 for μ. If μ = 2.01, observed
values n = 2, 3 and 4 result in intervals that include μ = 2.01, while other values
of n do not. The coverage of this procedure for μ = 2.01 is thus the sum of the
Poisson probabilities for having n = 2, 3 or 4 for the given μ.

For a discrete observable (e.g. the number of detected events in a search for Dark
Matter), there are jumps in the coverage; in order to avoid under-coverage, there
is necessarily some over-coverage. However, for a continuous observable (e.g. the
estimated mass of the Higgs boson) the coverage can be exact.

Coverage is not guaranteed for methods that do not use the Neyman construction
(see Sect. 15.2.1). Interesting plots of coverage as a function of the parameter value
for the simple case of a Poisson counting experiment can be found in ref. [32].

15.1.3.5 Likelihoods

The likelihood approach makes use of the probability density function (pdf ) for
observing the data, evaluated for the data actually observed.5 It is a function of
any parameters, although it does not behave like a probability density for them. It
provides a method for determining values of parameters. These include point esti-
mates for the ‘best’ values, and ranges (or contours in multi-parameter situations)
to characterise the uncertainties. It usually has good properties asymptotically, but a
major use is with sparse multi-dimensional data.

The likelihood method is neither frequentist nor Bayesian. It thus does not
guarantee frequentist coverage or Bayesian credibility. It does, however, play a
central role in the Bayesian approach, which obtains the posterior probability

4It is important to realise that coverage is a property of the method, and not of an individual
measurement.
5The pdf f (x, μ0) gives the probability density for obtaining various data x when the parameter
has some specified value μ0. The likelihood is the same function of two variables f (x0, μ), but
now with x0 fixed at the data actually obtained, and μ regarded as the variable.
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density by multiplying the likelihood by the prior. The Bayesian approach thus
obeys the likelihood principle, which states that the only way the experimental data
affects inference is via the likelihood function. In contrast, the Neyman construction
requires not only the likelihood for the actual data, but also for all possible data that
might have been observed.

Because the likelihood is not a probability density, it does not transform like one.
Thus the value of the likelihood for a parameter μ0 is identical to that for λ0 = 1/μ0.
This means that ratios of likelihoods (or differences in their logarithms) are useful to
consider, but that the integration of tails of likelihoods is not a recognised statistical
procedure.

A longer account of the Bayesian and frequentist approaches can be found in
ref. [28]. Reference [29] provides a very readable account for a Poisson counting
experiment.

15.2 Likelihood Issues

In this section, we discuss some potential misunderstandings of likelihoods.

15.2.1 �(lnL) = 0.5 Rule

In the maximum likelihood approach to parameter determination, the best value
λ0 of a parameter is determined by finding where the likelihood maximises; and
its uncertainty is estimated by finding how much the parameter must be changed6

in order for the logarithm of the likelihood to decrease by 0.5 as compared with the
maximum.7 From a frequentist viewpoint, this should ideally result in the parameter
range having 68% coverage. That is, in repeated use of this procedure to estimate
the parameter, 68% of the intervals should contain the true value of the parameter,
whatever its true value happens to be.

If the measurement is distributed about the true value as a Gaussian with constant
width, the likelihood approach will yield exact coverage, but in general this is not so.
For example, Garwood[31] and Heinrich[32] have investigated the properties of the
likelihood approach (and other methods too) to estimate μ, the mean of a Poisson,
when nobs events are observed. Because nobs is a discrete variable, the coverage is

6If there are more than just one parameter, the likelihood must of course be remaximised with
respect to all the other parameters when looking for the �(lnL) = 0.5 points. Alternatively, a
region in multi-parameter space can be selected by finding the contour at which �(lnL) decreases
from its maximum by an amount which depends on the number of parameters.
7This (like several other methods) can give rise to asymmetric uncertainties. Techniques for dealing
with this have been discussed by Barlow[30].



15 Statistical Issues in Particle Physics 653

a discontinuous function of μ, and varies from 100% at μ = 0 down to 30% at
μ ≈ 0.5.8

15.2.2 Unbinned Maximum Likelihood and Goodness of Fit

With sparse data, the unbinned likelihood method is a good one for estimating
parameters of a model. In order to understand whether these estimates of the
parameters are meaningful, we need to know whether the model provides an
adequate description of the data. Unfortunately, as emphasised by Heinrich[33],
the magnitude of the unbinned maximum likelihood is often independent of
whether or not the data agree with the model. He illustrates this by the example
of the determination of the lifetime τ of a particle whose decay distribution is
(1/τ) exp(−t/τ ). For a set of observed times ti , the maximum likelihood Lmax

depends on the data ti only through their average value t̄ . Thus any data distributions
with the same t̄ would give identical Lmax , which demonstrates that, at least in this
case, Lmax gives no discrimination about whether the data are consistent with the
expected distribution.

Another example is fitting an expected distribution (1 + α cos2 θ)/(1 + α/3)

to data θi on the decay angle of some particle, to determine α. According to
the expected functional form, the data should be symmetrically distributed about
cos θ = 0. However, the likelihood depends only on the square of cos θ , and
so would be insensitive to all the data having cos θi negative; this would be very
inconsistent with the expected symmetric distribution.

In contrast Baker and Cousins[34] provide a likelihood method of measuring
goodness of fit for a data histogram compared to a theory. The Poisson likelihood
PPois(n|μ) for each bin is compared with that for the best possible predicted value
μbest = n for that bin. Thus the Baker-Cousins likelihood ratio

LRBC = 	
e−μi μ

ni

i /ni !
e−ni n

ni

i /ni ! = 	e(ni−μi)(μi/ni)
ni (15.3)

is such that asymptotically −2lnLRBC is distributed as χ2.9 For small μ, the Baker-
Cousins likelihood ratio is better than a weighted sum of squares for assessing
goodness of fit.

8It is of course not surprising that methods that are expected to have good asymptotic behaviour
may not display optimal properties for μ ≈ 0.
9The binned Poisson likelihood is not a measure of fit. This is because, for example. μi = ni =
1 and μi = ni = 100 both correspond to perfect agreement between data and prediction, but
PPois(1|1.0) is much larger than PPois(100|100.0).
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15.2.3 Profile Likelihood

In many situations the likelihood is a function not only of the parameter of interest φ

but also other parameters. These may be other physics parameters (for example, in
neutrino oscillation experiments where the mixing angles and differences in mass-
squared of the various neutrinos are relevant), but can also be nuisance parameters
ν associated with systematic effects (e.g. jet energy scales, particle identification
efficiencies, etc.). To make statements about φ, the likelihood L(φ.ν) is often
‘profiled’ over the nuisance parameters, i.e. at each value of φ, the likelihood is
remaximised with respect to ν. Thus

Lprof (φ) = L(φ, νmax(φ)) (15.4)

Then Lprof (φ) is used much as the ordinary likelihood when there are no nuisance
parameters.

A profile likelihood is in general wider than the likelihood for a fixed value of
the nuisance parameter ν; this results in the uncertainty in the parameter of interest
φ being larger when allowance is made for the systematic uncertainties.

In the standard profile likelihood, ν is a continuous variable. An extension of this
has been used by Dauncey et al. [38], to allow for uncertainties in the choice of
functional form of the background parametrisation in searches for new particles as
peaks above background in a mass spectrum. Here the systematic is discrete, rather
than continuous.

An alternative way of eliminating nuisance parameters (known as marginalisa-
tion) is to use L(φ, ν) as part of a Bayesian procedure, and than to integrate the
Bayesian posterior over ν. i.e.

Pmarg(φ) =
∫

Ppost (φ, ν) dν (15.5)

Of course, both profiling and marginalisation result in the loss of information.
Reference [37] provides a very trivial example of this for profile likelihoods.

15.2.4 Punzi Effect

Sometimes we have two or more nearby peaks, and we try to fit our data in order
to determine the fractions of each peak. Punzi [39] has pointed out that it is very
easy to write down a plausible but incorrect likelihood function that gives a biassed
result. This occurs in situations where the events have experimental resolutions σ

in the observable x that vary event-by-event; and the distributions of σ are different
for the two peaks.
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For a set of observations xi , it is tempting but wrong to write the unbinned
likelihood as

L(f )wrong = 	{f ∗ G(xi, 0.0, σi) + (1 − f ) ∗ G(xi, 1.0, σi)} (15.6)

where f is the fraction of the first peak (labelled A below) which is parametrised
as G(xi, 0.0, σi), a Gaussian in xi , centred on zero, and with width σi , and i is the
label for the ith event; and similarly for the second peak (labelled B), except that it
is centred at unity.

Application of the rules of conditional probability shows that the correct
likelihood is

L(f )right = 	{f ∗ G(xi, 0.0, σi) ∗ p(σi |A) + (1 − f ) ∗ G(xi, 1.0, σi) ∗ p(σi |B)}
(15.7)

where p(σi |A) and p(σi |B) are the probability densities for the resolution being
σi for the A and B peaks respectively. We then see that L(f )wrong and L(f )right

give identical values for f , provided that p(σi |A) = p(σi |B). If however, the
distributions of the resolution differ, L(f )wrong will in general give a biassed
estimate.

Punzi investigated the extent of this bias in a simple Monte Carlo simulation, and
it turns out to be surprisingly large. For example, with f = 1/3, and p(σA) and
p(σB) being δ−functions at 1.0 and at 2.0 respectively (i.e. σ = 1 for all A events,
and σ = 2 for all B events), the fitted value of f from L(f )wrong turned out to be
0.65. Given that f is confined to the range from zero to unity, this is an enormous
bias.

