
Chapter 10
Signal Processing for Particle Detectors

V. Radeka

10.1 Introduction

This chapter covers the principles and basic limits of signal processing for detectors
based on measurements of charge induced on predominantly capacitive electrodes.
While this presents a very limited scope, it already includes a broad range of differ-
ent detector technologies employed in experiments in several areas of science and in
various imaging devices. Detector technologies of interest involve semiconductors,
gas and liquid ionization media as well as photo detectors converting (scintillation
light) into photo-electrons or ionization. One class of detectors not considered here
are bolometric detectors (see Sect. 10.4).

The literature cited in this chapter is twofold: the textbooks, tutorials and review
articles which may serve to provide a systematic introduction to the reader, and
references to journal articles describing specific applications and technological
solutions. The former, while very good and useful, are unfortunately few, the latter
are only a small selection from the vast body of journal articles and conference
records. The former are listed first [1–10], and the latter are cited along with the
material presented in this chapter.

For many detectors, particularly very large scale detectors used at colliding
beam machines in particle and nuclear physics, systems aspects require most of
the attention in the design. In high precision measurements of energy, time arrival or
position of the incident particle or photon the noise introduced in the measurement is
of primary interest. Each area of science may impose greatly different requirements
on various performance parameters of the detector and signal processing. A silicon
pixel detector for particle tracking at a high luminosity collider requires very short
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pulse shaping (a few tens of nanoseconds) and it can tolerate a noise level of several
hundred electrons rms. Consequently, a leakage (dark) current contributing shot
noise may be 1 nA/cm2 or more. A silicon detector for x-ray spectroscopy in photon
science must be read out with a total noise of less than ten electrons rms with a
shaping time of the order of 1 μs. This allows a leakage current of only ~10 pA/cm2

or less. This chapter should enable the reader to evaluate the relations among such
detector and readout parameters.

Signal processing for particle detectors rests on understanding of signal for-
mation and of the sources of noise and their effects on measurement accuracy.
Signal formation in detectors is based on electrostatics and it is calculated relatively
easily starting from the Shockley-Ramo theorem [11, 12]. It gets more involved
in multi-electrode detectors [13] and in crosstalk analysis. Signal processing with
time-invariant systems has been extensively covered in the literature and is well
understood.

Most innovations in signal processing in recent years have been in circuit
implementations using monolithic CMOS technology. This technology has brought
about a significant shift in the circuit concepts to time variant circuits due to the use
of switched capacitance circuits for which CMOS transistors are well suited.

The noise analysis of time variant circuits brings up the question of whether to
perform the analysis in frequency domain or in time domain. Analysis in frequency
domain provides sufficient insight into time invariant circuits and it has been used in
most of the literature. Frequency domain is less well suited for time variant circuit
analysis as it does not provide much insight into the system transfer function. This is
where the concept of the weighting function and Campbell’s theorem [14] provide
the tools which are simpler to use and provide more insight. While both analytical
methods provide the same results in noise calculations, we note that particle detector
signals are best described and are observed in the time domain, and so is the system
response and the weighting function. In contrast, the noise analysis of narrow band
circuits is best done in the frequency domain. The time domain analysis is based
on the representation of noise as a random sequence of elementary impulses. In
spite of our thinking and observing in the time domain, the device and circuit noise
sources are customarily characterized in the frequency domain, e.g., we talk about
the “white noise”, “1/f noise”, etc. Thus we switch our thinking between the two
(Fourier transform related) domains depending on which one provides better insight
and is easier to analyze in a particular case.

This chapter is intended to provide some insight into detector signal processing.
Detailed circuit design, particularly of the monolithic circuits, has been rapidly
developing and there has been a proliferation of publications. Advanced simulation
tools are being used for noise analysis. Sometimes such an analysis provides
numerical results without providing much insight into the role of various noise
sources and into the overall weighting function of the signal processing chain. We
concentrate here on the interpretation of the weighting function and on those aspects
of signal processing and noise that have been less covered in the literature such as
the induced signals in multi-electrode (strip and pixel) detectors, the “kTC” noise,
correlated sampling and basic properties of low noise charge amplifiers. Induced
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signals are determined using the “weighting field” concept, and noise analysis is
based on the “weighting function” concept. The former is based on electrostatics and
the latter on superposition of noise impulse contributions to the variable (current,
charge) measured by the readout system.

10.2 Charge Collection and Signal Formation in Detectors

10.2.1 Current Induced by the Moving Charge
and the Weighting Field Concept

Figure 10.1 illustrates the Shockley-Ramo theorem for induced signals, current
and charge. Ew is the weighting field in units of 1/cm, and it is a measure of
electrostatic coupling between the moving charge and the sensing electrode. The
procedure to calculate the induced current as a function of time is as follows.
First, the weighting field is determined by solving Poisson’s equation analytically or
numerically assuming unity potential on the sensing electrode of interest and zero
potential on all other electrodes. Next, the velocity of the moving charge, ν = dx/dt,

Fig. 10.1 Weighting potential (blue lines) and weighting field lines for planar strip electrode
readout
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as a function of position is determined from the operating (applied) field on the
detector. This gives the induced current as a function of the position of the moving
charge,

i = −q
−→
E · −→v . (10.1)