The way the bias arises can be understood as follows: The fraction f of the
events that are really A have relatively good resolution, and so the fit to them alone
would assign essentially all of them as belonging to A i.e. these events alone would
give f ≈ 1 with a small uncertainty. In contrast the 1 − f of the events that are
B have poor resolution, so for them the fit does not mind too much what is the
value of f . But the fit uses all the events together, and so assigns a single f to the
complete sample; this will be a weighted average of the f values for the A and for
the B events. Because the A events result in a more accurate determination of f

than do the B events, the fitted f will be biassed upwards (i.e. it will over-estimate
the fraction of events corresponding to the peak with the better resolution).

The Punzi effect can also appear in other situations, such as particle identifica-
tion. Different particle types (e.g. pions and kaons) would appear as different peaks
in the relevant particle-identification variable e.g. time of flight, rate of energy loss
dE/dx, angle of Cherenkov radiation, etc. The separation of these peaks for the
different particle types depends on the momentum of the particles (see Fig. 15.2).
The incorrect L is now

Lwrong(fK) = 	{(1−fK)∗G(xi, xπ(pi), σi)+fK ∗G(xi, xK(pi), σi)} (15.8)
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(a) Low momentum (b) High momentum

π K π K

TOF TOF

Fig. 15.2 The Punzi effect in particle identification. The diagrams show the expected (normalised)
distributions of the output signal from a particle identifier, for pions and for kaons (a) at low
momentum where separation is easier, and (b) at high momentum where the distributions overlap.
Because kaons are heavier than pions, they tend to have larger momenta. Because it is hard at high
momentum to distinguish pions from kaons, the likelihood function is insensitive to whether these
tracks are classified as pions or kaons, and hence the fraction of high momentum tracks classified as
kaons will have a large uncertainty. In contrast, low momentum tracks will be correctly identified.
Thus if the plausible but incorrect likelihood function that ignores the pion and kaon momentum
distributions is used to determine the overall fraction of kaons, it will be biassed downwards
towards the fraction of low momentum particles that are kaons

where xπ(pi) and xK(pi) are the expected positions of the particle identification
information for a particle of momentum pi , and xi is the observed value for the
ith event. So here the Punzi bias can arise even with constant resolution, because
the momentum spectra of pions and kaons can be different. To avoid the bias, the
likelihood needs to incorporate information on the different momentum distributions
of pions and of kaons. If these momentum distributions are different enough from
each other, it could be that the likelihood function bases its separation of the different
particle types on the momenta of the particles rather than on the data from the
detector’s particle identifier. Catastini and Punzi[40] avoid this by using parametric
forms for the momentum distributions of the particles, with the parameters being
determined by the data being analysed.

The common feature potentially leading to bias in these two examples is that the
ratio of peak separation to resolution is different for the two types of objects. For
the first example of separating the two peaks, it was the denominators that were
different, while in the particle identification problem it was the numerators.

The Punzi bias may thus occur in situations where the templates in a multi-
component fit depend on additional observations whose distributions are not
explicitly included in the likelihood.
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15.3 Separating Signal from Background

Almost every Particle Physics analysis uses some technique for separating possible
signal from background. First some simple ‘cuts’ are applied; these are generally
loose selections on single variables, which are designed to remove a large fraction
of the background while barely reducing the real or potential signal. Then to
obtain a better separation of signal from background in the multi-dimensional
space of the event observables, methods like Fisher discriminants, decision trees,
artificial neural networks (including Bayesian nets and more recently deep neural
nets), support vector machines, etc. are used[41, 42]. Extensions of these methods
involve bagging, boosting and random forests, which have been used to achieve
improved performance of the separation as seen on a plot of signal efficiency
against background mis-acceptance rate. A description of the software available for
implementing some of these techniques can be found in the talks by Narsky[43] and
by Tegenfeldt[44] at the PHYSTAT-LHC Workshop.

More recently, deep learning techniques are rapidly becoming popular. In Particle
Physics, they have been used for on-line triggering, tracking, fast simulation, object
identification, image recognition, and event-by-event separation of signal from
background. Reference [45] provides good introductions to the use of these methods
for Particle Physics. There are now regular workshops and lectures on Machine
Learning at CERN and at Fermilab (see refs. [46] and [47]), as well as at many
universities.

The signal-to-background ratio before this multivariate stage can vary widely, as
can the signal purity after it. If some large statistics study is being performed (e.g.
to use a large sample of events to obtain an accurate measurement of the lifetime of
some particle), then it is not a disaster if there is some level of background in the
finally selected events, provided that it can be accurately assessed and allowed for in
the subsequent analysis. At the other extreme, the separation technique may be used
to see if there is any evidence for the existence of some hypothesised particle (the
potential signal), in the presence of background from well-known sources. Then the
actual data may in fact contain no observable signal.

These techniques are usually ‘taught’ to recognise signal and background by
being given examples consisting of large numbers of events of each type. These
may be produced by Monte Carlo simulation, but then there is a problem of trying
to verify that the simulation is a sufficiently accurate representation of reality. It is
better to use real data for this, but the difficulty then is to obtain sufficiently pure
samples of background and signal. Indeed, for the search for a new particle, true
data examples do not exist. However, it is the accurate representation of background
that is likely to pose a more serious problem.

The way that, for example, neural networks are trained is to present the software
with approximately equal numbers of signal and background events10 and then

10For searches for rare processes, it is clearly inappropriate to use the actual fractions expected
in the data to determine the ratio of signal to background Monte Carlo events to be used as the
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to minimise a cost function C for the network. This is usually defined as C =
�(zi − ti)

2, where zi is the trained network’s output for the ith event; ti is the target
output, usually chosen as 1 for signal and zero for background; and the summation
is over all testing events presented to the network. The problem with this is that
C is only loosely related to what we really want to optimise. For a search for
a new particle this could be the sensitivity of the experimental upper limit in the
absence of signal, while for a high statistics analysis measuring the properties (such
as mass or lifetime) of some well-established particle, we would be interested in
minimising the uncertainty (including systematic effects) on the result, without the
training procedure biassing the measurement.

As with all event separation methods. it is essential to check the performance
of a trained procedure by using a set of events that are independent of those
used for training. This is to ensure that the network does not use specific but
irrelevant features of the training events in its learning process, but can achieve
good performance on unseen data.

Some open questions are:

• How can we check that our multi-dimensional training samples for signal and
background are reliable descriptions of reality; and that they cover the region of
multi-dimensional space populated by the data?

• How should the ratio of the numbers of signal and background training events be
chosen, especially when there are several different sources of background?

• What is the best way of allowing for nuisance parameters in the models of the
signal and/or background?[25, 48]

• Are there useful and easy ways of optimising on what is really of interest?[49]

15.3.1 Understanding How Neural Networks Operate

It is useful to appreciate how neural networks operate in providing a good separation
of signal and background, as this can help in choosing a suitable architecture for the
network.

Figure 15.3a shows some hypothetical signal and background events in terms of
two measured variables x and y for each event. A network with two inputs (x and y),
a single hidden layer with 3 nodes, and a single output is used; it aims to give 1 for
signal and zero for background events (see Fig. 15.3b. This is achieved by training
the network with (x, y) values for known examples of signal and background; and
allowing the network to vary its internal parameters to minimise a suitably defined
cost function e.g. �(ze − te)

2, where the summation is over the training events, and
ze and te are the network’s output and its target value (0 or 1) respectively.

training sample, because the network could then achieve a very small cost C simply by classifying
everything as background.
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Fig. 15.3 (a) A 2 − D plot showing the regions of the variables v1 and v2 for the signal (dots)and
background (triangles). (b) The neural network used for separating signal and background. (c) The
top hidden node receives inputs from v1 and v2. With suitable weights and threshold and a large
value of β, the node’s output will be on for (v1, v2) values below the diagonal line. (d) Similarly
for the other two hidden nodes, their outputs can be on for (v1, v2) below the other diagonal line,
and above the horizontal one, respectively. A further choice of weights to the output node and its
threshold can ensure that the whole network’s output will be on only if all three hidden nodes’
outputs are on, i.e. if (v1, v2) values are within the triangle in (d)

The input qi to a given hidden node i is a linear combination of the input variables
x and y

qi = wxix + wyiy + ti (15.9)

where the weights w and threshold t are varied during the fitting process. The output
r from any hidden node is determined from its input q by something like a sigmoid
function e.g.

r = 1/(1 + e−βq) (15.10)

This switches from zero for large negative q to unity for large positive q . The switch
occurs around q = 0, and width of the region depends on the network parameter β.
For very large β, there is a rapid switch from zero to unity. In terms of x and y, this
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means that the hidden node i is ‘on’ (i.e. ri = 1) if

wxix + wyiy + ti > 0, (15.11)

or ‘off’ otherwise. Thus the boundary between events having ri on or off is a straight
line in the (x, y) plane (see Fig. 15.3c). With suitable values for the weights and
thresholds for the three hidden nodes, there will be three straight line boundaries
in the (x, y) plane shown in Fig. 15.3d. Finally, to produce the “and” of these three
conditions, the weights wjo (from the hidden node j to the output node o) and the
output threshold to can be set as

w1o = w2o = w3o = 0.4 to = −1.0 (15.12)

to ensure that the output will be “on” only if the three hidden layers are all “on”,
i.e. that the selected input values are inside the triangular region in the (x.y) plane.
With β set at a lower level, the contour for the selected region will be smoother with
rounded corners, rather than being triangular.

It would be useful to have a similar understanding of how deep networks operate.
Tishby[50] has provided some insight on what happens in the hidden layers of a deep
neural network during the training procedure.

15.4 Parameter Determination

For a single parameter (e.g. the branching ratio for H → μ+μ−) the parameter
range could be either a 2-sided interval or just an upper limit, at some confidence
level (typically 68% for 2-sided intervals, but usually 90% and 95% for upper
limits). For two parameters (e.g. mass and production rate for some new particle
X that decays to a top pair), their acceptable values could be those inside some 2-
dimensional confidence region. Alternatively an upper limit or 2-sided region for
one parameter as a function of the other could be defined; these are known as a
Raster Scan.

An upper limit on 2-variables is not a well-defined concept.

15.4.1 Upper Limits

Most recent searches for new phenomena have not found any evidence for exciting
new physics. Examples from particle physics include searches for SUSY particles,
dark matter, etc.; attempts to find substructure of quarks or leptons; looking for extra
spatial dimensions; measuring the mass of the lightest neutrino; etc. Rather than
just saying that nothing was found, it is more useful to quote an upper limit on the
sought-for effect, as this could be useful in ruling out some theories. For example in
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1887, Michelson and Morley[52] attempted to measure the speed of the Earth with
respect to the aether. No effect was seen, but the experiment was sensitive enough
to lead to the demise of the aether theory.

A simple scenario is a counting experiment where a background b is expected
from conventional sources, together with the possibility of an interesting signal
s. The number of counts n observed is expected to be Poisson distributed with a
mean μ = εs + b, where b is the expected number of events from background,
and ε is a factor for converting the basic physics parameter s into the number of
signal events expected in our particular experiment; it thus allows for experimental
inefficiency, the experiment’s running time; etc. Then given a value of n which is
comparable to the expected background, what can we say about s? The true value of
the parameter s is constrained to be non-negative. The problem is interesting enough
if b and ε are known exactly; it becomes more complicated when only estimates with
uncertainties σb and σε are available.

An extension of the simple counting scenario is when a search for a new particle
is carried out over a range of masses. This is usually dealt with by performing
separate searches at a series of masses over a specified range. This ‘Raster Scan’
is in contrast with a method that regards the sought-for new particle’s mass and
its production rate as two parameters to be estimated simultaneously. The relative
merits of these two approaches are described in ref. [51].

Even without the nuisance parameters, a variety of methods is available. These
include likelihood, χ2, Bayesian with various priors for s, frequentist Neyman
constructions with a variety of ordering rules for n, and various ad hoc approaches.
The methods give different upper limits for the same data.11 A comparison of several
methods can be found in ref. [53]. The largest discrepancies arise when the observed
n is less than the expected background b, presumably because of a downward
statistical fluctuation. The following different behaviours of the limit (when n < b)
can be obtained:

• Frequentist methods can give empty intervals for s i.e. there are no values of s for
which the data are likely. Particle physicists tend to be unhappy when their years
of work result in an empty interval for the parameter of interest, and it is little
consolation to hear that frequentist statisticians are satisfied with this feature, as
it does not necessarily lead to undercoverage.
When n is not quite small enough to result in an empty interval, the upper
limit might be very small.12 This could confuse people into thinking that the
experiment was much more sensitive than it really was.

• The Feldman-Cousins frequentist method[54] (see Sect. 15.4.3) that employs a
likelihood-ratio ordering rule gives upper limits which decrease as n gets smaller

11By coincidence, the upper limits obtained by the Bayesian approach with an (improper) flat prior
for s and by the appropriate Neyman construction agree when b = 0.
12Bayesian methods that use priors with part of the probability density being a δ-function at s = 0
can result is a posterior with an enhanced δ-function at zero, such that the upper limit contains only
the single point s = 0.
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at constant b. A related effect is the growth of the limit as b decreases at constant
n—this can also occur in other frequentist approaches. Thus if no events are
observed (n = 0), the upper limit of a 90% Feldman-Cousins interval is 1.08
for b = 3.0, but 2.44 for b = 0. This is sometimes presented as a paradox, in
that if a bright graduate student worked hard and discovered how to eliminate the
expected background without much reduction in signal efficiency, the ‘reward’
would be a weaker upper limit.13 An answer is that although the actual limit
had increased, the sensitivity of the experiment with the smaller background was
better. There are other situations—for example, variants of the random choice of
voltmeter (compare ref. [55])—where a measurement with better sensitivity can
on occasion give a less precise result.

• In the Bayesian approach, the dependence of the limit on b is weaker. Indeed
when n = 0, the limit does not depend on b.

• Sen et al. [56] consider a related problem, of a physical non-negative parameter
λ producing a measurement x, which is distributed about λ as a Gaussian of
variance σ 2. As the observable x becomes more and more negative, the upper
limit on λ increases, because it is deduced that σ must in fact be larger than its
quoted value.

In trying to assess which of the methods is best, one first needs a list of desirable
properties. These include:

• Coverage: Even though coverage is a frequentist concept, most Bayesian particle
physicists would like the coverage of their intervals to match their reported
credibility, at least approximately.
Because the data in counting experiments is discrete, it is impossible in any
sensible way to achieve exact coverage for all μ (see Sect. 15.1.3.4). However, it
is not completely obvious that even Frequentists need coverage for every possible
value of μ, since different experiments will have different values of b and of ε.
Thus even for a constant value of the physical parameter s, different experiments
will have different μ = ε ∗ s + b. Thus it would appear that, if coverage in some
average (over μ) sense were satisfactory, the frequentist requirement for intervals
to contain the true value at the requisite rate would be maintained. This, however,
is not the generally accepted view by particle physicists, who would like not to
undercover for any μ.

• Not too much overcoverage: Because coverage varies with μ, for methods that
aim not to undercover anywhere, some overcoverage is inevitable. This corre-
sponds to having some upper limits which are high, and this leads to undesirable
loss of power in rejecting alternative hypotheses about the parameter’s value.

13The n = 0 situation is perhaps a special case, as the number of observed events cannot decrease
as further selections are imposed to reduce the expected background. For non-zero observed events,
if n decreases with the tighter cuts (as expected for reduced background), the upper limit is likely
to go down, in agreement with intuition. But if n stays constant, that could be because the observed
events contain signal, so it is perhaps not surprising that the upper limit increases.
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• Short and empty intervals: These can be obtained for certain values of the
observable, without resulting in undercoverage. They are generally regarded as
undesirable for the reasons explained above.

It is not obvious how to incorporate the above desiderata on interval length into an
algorithm that would be useful for choosing among different methods for setting
limits. For different experiments studying the same phenomena (e.g. Dark Matter
searches, neutrino oscillation experiments, etc.) it is worthwhile to use the same
technique for calculating allowed parameter ranges.

15.4.2 Two-Sided Intervals

An alternative to giving upper limits is to quote two-sided intervals. For example, a
68% confidence interval for the mass of the top quark might be 172.6–173.4GeV/c2,
as opposed to its 95% upper limit being 173.6 GeV/c2. Most of the difficulties
and ambiguities mentioned above apply in this case too, together with some extra
possibilities. Thus, while it is clear which of two possible upper limits is tighter, this
is not necessarily so for two-sided intervals, where which is shorter may be metric
dependent; the first of two intervals for a particle’s lifetime τ may be shorter, but the
second may be shorter when the ranges are quoted for its decay rate (= 1/τ ). There
is also scope for choice of ordering rule for the frequentist Neyman construction, or
for choosing the interval from the Bayesian posterior probability density.14

15.4.3 Feldman-Cousins Approach

Feldman and Cousins’ fully frequentist approach[54] exploits the freedom available
in the Neyman construction of how to choose an interval in the data that contains
a given fraction α of the probability, by using their ‘ordering rule’. This is based
on the likelihood ratio L(x, μ)/L(x, μbest ), where μbest is the physically-allowed
value of μ which gives the largest value of L for that particular x. For values of μ

far from a physical boundary, this makes little difference from the standard central
Neyman construction, but near a boundary the region is altered in such a way as to
make it unlikely that there will be zero-length or empty intervals for the parameter
μ; these can occur in the standard Neyman construction (see Fig. 15.4).

14A Bayesian statistician would be happy with the posterior as the final result. Particle physicists
like to quote an interval as a convenient summary. For a parameter that cannot be negative and
for which the exclusion of zero is interesting (e.g. testing whether the production rate of some
hypothesised particle is non-zero), an upper limit would always include zero, a lower limit or a
central interval would exclude it and a maximum probability density one would not be invariant
with respect to changes in the functional form of the parameter.
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Fig. 15.4 The Feldman-Cousins 90% confidence band (solid curves) for the mean μ of a Gaussian
probability density function of unit variance for a measurement x. The straight dashed lines show
the confidence band for the central Neyman construction. The Feldman-Cousins ordering rule pulls
the interval to the left at small μ, and hence, even for negative observed x, the μ interval is not
empty, as happens for central frequentist intervals when x is below −1.6

The original Feldman-Cousins paper also considered how to extend their method
when there is more than one parameter and one measurement. They describe an
idealised neutrino oscillation experiment with the data being the energy spectrum of
the interacting neutrinos, and the parameters are sin2(2θ) and �m2 (see Eq. 15.15).
A practical problem of having many parameters is the CPU time required to compute
the results.

Feldman and Cousins also point out that an apparently innocuous procedure for
choosing what result to quote may lead to undercoverage. Many physicists would
quote an upper limit on any possible signal if their observation was less than 3
standard deviations above the expected background, but a two-sided interval if
their result was above this. With each type of interval constructed to give 90%
coverage, there are some values of the parameter for which the coverage for this
mixed procedure drops to 85%; Feldman and Cousins refer to this as ‘flip-flop’.
Their ‘unified’ approach circumvents this problem, as it automatically yields upper
limits for small values of the data, but two-sided intervals for larger measurements,
while avoiding undercoverage for all possible true values of the signal.
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15.4.4 Sensitivity

It is useful to quote the sensitivity of a procedure, as well as the actual upper
limit as derived from the observed data.15 For upper limits or for uncertainties on
measurements, this can be defined as the median value that would be obtained if the
procedure was repeated a large number of times.16 Using the median is preferable
to the mean because (a) it is metric independent (i.e. the median lifetime upper limit
would be the reciprocal of the median decay rate lower limit); and (b) it is much less
sensitive to a few anomalously large upper limits or uncertainty estimates.