Third, the position of the moving charge as a function of time is determined by
solving the equations of motion. This is necessary in the case of ballistic motion of
charge, but it is simple in the case of transport by drift as the charge carriers follow
the applied electric field. If we are interested only in the total induced charge and
not in the waveforms, the induced charge is simply given by the difference in the
weighting potentials between any two positions of the moving charge,

Qs = ∫
idt = + ∫ −→

E wd
−→
x ,

Qs (1, 2) = q (Vw2 − Vw1) .
(10.2)

An example of the weighting-field (potential) profiles is illustrated by the plot of
equipotential lines for planar geometry with a strip sensing electrode. The operating
(applied field) in this case is uniform and perpendicular to the electrodes. The
weighting field map is in general quite different from that of the operating field; the
two field maps are identical only in some special cases. The minus sign in Ramo’s
equation (Eq. 10.1) for the induced current results from the arbitrary assumption of
induced current into the electrode being positive.

The sketch in Fig. 10.2a shows conceptually how the weighting field (potential) is
defined: the sensing electrode is connected to unity potential, and all other electrodes
to zero potential. The equipotential lines in Fig. 10.2b illustrate the solution for this
case, showing two strips next to the sensing electrode. A great variety of results
for the induced current and charge may arise in an electrode structure, such as this,
depending on the particle type detected (distribution of ionization) and on the ratio
of the charge observation measurement (or integration) time and the charge carrier
transit time. The current waveforms shown are drawn qualitatively for a simple
example. The operating field is assumed uniform and perpendicular to the electrode
planes. Charge qm traversing the full distance between the electrodes along line 1 is
observed as Q1 = −qm, while the current decreases with distance from the sensing
electrode 1, as the electrostatic coupling decreases. For a charge moving along line
2, the induced charge (i.e., the difference between the weighting potentials) is zero,
if the measurement time is longer than the transit time. For a short measurement
time a net induced charge is observed. The induced current waveform (the “crosstalk
signal”) is bipolar, since the weighting field direction changes along the path.

Figure 10.3 illustrates a simple case where the real (operating) electric field and
the weighting field have the same form = 1/d. The induced current waveforms
shown are for a semiconductor detector with different electron and hole mobilities.
For extended ionization the waveforms result from superposition of the waveforms
for localized ionization, and the currents decrease as the carriers arrive at the
electrodes from different initial positions within the bulk of the detector.



10 Signal Processing for Particle Detectors 443

Fig. 10.2 Definition of the weighting potential: Solution of the Laplace equation for unity
potential at the sensing electrode and zero potential at all other electrodes. From Radeka [9] Annual
Reviews, www.annualreviews.org, by permission

10.2.2 Induced Current and Charge in Strip and Pixel
Electrodes: Shielding Effect

The shielding effect is proportional to the ratio of the distance between the planar
electrodes and the strip width (i.e., pixel radius). The shielding effect is more
pronounced for pixels than for strips. The result of these configurations is that the

http://www.annualreviews.org
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Fig. 10.3 Induced currents in infinite planar electrodes for localized and extended ionization

Fig. 10.4 Weighting field (potential) for strip electrode configuration

signal charge (integral of the induced current) is independent of the position of the
origin of ionization for most of the volume of the detector except near the readout
electrodes. This effect is used in detectors where only electrons are collected during
the integration time, such as Cadmium Zinc Telluride (CZT), and some gas and
noble liquid detectors. To illustrate this, histograms are shown in Figs. 10.4 and 10.5
for a strip and pixel illuminated by a beam of penetrating x-rays absorbed uniformly
through the detector.
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Fig. 10.5 Weighting field (potential) for pixel electrode configuration

10.2.3 Weighting Potential and Induced Charge in Co-Planar
Electrodes

Coplanar grid readout was introduced for unipolar charge sensing by Luke [15]
and it is commonly used with Cadmium Zinc Telluride (CZT) detectors. In such
materials only electrons are collected (from the ionization produced by gamma rays
or x-rays), the holes suffering from very low mobility and trapping. With parallel
plane electrodes the induced charge for single carrier collection is dependent on the
position (depth) where the ionization took place. In the coplanar grid concept one set
of alternate strips is biased slightly more positively with respect to the other set of
strips. This results in a drift field such that the signal electrons are collected on one
set of strips only, Fig. 10.6. The weighting potential (field) for both sets of strips
is identical, Fig. 10.7. The induced charges and currents are quite different, Figs.
10.8 and 10.9. Their respective differences are independent of the position, as can
be concluded by following the weighting potential plot from any point on the planar
sloped part of the plot to unity weighting potential for the collecting electrode, and
(across the saddle) to zero potential for the non-collecting electrode, Fig. 10.9.