It is common to present not only the median of the expected distribution, but also
values corresponding to 16th and 84th percentiles (commonly referred to as ±1 σ )
and also the 2.5% and 97.5% ones (±2σ ). This enables a check to be made that the
observed result is reasonable.

Punzi [57] has drawn attention to the fact that this choice of definition for
sensitivity has some undesirable features. Thus designing an analysis procedure to
minimise the median upper limit for a search in the absence of a signal provides a
different optimisation from maximising the median number of standard deviations
for the significance of a discovery when the signal is present. Also there is only
a 50% chance of achieving the median result or better. Instead, for pre-defined
levels α and confidence level CL, Punzi determines at what signal strength there
is a probability of at least CL for establishing a discovery at a significance level α.
This is what he quotes as the sensitivity, and is the signal strength at which we are
sure to be able either to claim a discovery or to exclude its existence. Below this,
the presence or otherwise of a signal makes too little difference, and we may remain
uncertain (see Fig. 15.5).

15.4.5 Nuisance Parameters

For calculating upper limits in the simple counting experiment described in
Sect. 15.4.1, the nuisance parameters arise from the uncertainties in the background
rate b and the acceptance ε. These uncertainties are usually quoted as σb and σε

(e.g. b = 3.1 ± 0.5), and the question arises of what these uncertainties mean.
Sometimes they encapsulate the results of a subsidiary measurement, performed to
estimate b or ε, and then they would express the width of the Bayesian posterior
or of the frequentist interval obtained for the nuisance parameters. However, in

15The sensitivity on its own will not do, because it is independent of the data.
16Instead of using a large number of simulations in order to extract the median, sometimes the
‘Asimov’ data set is used. This is the single data set that would be obtained if statistical fluctuations
were suppressed. i.e. if a model predicted 11.3 events in a particular bin, the Asimov data set for
that model would contain 11.3 events in that bin. The Asimov data set and the median of the toys
usually but not always produce similar results.
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Fig. 15.5 Punzi definition of sensitivity. Expected distributions for a statistic t (which in simple
cases could be simply the observed number of events n), for H0 = background only (solid curves)
and for H1 = background plus signal (dashed curves). In (a), the signal strength is very weak,
and it is impossible to choose between H0 and H1. As shown in (b), which is for moderate signal
strength, p0 is the probability according to H0 of t being equal to or larger than the observed t0. To
claim a discovery, p0 should be smaller than some pre-set level α, usually taken to correspond to
5σ ; tcrit is the minimum value of t for this to be so. Similarly p1 is the probability according to H1
for t ≤ t0. The power function is the probability according to the alternative hypothesis that t will
exceed tcrit . As the separation of the H0 and H1 pdf s increases, so does the power. According
to Punzi, the sensitivity should be defined as the expected production strength of the signal such
that the power exceeds another predefined CL, e.g. 95%. The exclusion region corresponds to t0 in
the 5% lower tail of H1, while the discovery region has t0 in the 5σ upper tail of H0; in (b) there
is a “No decision” region in between, as the signal strength is below the sensitivity value. The
sensitivity is thus the signal strength above which there is a 95% chance of making a 5σ discovery.
i.e. The distributions for H0 and H1 are sufficiently separated that, apart possibly for the 5σ upper
tail of H0 and the 5% lower tail of H1, they do not overlap. In (c) the signal strength is so large that
there is no ambiguity in choosing between the hypotheses

many situations, the uncertainties may involve Monte Carlo simulations, which have
systematic uncertainties (e.g. related to how well the simulation describes the real
data) as well as statistical ones; or they may reflect uncertainties or ambiguities
in theoretical calculations required to derive b and/or ε. In the absence of further
information the posterior is often assumed to be a Gaussian, usually truncated so as
to exclude unphysical (e.g. negative) values. This may be at best only approximately
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true, and deviations are likely to be most serious in the tails of the distribution. A
log-normal or gamma function may be a better choice.

There are many methods for incorporating nuisance parameters in upper limit
calculations. These include:

• Profile likelihood (see also Sect. 15.2.3)
The likelihood, based on the data from the main and from the subsidiary
measurements, is a function of the parameter of interest s and of the nui-
sance parameters. The profile likelihood Lprof (s) is simply the full likelihood
L(s, bbest (s), εbest (s)), evaluated at the values of the nuisance parameters that
maximise the likelihood at each s. Then the profile likelihood is simply used to
extract the limits on s, much as the ordinary likelihood could be used for the case
when there are no nuisance parameters.
Rolke et al. [59] have studied the behaviour of the profile likelihood method
for limits. Heinrich[32] had shown that the likelihood approach for estimating
a Poisson parameter (in the absence of both background and of nuisance
parameters) can have poor coverage at low values of the Poisson parameter.
However, the profile likelihood seems to do better, probably because the nuisance
parameters have the effect of smoothing away the fluctuating coverage observed
by Heinrich.

• Fully Bayesian
When there is a subsidiary measurement for a nuisance parameter, a prior
is chosen for b (or ε), the data are used to extract the likelihood, and then
Bayes’ Theorem is used to deduce the posterior for the nuisance parameter.
This posterior from the subsidiary measurement is then used as the prior for the
nuisance parameter in the main measurement (this prior could alternatively come
from information other than a subsidiary measurement); with the prior for s and
the likelihood for the main measurement, the overall joint posterior for s and
the nuisance parameter(s) is derived.17 This is then integrated over the nuisance
parameter(s) to determine the posterior for s, from which an upper limit can be
derived; this procedure is known as marginalisation.
Numerical examples of upper limits can be found in ref. [60], where a method
is discussed in detail. Thus assuming (somewhat unrealistically) precisely deter-
mined backgrounds, the effect of a 10% uncertainty in ε can be seen for various
measured values of n in Table 15.1. A plot of the coverage when the uncertainty
in ε is 20% is reproduced in Fig. 15.6.
It is not universally appreciated that the choice for the main measurement of a
truncated Gaussian prior for ε and an (improper) constant prior for non-negative
s results in a posterior for s which diverges[61]. Thus numerical estimates of the
relevant integrals are meaningless. Another problem comes from the difficulty
of choosing sensible multi-dimensional priors. Heinrich has pointed out the

17This is usually equivalent to starting with a prior for s and the nuisance parameters, and the
likelihood for the data from the main and the subsidiary experiments together, to obtain the joint
posterior.



668 L. Lyons

Table 15.1 Bayesian 90% confidence level upper limits for the production rate s as a function
of n, the observed number of events

n b = 0.0 b = 3.0

0 2.35 (2.30) 2.35 (2.30)

3 6.87 (6.68) 4.46 (4.36)

6 10.88 (10.53) 7.80 (7.60)

9 14.71 (14.21) 11.56 (11.21)

20 28.27 (27.05) 25.05 (24.05)

The Poisson parameter μ = ε ∗ s + b, where the expected background b is either 0.0 or 3.0,
and is precisely known; and ε, whose true values is 1.0, is estimated in a subsidiary measurement
with 10% accuracy. The numbers in brackets are the corresponding upper limits when ε is known
precisely. At large n, the limits for b = 3.0 are 3 units lower than those for b = 0.0; the latter are
approximately n + 1.28

√
n at large n. The effect of the uncertainty in ε is to increase the limits,

and by a larger amount at large n. For n = 0, these Bayesian limits are independent of the expected
background b

Fig. 15.6 The coverage C for the 90% confidence level upper limit as a function of the true
parameter strue, as obtained in a Bayesian approach. The background b = 3.0 is assumed to be
known exactly, while the subsidiary measurement for ε gives a 20% accuracy. The discontinuities
are a result of the discrete (integer) nature of the measurements. There is no undercoverage

problems that can arise for the above Poisson counting experiment, when it is
extended to deal with several data channels simultaneously[62].

• Fully frequentist
In principle, the fully frequentist approach to setting limits when provided
with data from the main and from subsidiary measurements is straightforward:
the Neyman construction is performed in the multidimensional space where
the parameters are s and the nuisance parameters, and the data are from all
the relevant measurements. Then the region in parameter space for which the
observed data was likely is projected onto the s-axis, to obtain the confidence
region for s.
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In practice there are formidable difficulties in writing a program to do this in
a reasonable amount of time. Another problem is that, unless a clever ordering
rule is used for producing the acceptance region in data space for fixed values of
the parameters, the projection phase leads to overcoverage, which can become
larger as the number of nuisance parameters increases. Good ordering rules have
been found for a version of the Poisson counting experiment[63], and also for
the ratio of Poisson means[64], where the confidence intervals are tighter than
those obtained by conditioning on the sum of the numbers of counts in the two
observations.
For the fully frequentist method, it is guaranteed that there will be no under-
coverage for any combination of parameter true values. This is not so for any
other method, and so most particle physicists would like assurance that the
technique used does indeed provide reasonable coverage, at least for s. There is
usually lively debate between frequentists and Bayesians as to whether coverage
is desirable for all values of the nuisance parameter(s), or whether one should
be happy with no or little undercoverage when experiments are averaged, for
example, over the nuisance parameter true values.

• Mixed
Because of the difficulty of performing a fully frequentist analysis in all but the
simplest problems, an alternative approach[65] is to use Bayesian averaging over
the nuisance parameters, but then to employ a frequentist approach for s. The
hope is that for most experiments setting upper limits, the statistical uncertainties
on the low n data are relatively large and so, provided the uncertainties in the
nuisance parameters are not too large, the effect of the systematics on the upper
limits will not be too dramatic, and an approximate method of dealing with them
may be reasonable.
Although such an approach cannot be justified from fundamentals, it provides a
practical method whose properties can be checked, and is often satisfactory.