10.3 Noise: Origin and Properties

10.3.1 Noise Process and Noise Variance

The basis of a noise process can be represented as a sequence of randomly generated
elementary impulses that has a Poisson distribution in time and mean rate of
occurrence 〈n〉. Upon acting on a physical system with impulse response much
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Fig. 10.6 Drift field for
coplanar electrodes

Fig. 10.7 Weighting
potential for coplanar
electrodes

longer than 〈n〉−1, the characteristic noise waveforms (e.g., such as those we observe
on an oscilloscope) are produced as a superposition of responses to individual
impulses. The noise variance at the output of the physical system (a simple RC
filter or a complete readout system) is calculated by using Campbell’s theorem [14],
which states that the sum of mean square contributions of all preceding impulses
equals the variance. The expressions for the variance are given after subtracting the
mean value. The variance is determined by the rate of impulses 〈n〉, their area q
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Fig. 10.8 Induced charges in
coplanar electrodes:
Q1 − Q2 = const
independently of x0

Fig. 10.9 Induced currents in
coplanar electrodes

(charge), and by the impulse response h(t), i.e., the weighting function w(t) of the
measurement system, the preamplifier and the subsequent readout chain,

σ 2 = 〈n〉 q2
∫ ∞

−∞
h2(t)dt = 〈n〉 q2

∫ ∞

−∞
w2(t)dt . (10.3)

The noise variance is determined by the noise process, the rate of impulses 〈n〉,
and their area q (charge), and by the impulse response h(t). If we measure the
variance and the h(t), we can determine 〈n〉q2, but we cannot determine 〈n〉 and
q. Only when randomly generated carriers move in one direction, which results in a
mean current I0 = 〈n〉q, can the rate and the charge of impulses be determined from
σ 2and I0. It is shown in Ref. [9] that 〈n〉q2 equals the mathematical (two-sided)
noise current spectral density, whereas i2

n = 2 〈n〉 q2equals the physical (single-
sided) one, to be used in calculations of the equivalent noise charge (ENC) in Sect.
10.4.2.
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10.3.2 A Model for Generation of Noise Spectra

Almost any noise spectrum can be generated from a random sequence of impulses
(i.e., white noise with “infinite bandwidth”) by using an appropriate filter, as
illustrated in Fig. 10.10. These impulses may be either of only one polarity or of
both polarities (current thermally generated in a p-n junction under reverse bias in
the former, and with zero bias in the latter case). The mean value depends on the
impulse polarities, but the variance does not.

“Infinite bandwidth” implies a noise spectrum which is flat over the frequency
range where our measurement system has a non-zero response. Simple integration
of white noise results in “random walk” with 1/f 2 spectrum. An elementary
impulse response for generation of this noise is the step function U(t). Generation
of 1/|f | noise is somewhat more elaborate. It requires fractional integration of
order one half. The impulse response of the transforming filter is U(t)/t1/2, as
shown in the figure. The basic feature of any noise generating mechanism for low
frequency divergent noises is an “infinitely long memory”, i.e., very long memory,
for individual independent elementary perturbations.

For a discussion of the basics of power-law spectra and of fractional integration
see Ref. [16].
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Fig. 10.10 Generation of some basic noise spectra from white noise by a transforming filter
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10.3.3 Random Telegraph Noise and 1/f Noise

A noise spectrum very close to 1/|f | can be generated by superposition of relaxation
processes with uniform distribution of life times, as illustrated in Fig. 10.11 The
relaxation process is described by U(t)exp (−t/τ ), which represents a step change
with exponential decay. Trapping-detrapping in semiconductors is one such possible
mechanism for generation of 1/|f | noise. Since a simple RC integrator has the same
response, a hardware filter which transforms white noise into 1/|f | noise can be
made requiring about one time constant (one RC circuit) per decade of frequency,
as shown in Ref. [16].

A single trap in a very small (minimum size) MOS transistor results in a drain
current modulation known as random telegraph noise (RTS). This noise presents a
limit to sensitivity in imaging arrays with a pixel capacitance of a few femtofarads
and other noise sources reduced to a few electrons rms. There is extensive literature
on RTS, e.g., Refs. [17–20].

Fig. 10.11 Generation of random telegraph noise (left) and of 1/f noise (right) by trapping-
detrapping. Adapted from Compagnoni et al. [17]
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1/|f | noise is one of the fractal processes, and its waveform preserves the
same features independently of the time scale [16]. Another expression of this is
independence of the measurement variance on the time scale of the measurement
as long as the ratio of the high frequency and the low frequency cutoffs remains
constant. As the bandpass moves along the frequency spectrum the spectral density
integral (i.e., the measurement variance),

σ 2 ∝
∫ fh

fl

df

f
= ln

(
fh

fl

)

(10.4)

remains constant for fh/fl = const. In detector pulse processing it is well known
that the contribution of 1/|f| noise to the equivalent noise charge (ENC) remains
independent of the shaping time, as will be shown in the following Sect. 10.4.2.
Physical mechanisms of 1/f noise are discussed in Ref. [21].

10.4 Noise in Charge Measurements

10.4.1 Sources of Noise in Charge Amplifiers

Principal noise sources in charge amplifiers and an equivalent diagram for calcula-
tion of the equivalent noise charge (ENC) are shown in Fig. 10.12.

Two elementary noise generators are included in the equivalent circuit, a series
noise voltage generator representing the noise in the amplifying device, and a
parallel noise current generator representing various noise sources not inherent to

Fig. 10.12 An illustration of noise sources in charge amplifiers, as a Poisson sequence of
elementary current pulses into the input capacitance, or voltage pulses on the capacitance
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amplification (detector leakage current noise, parallel resistor noise, etc.). Both
types of noise are assumed to have a white spectrum. Two forms of presentation in
terms of a sequence of random pulses are shown, as charge (or voltage) at the input
of the amplifier, and as a current injected into the input capacitance (comprised of
the detector + amplifier parasitic capacitances). The presentation of the series noise
in terms of a current into the detector input is the derivative of the charge (voltage)
representation. The sequence of voltage impulses representing the amplifier series
noise thus corresponds to an equivalent sequence of current doublets (derivatives of
delta function) injected at the detector. The parallel noise is by its origin a current
source in parallel with the detector, and it is presented by a sequence of impulses
(delta functions). It is this difference in the location of the two white noise sources
with respect to the detector capacitance that makes their apparent noise spectra and
their effect on the measurement quite different. ENC due to the former is inversely
proportional to the square root of the peaking time, and proportional to it due to the
latter. The series 1/|f | noise contribution to ENC is independent of the peaking time,
as indicated in Fig. 10.14. The 1/|f | noise due to a dissipative dielectric depends
on the dielectric loss factor tan(δ), as will be discussed in Sect. 10.4.7. It can be
significant with detector-amplifier connections on glass fibre circuit boards.

10.4.2 Equivalent Noise Charge (ENC) Calculations

Calculation of equivalent noise charge (ENC) for a signal processing chain
described by a weighting function w(t) is summarized in the following.

The noise calculation is performed in the time domain by using Campbell’s
theorem Eq. (10.3), that is by superposition of effects of all random current impulses
illustrated in Fig. 10.12. The weighting function is normalized to unity so that
the definition of ENC is the noise charge which produces an output of the same
magnitude as an impulse signal of equal charge. For calculation of ENC due to the
series voltage noise, we will use the representation in terms of an equivalent current
generator connected in parallel with the detector. This requires differentiation of
the sequence of voltage impulses. Each resulting doublet Cinδ

′(t) acting upon the
weighting function w(t) produces by convolution Cinw′(t). The equivalent noise
charge (ENC) is then given by,

ENC2 = 1

2
e2
nC

2
inI1 + πC2

inAf I2 + 1

2
i2
nI3, (10.5)

where e2
n = 4kT Rs is the physical (single-sided) noise voltage spectral density for

series noise in V2/Hz expressed in terms of an equivalent series noise resistance. The
second term is due to the series 1/f noise. The 1/f noise physical spectral density
is defined as Af /f in [V2/Hz]. The third term is due to the parallel noise, where
i2
n = 2qI0 = 4kT /Rp is the physical noise current spectral density due to either a

current or a resistance in parallel with the detector.
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I1, I2, I3 are the noise integrals for the series (voltage) white noise and the 1/f
noise, and for the parallel (current) noise, respectively. The integrals are derived in
the time domain from Campbell’s theorem Eq. (10.3) and expressed in the frequency
domain using Parseval’s theorem [9],

I1 =
∫ ∞

−∞
[
w′(t)

]2
dt = 1

2π

∫ ∞

−∞
|H (jω)|2ω2dω = A1

τ
, (10.6)

I2 =
∫ ∞

−∞

[
w(1/2)(t)

]2
dt = 1

2π

∫ ∞

−∞
|H (jω)|2ωdω = A2, (10.7)

I3 =
∫ ∞

−∞
[w(t)]2dt = 1

2π

∫ ∞

−∞
|H (jω)|2dω = A3τ, (10.8)

where τ is the time width parameter of the weighting function, either the peaking
time of the function, or some characteristic time constant of the filter implemented
in hardware (or software in case of digital filtering).

Noise contributions for both types of white noise due to various segments
(piece-wise linear approximation) of the weighting function are shown in Fig.
10.13 (expressions for integrals I1 and I3). In these calculations, either the impulse
response h(t) of the system or the weighting function w(t) (the mirror image of the
impulse response) can be used for time-invariant systems. For time-variant (gated or
switched) systems, only a weighting function describes the performance correctly,
while an apparent impulse response (waveform at the output) is not correct and can
be misleading. Steepest parts of the weighting function contribute most to ENCs,
as they correspond to larger bandwidth. Flat parts do not contribute anything. In
contrast, ENCp is largely proportional to the width of the weighting function where
it has any significant value.

A bipolar weighting function, i.e., impulse response h(k), as shown in Fig. 10.13,
with equal lobes would result in square root of two higher ENC than for a unipolar
function (single lobe). If the amplitude of the second lobe is less than one half, its
rms noise contribution becomes small (<12%).

The half-order integral I2 for 1/f noise is not amenable to such a simple
interpretation, and it will be discussed in Sect. 10.4.6.