15.4.6 Banff Challenges

Given the large number of techniques available for extracting upper limits from
data, especially in the presence of nuisance parameters, it was decided at the
Banff meeting[6] that it would be useful to compare the properties of the different
approaches under comparable conditions. This led to the setting up of the ‘Banff
Challenge’, which consisted of providing common data sets for anyone to calculate
their upper limits. This was organised by Joel Heinrich, who reported on the
performance of the various methods at the PHYSTAT-LHC meeting[66].
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At the second Banff meeting[8], the challenge was set by Tom Junk and consisted
of participants trying to distinguish between histograms, some of which contained
only background and others which contained a background and signal, which
appeared as a peak (compare Sect. 15.7.5)

15.4.7 Recommendations

It would be incorrect to say that there is one method that must be used. Many Particle
Physicists’ ideal would be to use a frequentist approach if viable software were
available for problems with several parameters and items of data. Otherwise they
would be prepared to settle for a Bayesian approach, with studies of the sensitivity of
the upper limit to the choice of priors, and of the coverage; or for a profile likelihood
method, again with coverage studies. What is important is that the procedure should
be fully defined before the data are analysed; and that when the experimental result
and the sensitivity of the search are reported, the method used should be fully
explained.

The CDF Statistics Committee [67] also suggests that it is useful to use
a technique that has been employed by other experiments studying the same
phenomenon; this makes for easier comparison. They tend to favour a Bayesian
approach, chiefly because of the ease of incorporating nuisance parameters.

15.5 Combining Results

This section deals with the combination of the results from two or more mea-
surements of a single (or several) parameters of interest. It is not possible to
combine upper limits (UL). This is because an 84% UL of 1.5 could come from
a measurement of 1.4 ± 0.1, or 0.5 ± 1.0; these would give very different results
when combined with some other measurement.

The combination of p-values is discussed in Sect. 15.7.9.

15.5.1 Single Parameter

An interesting question is whether it is possible to combine two measurements
of a single quantity, each with uncertainty ±10, such that the uncertainty on the
combined best estimate is ±1? The answer can be deduced later.
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To combine N different uncorrelated measurements ai ± σi of the same physical
quantity a18 when the measurements are believed to be Gaussian distributed about
the true value atrue, the well-known result is that the best estimate acomb ± σcomb is
given by

acomb = �(ai ∗ wi)/�wi, σcomb = 1/
√

�wi, (15.13)

where the weights are defined as wi = 1/σ 2
i . This is readily derived from

minimising with respect to a a weighted sum of squared deviations

S(a) = �(ai − a)2/σ 2
i (15.14)

The extension to the case where the individual measurements are correlated
(as is often the case for analyses using different techniques on the same data)
is straightforward: S(a) becomes ��(ai − a) ∗ Hij ∗ (aj − a), where H is the
inverse covariance matrix for the ai . It provides Best Linear Unbiassed Estimates
(BLUE)[70].

There are, however, practical details that complicate its application. For example,
in the above formula, the σi are supposed to be the true accuracies of the
measurements. Often, all that we have available are estimates of their values.
Problems arise in situations where the uncertainty estimate depends on the measured
value ai . For example, in counting experiments with Poisson statistics, it is typical
to set the uncertainty as the square root of the observed number. Then a downward
fluctuation in the observation results in an overestimated weight, and acomb is
biassed downwards. If instead the uncertainty is estimated as the square root of
the expected number a, the combined result is biassed upwards—the increased
uncertainty reduces S at larger a. A way round this difficulty has been suggested
by Lyons et al. [71]. Alternatively, for Poisson counting data a likelihood approach
is preferable to a χ2-based method.

Another problem arises when the individual measurements are very correlated.
When the correlation coefficient of two uncertainties is larger than σ1/σ2 (where σ1
is the smaller uncertainty), acomb lies outside the range of the two measurements.
As the correlation coefficient tends to +1, the extrapolation becomes larger, and is
sensitive to the exact values assumed for the elements of the covariance matrix. The
situation is aggravated by the fact that σcomb tends to zero. This is usually dealt with
by selecting one of the two analyses, rather than trying to combine them. However,
if the estimated uncertainty increases with the estimated value, choosing the result
with the smaller estimated uncertainty can again produce a downward bias. On the
other hand, using the smaller expected uncertainty can cause us to ignore an analysis
which had a particularly favourable statistical fluctuation, which produced a result

18It is of course much better to use all the data in a combined analysis, rather than simply to
combine the results.
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that was genuinely more precise than expected19 How to deal with this situation in
general is an open question. It has features in common with the problem (inspired by
ref. [55]) of measuring a voltage by choosing at random a voltmeter from a cupboard
containing meters of different sensitivities.

Another example involves combining two measurements of a cross-section
with small statistical uncertainties, but with large correlated uncertainties from the
common luminosity. With this luminosity uncertainty included in the covariance
matrix, BLUE can result in the combined value being outside the range of the
individual measurements. For this situation, it is preferable to exclude the luminosity
uncertainty from the covariance matrix, and to apply it to the combined result
afterwards.

15.5.2 Two or More Parameters

An extension of this procedure is for combining N pairs of correlated measurements
(e.g. the gradient and intercept of a straight line fit to several sets of data, where for
simplicity it is assumed that any pair is independent of every other pair). For several
pairs of values (ai, bi) with inverse covariance matrices Mi , the best combined
values (acomb, bcomb) have as their inverse covariance matrix M = �Mi . This
means that, if the covariance matrix correlation coefficients ρi of the different
measurements are very different from each other, the uncertainty on acomb can be
much smaller than that for any single measurement.

This situation applies for track fitting to hits in a series of groups of tracking
chambers, where each set of close chambers provides a very poor determination
of the track; but the combination involves widely spaced chambers and determines
the track well. Using the profile likelihoods (e.g. for the intercept, profiled over the
gradient) for combining different measurements loses the correlation information
and can lead to a very poor combined estimate[37]. The alternative of ignoring the
correlation information is also strongly discouraged.

The importance of retaining covariances is relevant for many combinations, e.g.
for the determination of the amount of Dark Energy in the Universe from various
cosmological data[73].

19For example, the ALEPH experiment at LEP produced a tighter-than-expected upper limit on
the mass of ντ because they happened to observe τ decay configurations which were particularly
sensitive to the ντ mass.
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15.5.3 Data Consistency

The standard procedure for combining data pays no attention to whether or not
the data are consistent. If they are clearly inconsistent, then they should not all
be combined. When they are somewhat inconsistent, the procedure adopted by the
Particle Data Group[14] is to increase all the uncertainties by a common factor such
that the overall χ2 per degree of freedom equals unity.20

The Particle Data Group prescription for expanding uncertainties in the case of
discrepant data sets has complications when each of the data sets consists of two or
more parameters[72].

15.6 Goodness of Fit

15.6.1 Sparse Multi-Dimensional Data

The standard method loved by most scientists uses the weighted sum of squares,
commonly called χ2. This, however, is only applicable to binned data (i.e. in a one
or more dimensional histogram). Furthermore it loses its attractive feature that its
distribution is model-independent when there is not enough data, which is likely to
be so in the multi-dimensional case.

Although the maximum likelihood method is very useful for parameter determi-
nation with unbinned data, the value of Lmax usually does not provide a measure
of goodness of fit (see Sect. 15.2.2).

An alternative that is used for sparse one-dimensional data is the Kolmogorov-
Smirnov (KS) approach[68], or one of its variants. However, in the presence of fitted
parameters, simulation is again required to determine the expected distribution of
the KS-distance. Also because of the problem of how to order the data, the way to
use it in multi-dimensional situations is not unique.

The standard KS method uses the maximum deviation between two cumulative
distributions; because of statistical fluctuations, this is likely to occur near the
middle of the distributions. In cases where interesting New Physics is expected to
occur at extreme values of some kinematic variable (e.g. pT ), variants of KS such as
Anderson-Darling[69] that give extra weight to the distributions’ tails may be more
useful.

20This is somewhat conservative, in that even if there are no problems, about half the data sets
would be expected to have this larger than unity.
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15.6.2 Number of Degrees of Freedom

If we construct the weighted sum of squares S between a predicted theoretical curve
and some data in the form of a histogram, provided the Poisson distribution of the
bin contents can be approximated by a Gaussian (and the theory is correct, the data
are unbiased, the uncertainty estimates are correct, etc.), asymptotically21 S will
be distributed as χ2 with the number of degrees of freedom ν = n − f , where n is
the number of data points and f is the number of free parameters whose values are
determined by minimising S.

The relevance of the asymptotic requirement can be seen by imagining fitting a
more or less flat distribution by the expression N(1 + 10−6 cos(x − x0)), where the
free parameters are the normalisation N and the phase x0. It is clear that, although
x0 is left free in the fit, because of the 10−6 factor, it will have a negligible effect
on the fitted curve, and hence will not result in the typical reduction in S associated
with having an extra free parameter. Of course, with an enormous amount of data,
we would have sensitivity to x0, and so asymptotically it does reduce ν by one unit,
but not for smaller amounts of data.

Another example involves neutrino oscillation experiments[54]. In a simplified
two neutrino scenario, the neutrino energy spectrum is fitted by a survival probabil-
ity P of the form

P = 1 − sin2 2θ sin2(C ∗ �m2), (15.15)

where C is a known function of the neutrino energy and the length of its flight path,
�m2 is the difference in mass squared of the relevant neutrino species, and θ is the
neutrino mixing angle. For small values of C ∗ �m2, this reduces to

P ≈ 1 − sin2 2θ (C ∗ �m2)2 (15.16)

Thus the survival probability depends on the two parameters only via their product
sin 2θ �m2. Because this combination is all that we can hope to determine, we
effectively have only one free parameter rather than two. Of course, an enormous
amount of data can manage to distinguish between sin

(
C ∗ �m2

)
and C ∗�m2, and

so asymptotically we have two free parameters as expected.