Equations (10.6, 10.7, and 10.8) provide an insight into the general behaviour of
signal processing systems with respect to noise. The ENC due to the series white
amplifier noise is proportional to the slope (~1/t) of the weighting function and
therefore proportional to the bandwidth of the system. The ENC due to parallel
white noise is proportional to the width of the weighting function and therefore to
the overall integration time. If the weighting function form remains constant the
ENC due to 1/f noise is independent of the width of the weighting function, since
the ratio of the high frequency cutoff and low frequency cutoff remains constant,
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Fig. 10.13 An illustration of noise contributions for both locations of white noise sources (series
and parallel) due to various segments of the weighting function. Such a piece-wise linear
approximation of the weighting function provides an estimate of the noise within a few percent
of accurately computed integrals I1and I2

Fig. 10.14 An example of general behaviour of equivalent noise charge (ENC) as a function of
the width parameter τ of the weighting function. 1/f noise raises the noise minimum but does not
affect its position on the time scale

Eq. (10.4). This is illustrated in Fig. 10.14. From Eqs. (10.5, 10.6, and 10.8) the
optimum width parameter of the weighting function is given by,

τopt = (
RsRp

)1/2
Cin

(
A1

/

A3

)1/2
, (10.9)

and it is not affected by 1/f noise.
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10.4.3 Weighting Function

The concept of weighting function is very useful for time domain noise analysis of
time variant, sampled and switched systems. The role of “pulse shaping,” “signal
filtering,” or “signal processing” is to minimize the measurement error with respect
to the noise, various baseline offsets and fluctuations, and at high counting rates
to minimize the effects of pulse overlap or pileup. The term “pulse shaping”
implies that the amplifier-filter system is time invariant. In such a system the
system parameters do not vary during the measurement and a single measurement
of amplitude or time is performed. Such a system is described completely by its
impulse response.

In signal filtering, we also use time-variant methods, such as capacitor switching
and correlated multiple sampling of the signal. The filtering properties of a time-
variant system are described by its weighting function w(t). The weighting function
describes the contribution that a noise impulse, occurring at time ti, makes at
the measurement tm, as illustrated in Fig. 10.15. It is essentially a measure of the
memory of noise impulses (or any other signals) occurring before the observation
time tm. As shown, the weighting function for time-invariant systems is simply a
mirror image in time of the impulse response, with its origin displaced to tm. For
a time-variant system, the impulse response (output waveform) is generally quite
different from its weighting function. In some cases time-invariant and time-variant
processing could be devised to produce the same result, i.e., both methods will be
described by the same weighting function, while their implementation will be quite
different. The noise-filtering properties of any weighting function for detector signal
processing can be most easily determined by the time domain analysis technique
shown in Fig. 10.13. The time domain analysis method based on Campbell’s
theorem was first introduced by Wilson [22], and subsequently elaborated in Refs.
[9, 23, 24].

A composite weighting function for multiple correlated sampling is obtained
by superposition of weighting functions for individual samples. This is illustrated

Fig. 10.15 An illustration of the weighting function w(t) corresponding to impulse response h(t).
A unit noise impulse at ti contributes w(ti) at the time tm of the peak of response to the signal
impulse at t0. The weighting function in this case of a simple time-invariant filter is a mirror image
of the impulse response delayed by the sample (i. e., measurement) time tm
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Fig. 10.16 Composite
weighting function for
correlated double sampling
(CDS). Time-invariant
filtering (“pulse shaping”)
described by an impulse
response h(t) is assumed prior
to sampling

for correlated double sampling (CDS), a technique commonly used for readout of
CCD’s and large pixel arrays, Fig. 10.16. Single sample processing is described by
a symmetrical triangular impulse response approximating single RC differentiation
and one or two RC integrations. The single sample weighting function with respect
to the sampling time at tm is shown (dashed), and it is a mirror image of the
impulse response. It is assumed that a (delta function) signal of interest will arrive
at time t0+, and produce a response described by the impulse response. In double
correlated sampling another sample is taken at t0, just before the arrival of the signal.
This sample, sometimes called “baseline sample”, is subtracted from the “signal or
measurement sample”. The weighting function for the baseline sample is shown
inverted and earlier in time by tm-t0.

The composite weighting function (thicker solid line) is bipolar and it has area
balance. This is another way of saying that CDS has zero dc response and that
it attenuates (but does not eliminate) baseline fluctuations at low frequencies. The
ENC can be easily calculated from such a composite weighting function using the
technique for time domain noise analysis shown in Fig. 10.13. A noise analysis of
such a case in the frequency domain and without the use of a composite weighting
function is considerably more time consuming.

10.4.4 Simple ENC Calculation for Series White Noise

Following on the discussion in Sect. 10.4.2 and referring to Fig. 10.17, a simple
relation for the equivalent noise charge (ENCs) due to series white noise follows,

ENC2
s = (1/2) e2

nC
2
inI1, (10.10)

where

I1 =
∫ ∞

−∞
[
w′(t)

]2
dt = 2

/

tm
= A1

/

tm
, (10.11)

ENCs = enCin
/

t
1/2
m .

(10.12)
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Fig. 10.17 Simplified
equivalent circuit for
calculation of equivalent
noise charge (ENC) due to
amplifier series white noise

It requires the knowledge of three parameters: noise spectral density en, total
input capacitance (detector + amplifier) Cin, and peaking time tm of the triangle
approximating the weighting function. Such an approximation is useful for noise
estimation, since the series noise coefficient for a fifth order semi-Gaussian
weighting function with equal peaking time, A1 = 2.2, differs by only ~10% from
A1 = 2 for the triangular function. In a preamplifier design, the expected en can be
determined from the operating conditions (current and transconductance) of the first
transistor, or from a more complete equivalent circuit of the input transistor shown
in Sect. 10.5.2. A primary objective of low noise amplifier design is to make the
noise contributions of all other circuit components negligible compared to the input
transistor. Eq. (10.12) describes simply also the noise charge slope with respect to
detector capacitance (in pF),

∂ (ENCs/qe) /∂C = en/t
1/2
m

[
rms electrons/pf

]
(10.13)

10.4.5 Simple ENC Calculation for Parallel White Noise

From Sect. 10.4.2 and Figs. 10.13 and 10.18 simple relations follow for ENCp due
to parallel shot noise and resistor (thermal) noise. The gated integrator case, where
the weighting function equals unity for the duration of the gate, illustrates that the
ENCp for shot noise is simply the square root of the variance of a Poisson sequence
of impulses counted for a time tG .

ENCp = (qeI0tG)1/2 =
(
q2
e ntG

)1/2 = qe(ntG)1/2 = qen
1/2
G . (10.14)

By Campbell’s theorem the contribution of each impulse to the variance is
determined by the weighting function, and for a given weighting function the
parallel noise integral I3 has to be determined. For an approximation by a triangle
with a peaking time tm, I3 = (2/3)tm. The parallel noise contribution for the
triangular weighting function is the same as for gated integration one third as wide.

The contribution by the parallel resistor thermal noise can be compared simply
to the shot noise by the “50 mV rule”: a dc current I0 causing a voltage difference of
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Fig. 10.18 Simplified equivalent circuit for calculation of equivalent noise charge (ENC) due to
detector and amplifier parallel white noise (bias or feedback resistance, detector leakage current,
tunneling gate current in MOS, base current bipolar junction transistor)

~50 mV on a resistor Rp contributes a shot noise equal to the thermal noise of that
resistor at room temperature; from 4kT/Rp = 2qe I0: Rp I0 = 2kT/qe.

10.4.6 Calculation and Estimation of ENC for 1/f Noise

1/f noise becomes a limiting factor in many physical measurements. We can imagine
reducing the series white noise in charge measurements to a very low level by
continuing to increase the measurement (integration) time τ , provided the parallel
(leakage or dark current) noise is very low. We would eventually reach the “noise
floor” due to the 1/f noise. Once the 1/f noise spectral density is determined
experimentally and defined by the parameter Af in [V2] as in Eq. (10.5), ENC can
be calculated by the integral I2, Eq. (10.7). In the time domain this is an integral
of a fractional-order (half-order) derivative squared of the weighting function (a
mathematical operation which cannot be called “trivial” before one learns how
to do it, and it can be considered “tedious” at best). In the frequency domain
the calculation is somewhat easier for time-invariant systems, but for time-variant
systems defining the transfer function H(jω) is more difficult and less intuitive than
determining the weighting function.

We illustrate this here on the example of a commonly used weighting function
of trapezoidal form as shown in Fig. 10.19. There are many different hardware
implementations of this function in different applications. Time-invariant versions
have used delay line clipping and higher order RC prefilters. Gated integrator
and higher order prefilters have been used in several applications, starting with
germanium gamma-ray detectors [25]. This function is widely used with CCDs in
astronomy, implemented by correlated double sampling and dual-ramp integration.

We define the trapezoidal weighting function by the width of the ramp τ p and the
flat top as a fraction of the ramp, Δτ p. The equivalent noise charge for 1/f noise is
then,

ENC2
f = πC2

inAf A2, (10.15)
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Fig. 10.19 1/f noise coefficient A2, Eq. (10.7), for trapezoidal weighting function. Solid line:
analytical solution, Eq. (10.18); dashed: approximate solution, Eq. (10.22)

where

A2 =
∫ ∞

−∞

[
w(1/2)(t)

]2
dt. (10.16)

The half order derivative of the weighting function, w(1/2)(t), is obtained by
convolution of w′(t) with the elementary pulse U(t)/t1/2 for 1/f noise shown in Fig.
10.10d,

w(1/2)(t) =
(

1/
√

πt
)

∗ w′(t), for t ≥ 0+ (10.17)

Using Mathematica, and after some manipulation, the result for A2 is, [26],

A2 = 1

π

[
Δ2 ln Δ + (2 + Δ)2 ln (2 + Δ) − 2(1 + Δ)2 ln (1 + Δ)

]
. (10.18)

The coefficient A2 vs the flat top 
 of the trapezoidal weighting function is
plotted in Fig. 10.19.

The effect of the series 1/f noise is lowest for a triangular weighting function,

 = 0, which is also the case for the series white noise, Eqs. (10.10, 10.11, and
10.12). As the flat top is made longer, A2 increases, since such a trapezoidal function
has a higher ratio of its cutoff frequencies, which results in integrating a wider band
of the 1/f noise spectrum, Eq. (10.4).