15.7 Discovery Issues

Searches for new particles are an exciting endeavour, and continue to play a large
role at the LHC at CERN, in neutrino experiments, in searches for dark matter, etc.
The 2007 and 2011 PHYSTAT Workshops at CERN[7, 9] were devoted specifically

21The examples in this section go beyond the requirement that we need enough events for the
Poisson distribution to be well approximated by a Gaussian.
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to statistical issues that arise in discovery-orientated analyses at the LHC. Ref
[74] deals with statistical issues that occur in Particle Physics searches for new
phenomena; as an example, it includes the successful search for the Higgs boson
at the LHC. A more detailed description of the plans for the Higgs search before its
discovery is in ref. [75].

15.7.1 H0, or H0 Versus H1?

In looking for new physics, there are two distinct types of approach. We can compare
our data just with the null hypothesis H0, the SM of Particle Physics; alternatively
we can see whether our data are more consistent with H0 or with an alternative
hypothesis H1, some specific manifestation of new physics, such as a particular
form of quark and/or lepton substructure. The former is known as ‘goodness of fit’,
while the term ‘hypothesis testing’ is often reserved for the latter.

Each of these approaches has its own advantage. By not specifying a specific
alternative,22 the goodness of fit test may be capable of detecting any form of
deviation from the SM. On the other hand, if we are searching for some specific
new effect, a comparison of H0 and H1 is likely to be a more sensitive way for that
particular alternative. Also, the ‘hypothesis testing’ approach is less likely to give a
false discovery claim if the assumed form of H0 has been slightly mis-modelled.

15.7.2 p-Values

In order to quantify the chance of the observed effect being due to an uninteresting
statistical fluctuation, some statistic is chosen for the data. The simplest case would
be the observed number n0 of interesting events. Then the p-value is calculated,
which is simply the probability that, given the expected background rate b from
known sources, the observed value would fluctuate up to n0 or larger. In more
complicated examples involving several relevant observables, the data statistic may
be a likelihood ratio L0/L1 for the likelihood of the null hypothesis H0 compared
with that for a specific alternative H1.

To compute the p-value of the observed or of possible data, the distribution f (t)

of the data statistic t under the relevant hypothesis is required. In some cases this
can be obtained analytically, but in more complicated situations, f (t) may require
simulation. For t being −2 ln L0/Lbest , Cowan et al have given useful asymptotic

22Even a test of the null hypothesis may not be completely independent of ideas about alternatives.
Thus in an event counting experiment, new physics usually results in an increase in rate, unless
we are looking for neutrino oscillations, in which case a decrease would be significant. Also,
sometimes the statistic used for a goodness of fit test of H0 may be the likelihood ratio for H0 as
compared with a specific alternative H1.
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formulae for f (t)[76]; here Lbest is the value of the likelihood when the parameters
in H0 are set at their best values.

A small value of p indicates that the data are not very compatible with the theory
(which may be because the detector’s response or the background is poorly modeled,
rather than the theory being wrong).

Particle Physicists usually convert p into the number of standard deviations σ

of a Gaussian distribution, beyond which the one-sided tail area corresponds to p;
statisticians refer to this as the z-score, but physicists call it significance. Thus 5σ

corresponds to a p-value of 3 ∗ 10−7. This is done simply because it provides a
number which is easier to remember, and not because Gaussians are relevant for
every situation.

Unfortunately, p-values are often misinterpreted as the probability of the theory
being true, given the data. It sometimes helps colleagues clarify the difference
between p(A|B) and p(B|A) by reminding them that the probability of being
pregnant, given the fact that you are female, is considerably smaller than the
probability of being female, given the fact that you are pregnant. Reference [77]
contains a series of articles by statisticians on the use (and misuse) of p-values.

Sometimes S/
√

B or S/
√

(S +B) or the like (where S is the number of observed
events above the estimated background B) is used as an approximate measure of
significance. These approximations can be very poor, and their use is in general not
recommended.23

15.7.3 CLs

This is a technique[58] which is used for situations in which a discovery is not
made, and instead various parameter values are excluded. For example the failure to
observe SUSY particles can be converted into mass ranges which are excluded (at
some confidence level).

Figure 15.5 (again) illustrates the expected distributions for some suitably chosen
statistic t under two different hypotheses: the null H0 in which there is only standard
known physics, and H1 which also includes some specific new particle, such as
a SUSY neutralino. In Fig. 15.5c, the new particle is produced prolifically, and
an experimental observation of t should fall in one peak or the other, and easily
distinguishes between the two hypotheses. In contrast, Fig. 15.5a corresponds to
very weak production of the new particle and it is almost impossible to know
whether the new particle is being produced or not.

23For example, if selections to enhance signal with respect to background were optimised using
S/

√
B, extremely hard cuts might be chosen, yielding expected numbers of events S = 0.1 and

B = 10−3. This results in S/
√

B = 10, which sounds very good, but in fact this selection is
disastrous.
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The conventional method of claiming new particle production would be if the
observed t fell well above the main peak of the H0 distribution; typically a p0 value
corresponding to 5σ would be required (see Sect. 15.7.7). In a similar way, new
particle production would be excluded if t were below the main part of the H1
distribution. Typically a 95% exclusion region would be chosen (i.e. p1 ≤ 0.05),
where p1 is by convention the left-hand tail of the H1 distribution, as shown in
Fig. 15.5b.

The CLs method aims to provide protection against a downward fluctuation of
t in Fig. 15.5a resulting in a claim of exclusion in a situation where the experiment
has no sensitivity to the production of the new particle; this could happen in 5% of
experiments. It achieves this by defining24

CLs = p1/(1 − p0), (15.17)

and requiring CLs to be below 0.05. From its definition, it is clear that CLs cannot
be smaller than p1, and hence is a conservative version of the frequentist quantity
p1. It tends to p1 when t lies above the H0 distribution, and to unity when the H0
and H1 distributions are very similar. The reduced CLs exclusion region is shown by
the dotted diagonal line in Fig. 15.7; the price to pay for the protection provided by
CLs is that there is built-in conservatism when p1 is small but p0 has intermediate
values i.e. there are more cases in which no decision is made. Most statisticians are
appalled by the use of CLs , because they consider that it is meaningless to take the
ratio of two p-values.

It is deemed not to be necessary to protect against statistical fluctuations giving
rise to discovery claims in situations with no sensitivity, because that should happen
only at the 3 ∗ 10−7 rate (the one-sided 5σ Gaussian tail area).

Figure 15.7 is also useful for understanding the Punzi sensitivity definition (see
Sect. 15.4.4). For any specified distributions of the statistic t for H0 and H1, the
possible (p0, p1) values lie on a curve or straight line which extends from (0,1) to
(1,0). With more data, the t distributions separate, and the curve moves closer to the
p0 and p1 axes. The amount of data required to satisfy the Punzi requirement of
always claiming a discovery or an exclusion is when no part of the curve is in the
“no decision” region of Fig. 15.7.

24Given the fact that CLs is the ratio of two p-values, the choice of symbol CLs (standing for
‘confidence level of signal’) is not optimal. Another source of confusion is that in definitions of
CLs the ways the p-values are defined vary, so the formulae can look different but the underlying
concept is the same.

A subtlety with Eq. (15.17) is that p0 there is the probability of obtaining a measurement
greater than the observed one, rather than the usual ‘greater than or equal to’. This is to make
1 − p0 the probability of a value smaller than or equal to the observed one, in analogy with the
definition of p1. It makes a difference when the observation is a small discrete number.
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Fig. 15.7 Plot of p0 against p1 for comparing a data statistic t with two hypotheses H0 and H1,
whose expected pdf ’s for t are given by two Gaussians of peak separation �μ, and of equal
width σ . For a given pair of pdf ’s for t , the allowed values of (p0, p1) lie on a curve or straight
line (shown solid in the diagram). The expected density for the data along a curve is such that its
projection along the p0-axis (or p1-axis) is expected to be uniform for the hypothesis H0 (or H1
respectively). As the separation increases, the curves approach the p0 and p1 axes. Rejection of
H0 is for p0 less than, say, 3 ∗ 10−7; here it is shown as 0.05 for ease of visualisation. Similarly
exclusion of H1 is shown as p1 < 0.1. Thus the (p0, p1) square is divided into four regions: the
largest rectangle is when there is no decision, the long one above the p0-axis is for exclusion of H1,
the high one beside the p1-axis is for rejection of H0, and the smallest rectangle is when the data
lie between the two pdf ’s. For �μ/σ = 3.33, there are no values of (p0, p1) in the “no decision”
region. In the CLs procedure, rejection of H1 is when the t statistic is such that (p0, p1) lies below
the diagonal dotted straight line

15.7.4 Comparing Two Hypotheses Via χ2

Assume that there is a histogram with 100 bins, and that a χ2 method is being used
for fitting it with a function with one free parameter. The expected value of χ2 is
99 ± 14. Thus if p0, the best value of the parameter, yields a χ2 of 85, this would be
regarded as very satisfactory. However, a theoretical colleague has a model which
predicts that the parameter should have a different value p1, and wants to know what
the data have to say about that. This is tested by calculating the χ2 for that p1, which
yields a value of 110. There appear to be two contradictory conclusions:

• p1 is satisfactory: This is based on the fact that the relevant χ2 of 110 is well
within the expected range of 99 ± 14.
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• p1 is ruled out: The uncertainty on p is estimated by seeing how much it must
change from its optimum value in order to make χ2 increase by 1. For this data,
χ2(p1) is 25 units larger than χ2(p0), and so, assuming that the behaviour of
χ2 in the neighbourhood of the minimum is parabolic, p1 is ruled out at the ∼5
standard deviation level.

Unfortunately, many physicists, over-impressed by the fact that χ2(p1) appears
to be satisfactory, are reluctant to accept that p0 is strongly favoured by the data.

A similar argument applies to comparing a given set of data with 2 separate
hypotheses e.g. fitting a histogram with an exponential or a straight line. Again the
difference between the χ2 quantities provides better discrimination between the
hypotheses than do the individual χ2 values[78]. Another example of using the
difference in χ2’s is given in the next section.

There are of course other ways available for comparing two hypotheses. e.g.
likelihood ratio, Bayes factor, Bayesian information criterion, etc. For a fuller
discussion, see ref. [79]. A description of their application in cosmology can be
found in ref. [80]. Problems in choosing priors for the Bayes factor approach for
selecting among hypotheses are discussed by Heinrich[81].

15.7.5 Peak Above Smooth Background

When comparing two hypotheses with our data, we can use the numerical values of
the two χ2 quantities with a view to making some decision about the hypotheses.
For example, we may be fitting a smooth distribution by a power series, and wonder
whether we need a quadratic term, or whether a linear expression would suffice.
Alternatively we may want to assess whether a mass spectrum favours the existence
of a peak on top of a smooth background, as compared with just the smooth
background. Qualitatively, if the extra term(s) are unnecessary, they will result in
a relatively small reduction in χ2, while if they really are required, the reduction
could be larger.

It is sometimes possible to be quantitative about the expected reduction when
the extra terms are not needed[82]. If we are in the asymptotic regime, and if the
hypotheses are nested,25 and if the extra parameters of the larger hypothesis are
defined under the smaller one, and in that case do not lie on the boundary of their
allowed region, then the difference in χ2 should itself be distributed as a χ2, with
the number of degrees of freedom equal to the number of extra parameters.

An example that satisfies this is provided by the different order polynomials. The
hypotheses are nested, in that the linear situation is a special case of a quadratic,
where the coefficient of the quadratic term is zero. Thus the extra parameter is
defined and within the (infinite) allowed range. Then, provided we have a large

25This means that for suitable values of the parameters the larger hypothesis reduces to the smaller
one.
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amount of data, we expect the difference in χ2 to have one degree of freedom, so a
value larger than around 5 would be unlikely.

A contrast is provided by a smooth background C(x) compared with a back-
ground plus peak, C(x) + A exp [−0.5 ∗ (x − x0)

2/σ 2]. The extra parameters for
the peak are its amplitude, position and width: A, x0 and σ respectively. Again the
hypotheses are nested, in that C(x) is just a special case of the peak plus background,
with A = 0. However, although A is defined in the background only case, x0 and
σ are not, as their values become completely irrelevant when A = 0. Furthermore,
unless the peak plus background fit allows A to be negative, zero is on the boundary
of its allowed region. We thus should not expect the difference of the χ2 quantities
itself to be distributed as a χ2 [83–85]. To assess the significance of a particular χ2

difference, this unfortunately means that we have to obtain its distribution ourselves,
presumably by Monte Carlo. If we want to find out probabilities of statistical
fluctuations at the 10−6 level, this requires a lot of simulation, and probably needs
us to use something better than brute force.

The problem of non-standard limiting distributions for χ2 tests has a substantial
statistical literature (see, for example, refs. [86] and [87].)

15.7.6 Incorporating Nuisance Parameters

The calculation of p-values is complicated in practice by the existence of nuisance
parameters. (For the simple situation described in Sect. 15.7.2, there could be
some uncertainty in the estimated background.) There are numerous ways of
incorporating them. These include:

• Conditioning: For example, with a single nuisance parameter, it may be possible
to condition on the sum of the number of counts in the main and the subsidiary
experiments, and then to use the binomial distribution to obtain the p-value.

• Plug-in p-value: The best estimate of the nuisance parameter under the null
hypothesis is used to calculate p.

• Prior predictive p-value: The p-values are averaged over the nuisance parame-
ters, weighted by their prior distributions. This is in the spirit of the Cousins and
Highland approach[65] for upper limits.

• Posterior predictive p-value: This time, the posterior distributions of the nuisance
parameters are used for weighting.

• Supremum p-value: The largest p-value for any possible value of the nuisance
parameter is used. This is likely to be useful only when the nuisance parameter is
forced to be within some range; or when there is only a small number of possible
alternative theoretical interpretations.

• Confidence interval: A region of frequentist confidence 1 − γ is used for the
nuisance parameter(s), and then the adjusted p-value is pmax + γ , where pmax

is the largest p-value as the nuisance parameters are varied over their confidence
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region. Clearly if it is desired to establish a discovery from p-values around 10−7

or smaller, then γ should be chosen at least an order of magnitude below this.

The properties of these and other methods are compared by Demortier [84], while
Cranmer [88] and Cousins et al.[89] have discussed some of them in the context of
searches at the LHC.

The role of systematic effects is likely to be more serious here than for upper
limits discussed in Sect. 15.4.5. This is because in upper limit situations the number
of events is usually small, and so statistical uncertainties dominate. In contrast,
discovery claims have p-values of 3 ∗ 10−7 or smaller, and so tails of distributions
are likely to be important.

15.7.7 Why 5σ?

Unfortunately the usually accepted criterion for claiming a discovery in Particle
Physics is that p should correspond to at least 5σ . Statisticians almost invariably
ask why such a stringent level is used. One answer is past experience: all too often
interesting effects at the 3σ or 4σ level have gone away as more data are collected.
Another is the multiple comparison problem, or “Look Elsewhere Effect” (LEE).
While the chance of obtaining a 5σ effect in one bin of a particular histogram
(“local p-value”) is really small, it is to be remembered that histograms have many
bins,26 they could be plotted with different selection criteria and different binning,27

and there are very many other histograms that were or could have been looked at
in the course of the experiment.28 Thus the chance of a 5σ fluctuation occurring
somewhere in the data (“global p-value”) is much larger than might at first appear.
Calculating a global p-value may require an excessive amount of Monte-Carlo
simulation. Reference [90] circumvents this for asymptotic situations by providing a
formula for extrapolating the LEE correction factor from a lower significance level;
this requires considerably less simulation.

Finally, physicists subconsciously incorporate Bayesian priors in assessing how
likely they feel that they have discovered something new, and hence whether they

26In calculating a p-value in such a case, it is very desirable to take into account the number of
chances for a statistical fluctuation to occur anywhere in the histogram (or anywhere in the search
procedure, for more complicated analyses). At very least, it should be made clear what the basis of
the calculated p-value is.
27If a blind analysis is performed, such decisions are made before looking at the data, and so this
aspect of the “look elsewhere” effect is reduced.
28The extent to which other people’s searches should be included in an allowance for the “look
elsewhere” effect depends on the implied question being addressed. Thus are we considering the
chance of obtaining a statistical fluctuation in any of the analyses we have performed; or by
anyone analysing data in our experiment; or by any Particle Physicist this year? Because of the
ambiguity of which specific question is being addressed, which is often not explicitly mentioned,
we recommend not including an extra “look elsewhere” factor for this.
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should claim a discovery. Thus, in deciding between the possibilities of a new
discovery or of an undetected systematic effect, our priors might favour the latter,
and hence strong evidence for discovery is required from the data.29

However it is not necessarily equitable to use a uniform standard for large
general-purpose experiments and for small ones with a specific aim; or for looking
for a process which is expected (e.g. H 0 → μ+μ−), as compared with a more
speculative search, such as lepton substructure[91]. But physicists and especially
journal editors seem to like a defined rule rather than a flexible criterion, so this
bolsters the 5σ standard. In any case, it is largely a semantic issue, in that physicists
finding a 4.5σ effect would clearly report it, using judiciously chosen wording to
describe the interpretation of their observation.

Statisticians also ask whether models can really be trusted to describe the extreme
tails of distributions. In general, this may be so—counting experiments are expected
to follow Poisson distributions, with small corrections for possible long time-
scale drifts in detector calibrations; and particle decays usually are described by
exponential distributions in time. However, the situation is much less clear for
nuisance parameters, where uncertainty estimates may be less rigorous, and their
distribution is often assumed to be Gaussian (or truncated Gaussian) by default. The
effect of these uncertainties on very small p-values needs to be investigated case-
by-case.

It is important to remember that p-values merely test the null hypothesis. There
are more sensitive ways of looking for new physics when a specific alternative is
relevant. Thus a very small p-value on its own is usually not enough to make a
convincing case for discovery.

15.7.8 Repetitions in Time

Often experiments accumulate data over several years. The same search for a new
effect may typically be repeated once or twice each year as more data are collected.
Does this constitute another factor of ∼20 in the number of opportunities for a
statistical fluctuation to appear? Our reply is “No”. If there had been a 6σ signal
with the early data (which resulted in a claim for discovery), which had then become
only 3σ with more data, this would be grounds for downplaying the earlier discovery
claim. Thus at any time, there is essentially only one set of data (everything) that is
relevant.

For a p-value to be meaningful, it is important that the time at which the
experiment stops collecting data is determined not by the significance of the
observed signal but by external factors (e.g. accelerator being decommissioned,
ending of funding, etc.). Indeed there is a theorem that states that, provided data is

29If I were performing an experiment to look for violations of energy conservation, I would require
more than 5σ , because my prior for energy being conserved is very large.
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collected for long enough, it is possible to reach any arbitrary level of significance
against a hypothesis that is in fact true.

15.7.9 Combining p-Values

In looking for a given new effect, there may be several separate and uncorrelated
analyses which are relevant. These could correspond to different decay modes for
the new particle; or different experiments looking for the same signal. Thus, if the
p-values for the null hypothesis (i.e. no new physics) for the separate analyses were
10−6 and 0.1, what is the corresponding p-value for the pair of results?30

The unambiguous answer is that there is no unique recipe for combining them[92,
93]. There is no single way of taking a uniform distribution in two variables, and
finding a transformation pcomb(p1, p2) that converts it into a uniform distribution
of the single variable pcomb.