An almost identical result for A2 has been obtained by a calculation in the
frequency domain and described in a study of CCD noise performance [27].
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Since such exact calculations of ENCf for any weighting function can be time
consuming, we emphasize here a simple estimation method, which provides results
sufficiently close to the exact calculations for most purposes. It has been pointed
out by Gatti et al. [28] that the three integrals in Eqs. (10.6, 10.7, and 10.8) have to
satisfy the Cauchy-Schwartz inequality,

∫ ∞

−∞

[
w(1/2)(t)

]2
dt ≤

{∫ ∞

−∞
[
w′(t)

]2
dt •

∫ ∞

−∞
[w(t)]2dt

}

, (10.19)

that is,

A2 ≤ (A1A2)
1/2. (10.20)

Thus there is an upper limit to A2 in relation to A1 and A3 which are easily
calculated from Fig. 10.13, or Eqs. (10.6, 10.7, and 10.8). A study of the most
commonly used weighting functions, [28], reveals that A2/(A1A3)1/2 falls between
0.64 and 0.87, a spread of less than ±8% in the calculation of rms noise, so that for
the estimation of 1/f noise the following approximate relation can be used,

A2 ≈ 0.75(A1A3)
1/2. (10.21)

For the trapezoidal weighting function in Fig. 10.19, A1 = 2 and A3 = 
 + 2/3,
and the approximation for this case is,

A2 ≈ 0.75
[
2
(
Δ + 2

/

3

)]1/2
. (10.22)

Figure 10.19 shows that this approximation is within a few percent of the exact
analytical solution, Eq. (10.18).

In any noise analysis of charge amplifiers one will have already calculated, or
otherwise determined the values of A1 and A3, so that the information about the
filtering (pulse shaping) effect on the series and parallel white noise will readily
also provide an estimate of the 1/f noise,

ENC2
f = πC2

inAf A2 ≈ πC2
inAf

(
0.75

√
A1A3

)
. (10.23)

It is interesting to note that for a Gaussian weighting function A2 = 1.00, for a
triangular weighting function 0.88, for a fourth order semi-Gaussian 1.02, for CR-
RC 1.18.

Af is a parameter resulting from a measured spectral density and it does not
contain any specific information about the properties of the amplifying device unless
other parameters are known.

For input transistor optimization a parameter which is to the first order indepen-
dent of the device dimensions is more useful [29], Kf = Af Cgs [J]. This constant
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ranges from 10−27 J for junction field-effect transistors (JFETs) to ~10−25 J for
p-channel and ~ 10−24 J for n-channel MOS transistors.

For an accurate calculation of the noise charge for noise spectra departing from
the three-term power-law representation (“white series voltage noise”, “1/f series
voltage noise”, and “white parallel current noise”), circuit simulation and numerical
calculation are the tools of choice to obtain accurate results. The discussion here was
intended to provide some insight: ENCf depends only on the shape of the weighting
function but not on the time scale.

10.4.7 Noise in Dielectrics

Thermal fluctuations in dielectrics generate a noise which is quantitatively related
to the parameters describing dielectric losses. This type of noise and its importance
for detectors was first studied in [30] and then summarized in [31]. For a dielectric
with low losses, the dissipation factor or the loss factor D (equal to the imaginary
part ε “of the permittivity ε = ε′ + jε′′) is independent of frequency in the range
of interest for particle and photon detectors (~104 to 108 Hz). It can be defined
as D = G(ω)/(ωCdiel), where G(ω) and Cdiel are the loss conductance and the
capacitance of the dielectric as measured on an impedance bridge at an angular
frequency ω. According to the fluctuation-dissipation theorem [32, 33], and using
the Johnson-Nyquist formula for thermal noise, a dissipative dielectric generates a
noise current with a spectral density,

i2
n = 4kT G (ω) = 4kT DωCdiel . (10.24)

The equivalent noise charge ENCdiel due to dielectric noise can be calculated
using Eq. (10.7),

ENC2
diel = 2kT DCdielA2. (10.25)

Following on the discussion in the previous section we assume here A2 = 1.2,

ENC2
diel = 2.4kT DCdiel . (10.26)

We note that the spectral density (Eq. 10.24) upon integration on the input
capacitance becomes 1/f, and therefore the equivalent noise charge due to dielectric
noise is independent of the width (the time scale) of the weighting function.

The noise from lossy dielectrics may pose in some detectors a lower limit to
total noise. If a lossy dielectric contributes 1 pF, such as a glass fibre board with
D ≈ 2·10−2, this alone would present a lower limit of ENCdiel ≈ 86 rms electrons.
Best dielectrics (e.g. Teflon, polystyrene, quartz) have D ≈ 5·10−5, which results in
~5 rms electrons. This noise contribution to the charge measurement can be reduced
only by reducing Cdiel (and/or the temperature).
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10.5 Gain Mechanisms and Noise in Transistors

10.5.1 Gain Mechanism, Electron Transit Time, Unity-Gain
Frequency

The charge control concept as the basis for the gain mechanism in all three-terminal
amplifying devices (transistors) was discussed in Ref. [9]. The “control charge” Qc

is illustrated in Fig. 10.22.
The relation among the control capacitance Cgs, the transconductance gm, the

electron transit time τ e and the unity gain frequency fT is summarized by,

ΔQc/ΔId = τe = CgsΔVgs/ΔId = Cgs/gm → Cgs = gmτe,

fT ≈ 1
/

(2πτe)
=

(
1
/

2π

)(
gm

/

Cgs

)

.
(10.27)

NMOS transistors in submicron range (channel length below ~0.25 microns) will
have a unity gain frequency in the range 10 to 100 GHz when operated in strong
inversion. These same devices will be operated in weak inversion to maximize
the transconductance/current ratio and the power dissipation in detectors with large
numbers of channels (pixels or strips). This means reduced transconductance with
almost the same gate capacitance resulting in a unity gain frequency in the range of
1 GHz or less. This affects the speed of response and the stability considerations in
the design of feedback amplifiers.