Two popular recipes involve asking what is the probability that the smaller p-
value will be 10−6 or smaller; or that the product is below p1 ∗ p2 = 10−7. (Note
that these probabilities are not 10−6 and 10−7 respectively.) None of the possible
methods has the property that in combining three p-values, the same answer is
obtained if p1 is first combined with p2, and then the result is combined with p3; or
whether some different ordering is used.

Another problem is the lack of other information that might be relevant. For
example, the p-values might arise from χ2’s with different numbers of degrees of
freedom ν e.g. χ2

1 = 90 for 100 degrees of freedom, and χ2
2 = 20 for ν = 1.

The second has a very small p-value, so many combination methods (including the
two mentioned above) would conclude that overall the data do not look consistent
with the null hypothesis. However, another plausible-sounding method is to add
the separate χ2 values and also the individual ν,31 to obtain a total χ2 = 110 for
ν = 101, which sounds perfectly satisfactory. The resolution of this discrepancy
of interpretation depends on the nature of the two tests. If the second analysis with
χ2 = 20 corresponded to just one extra measurement like the previous 100, then it
seems reasonable to combine the χ2 values and the ν, and to conclude that overall
there is indeed nothing surprising. But on the other hand, if the second measurement
was genuinely different, and an alternative way of looking for some discrepancy,
then it may be more appropriate to combine the p-values by one of the earlier
methods, which suggest that the overall consistency with theory is not good. It

30Rather than combining p-values, it is of course much better to use the complete sets of original
data (if available) for obtaining the combined result.
31The method described earlier involving the product of the p-values is equivalent to converting
each p to a χ2, assuming that ν = 2, regardless of whether this was the actual number of degrees
of freedom, and then adding the χ2 and also the ν.
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is this extra information about the nature of the two tests that determines which
combination method might be appropriate.

It is clearly important to decide in advance what combination method should be
used, without reference to the specific data being analysed.

15.8 Blind Analyses

These are becoming increasingly popular as a means of avoiding personal bias
affecting the result. They involve keeping part of the data unseen by the analysers,
until the data selection procedure and the analysis method have been completely
defined, all correction procedures specified, etc.

One of the early suggestions to use a blind analysis in a Particle Physics
experiment was due to Luis Alvarez. An experiment at Stanford had looked for
quarks, by measuring the residual charge on small spheres that were levitated in
a superconducting magnet. If a single free quark were present in a sphere, the
residual charge would be a third or two-thirds of the electron’s charge. Several of
the balls tested indeed yielded such values[94]. A potential problem was that large
corrections had to be applied to the raw data in order to extract the final result for
the charge. The suspicion was that maybe the experimenters were (subconsciously)
applying corrections until the value turned out to be ‘satisfactory’. The blind
approach involved the computer adding a random number to the raw value of the
charge, which would then be corrected until the experimentalists were satisfied, and
only then would the computer subtract the random number to reveal the final answer
for that sphere.32

There are various methods of performing blind analyses[95] most of which aim
to allow the experimentalists to look at some of the real data, in order to perform
checks that nothing is terribly wrong. Some of these are:

• The computer adds a random number to the data, which is only subtracted after
all corrections are applied. This was the method suggested by Alvarez.

• Use only Monte Carlo to define the procedure. This completely avoids the danger
of allowing the data to determine the procedure to be used, but suffers from the
drawback that the data cannot be compared with the Monte Carlo, to check that
the latter is reasonable.

• Use only a fraction of the data for defining the procedure, which then is held
fixed for the remainder of the data. In principle, an optimisation can be employed
to determine the fraction to be kept open, but in practice this is often decided by
choosing a semi-arbitrary time after which the future data is kept blind.

32This suggestion was implemented, but in fact no subsequent results were published. The current
consensus is that this ‘discovery’ of free quarks is probably spurious.
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• The signal region is defined by a certain part of multi-dimensional space, and this
is kept hidden, but all other regions, including those adjacent to the signal, are
available for inspection.

• Keep the Monte Carlo parameters hidden. This is a technique suggested by the
TWIST experiment in their high statistics precision determination of parameters
associated with muon decay. The procedure involves comparing the data with
various simulated sets, generated with a series of different parameter values.
The data and the simulations are both visible, but the parameter values used to
generate the simulations are kept hidden.

• Keep visible only a fraction of the contents of each bin of a histogram. This is
used by the MINOS experiment searching for neutrino oscillations; these would
affect the energy distribution of the observed events. By keeping visible different
unknown fractions of the data in each bin, the energy spectral shape cannot be
determined from the visible part of the data.

If several different groups within the same collaboration are performing similar
analyses for extracting some specific parameter, then it is desirable to fix the
procedure for selecting which result to present, or alternatively how to combine
the separate results. This should be done before the results are seen, and is worth
doing even if the individual analyses were not “blind”.

A question that arises with blind analyses is whether it should be permitted to
modify the analysis after the data had been unblinded. It is generally agreed that
this should not be done, unless everyone would regard it as ridiculous not to do
so. For example, if a search for rare events yielded 10 candidates over the course
of a year’s run, all of which occurred on Sunday mornings at precisely 1.17 a.m.,
it would be prudent to do some further investigation before publishing. If ‘post-
unblinding’ modification of the procedure is performed, this should be made clear
in any publication.

15.9 Topics that Deserve More Attention

15.9.1 Statistical Software

Particle physicists tend to write their own software for performing statistical compu-
tations. Although this has educational merits, it is inefficient use of one’s time. The
data-manipulation system of programmes ROOT/RooFit/RooStats contains many
useful statistical routines[96]. Tools also exist for implementing many methods for
separating signal from background[43, 44].

A problem with these is that they are too easy to use. In the hands of a non-
critical user, the required input data instructions may contain some error, with
the consequence that they will produce the solution to a different procedure than
the intended one. It is very important to check that the result obtained is not
unreasonable.
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15.9.2 Deep Learning

This involves the use of sophisticated techniques[45] for achieving nearly optimal
extraction of information from data, but which are still relatively unfamiliar to many
scientists. It is important to develop a set of protocols to ensure that they perform in
a reliable manner, and are not introducing subtle biases of which users are unaware.

15.9.3 Unfolding Data or Smearing Theory?

Observed experimental distributions are almost always smeared versions of ‘the true
distributions of Nature’. It is simpler to compare theory and data by smearing the
theory, rather than trying to unfold the experimental effects from the data, as the
latter is a less stable procedure and also introduces correlations among the bins
of the unfolded distribution. Some fields tend to favour deconvolution; this is partly
because it is rarer for them to have a dominant theoretical model with which the data
is to be compared. Unfolding does have the advantage that it provides an estimate
of the ‘true’ distribution, with which any future theory can be compared. Also it can
be looked at by a physicist, but we are not accustomed to readily interpreting data
where the contents of the histogram bins are highly correlated.

There are some situations where unfolding is desirable. For example, it allows the
comparison of distributions from different experiments, with different resolutions.
Another is using experimental data for tuning Monte Carlo generators; smearing the
data at each step of the optimisation increases the computation time too much.

Even for checking in future whether new theories are compatible with data does
not necessarily require unfolding. Provided that the smearing matrix of the detector
is provided, the future data can be smeared, and then compared with the actual (not
unfolded) data. However, including the effects of systematics can be a complication.

Sessions at the 2011 PHYSTAT workshop[9] and at CERN’s PHYSTATν

meeting[12] were devoted to unfolding. Blobel[97] has reviewed the topic, while
ref. [98] contains a statistician’s view of the statistical issues involved in unfolding.

15.9.4 Visualisation

The combination of the human eye and brain is very powerful at detecting patterns
in data (even if sometimes they are not there!) This can be useful in deciding how
to analyse the data; as a check on whether the result of an analysis is plausible;
whether a machine learning method for separating signal from background is
performing sensibly; etc. Such human inspection of data is feasible if there are only
a small number (below 4) of relevant variables. Techniques for inspecting multi-
dimensional data would be valuable.
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15.9.5 Non-parametric Methods

These are so unknown to most Particle Physicists that they are usually unaware
when they are using them. Simple examples include:

• A histogramme as an estimate of the density distribution of a variable of interest.
• Kernel density estimation.
• Kolmogorov-Smirnov or Anderson-Darling methods, to test whether distribu-

tions are consistent.
• Classification schemes based on k nearest neighbours.
• Neural networks

These all avoid the need to specify a particular parametric form, and hence
the values of any parameters. In general such a method is less powerful than a
parametric one, if the latter were available and relevant.

15.9.6 Collaboration with Statisticians

Other scientists seem to be better than particle physicists about involving statisti-
cians in the analysis of their data. This is partly due to the fact that we like to try
out statistical techniques ourselves; that we consider our data is too complicated for
other people to deal with; and that we are somewhat over-protective of our data,
and are reluctant to share it with others. None of this is particularly convincing, and
it is clear that we would benefit from the involvement of professional statisticians.
The advantages of having them participating in the recent PHYSTAT meetings have
been obvious.

In the past, Particle Physicists have on occasion asked rather specific questions
to Statisticians they happened to know. Statisticians prefer to be much more directly
involved with the data itself. With analyses becoming more and more complex, it
will be highly desirable for them to be affiliated with experimental groups.

15.10 Conclusion

Although the statistical aspects of many particle physics analyses are already at a
sophisticated level, it is clear that there are many practical statistical issues to be
resolved. With the increasing complexity of scientific investigations, more active
collaboration with statisticians and machine learning experts will result in a better
understanding of the relevant techniques and improved analyses in the future.
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indicate if changes were made.
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