Equation (10.27) describe only a simplified basic relation among intrinsic device
parameters. A very extensive treatment of charge control concepts for CMOS
transistors including parasitic parameters and device operating conditions is given
in Ref. [7].

10.5.2 Noise Sources in MOS Transistor

A brief overview of white noise sources in an NMOS transistor normalized to the
intrinsic channel series noise resistance γ /gms is illustrated in Fig. 10.20 and Eq.
(10.28) with γ typically in the range 0.5 to 1.0. The second term in Eq. (10.28) is
the gate induced noise contribution [34]. The coefficient δ/5γ depends on the bias
conditions. For estimation purposes (δ/5γ) ~ 1/3. With capacitive sources, such as
most radiation detectors, this term is usually negligible. In particular, at operating
conditions to minimize the power in the input transistor, the optimum ratio Cgs/Cin is
small. The contributions by the gate resistance and substrate resistance can be made
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Fig. 10.20 An illustration of parasitic resistive noise sources in an NMOS transistor in addition to
the channel noise γ /gms

small by the device design. The equivalent series noise resistance of the NMOS
transistor can be summarized referring to the notation in Fig. 10.20 as,

Req

γ /gms

= 1 + δ

5γ

(
Cgs

Cin

)2

+ 1

γ

(
Rggms

) + (Rbgmb)
gmb

gms

+ 1

γ
(Rbgms)

(
Cgb

Cin

)2

.

(10.28)

10.5.3 Charge Transfer from Detector to Transistor:
Capacitance Matching

In all cases where the amplifier is connected directly to the detector via a resistive
conductor the charge produced by ionization is distributed among the detector
capacitance, amplifier capacitance and any stray capacitance according to the ratio
of capacitances, Fig. 10.21. Due to this, only a fraction of the charge of interest
(the signal) arrives where it matters—that is to the conduction channel of the input
transistor where it controls the drain (collector) current, as illustrated in Fig. 10.22.
(An exception to this is if the two capacitors are connected by an inductor in
which case the charge is transferred periodically between the two capacitors.) In
case of a CCD the ionization charge is moved peristaltically in a potential well
formed and driven by appropriate clock voltages applied to the gate electrodes.
The charge shifted a few hundred (or thousand) times arrives at the collection
electrode (“floating diode”) which is connected to a source follower. In the CCD
the charge arriving at the collection electrode is the original charge packet produced
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Fig. 10.21 Sharing of the
induced (“collected”) charge
between the detector and
amplifier capacitance

Fig. 10.22 An illustration of
the control charge with
respect to the control
capacitance Cgs:
ΔQc = Qs/[1 + (Cdet
+ Cgsp + Cds)/Cgs]

by ionization except for a few electrons lost to trapping. The charge transport in a
conductor is by a small displacement of a large number of free electrons. The CCD
principle allows multiple measurements on the same charge packet as described in
Ref. [35].

Optimization of the signal to noise ratio requires appropriate matching of the
transistor active capacitance (which controls the current) to all other capacitances
connected to the input—a subject addressed in some detail in Ref. [10].

The charge control concept expressed by Eq. (10.27) is at the basis of the gain
mechanism in almost all electronic amplifying devices: it takes an increment of
charge, 
Qc in Fig. 10.22, to cause a steady state change of the current in the
conducting channel. From Eqs. (10.12 and 10.27) we can determine the lower limit
for the charge sensitivity due to the series noise in terms of the electron transit time
in the conducting channel. Scaling the device width (with no power limitation) to
achieve the best signal-to-noise ratio requires that the control electrode capacitance
equal (match) the detector capacitance, Cgs = Cdet. With this and Eq. (10.27),
the lowest noise for an electronic amplifier that could be achieved under ideal
circumstances is given by,

ENCs opt
∼= 2

√
2
√

kT Cgs

√
τe

/

tm
, (10.29)

where tm is the weighting function zero-to-peak time, as in Fig. 10.13, also referred
to as the “integration time” or the “measurement time”.

It is assumed here for simplicity that the equivalent series noise resistance is
equal to the inverse of the device transconductance, i.e., γ ~ 1. While Eq. (10.29)
is useful for estimation purposes and for establishing a lower limit for the amplifier
series noise, the electron transit time is rarely used directly for noise calculations.
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Accurate noise calculations usually rely upon the measured or known noise
spectral density for a particular device and have to include parasitic capacitances
and resistances, as indicated in Fig. 10.20.

10.6 Weighting Function Realizations: Time Invariant
and Time Variant

10.6.1 Time-Invariant Signal Processing

A low order asymmetrical function (dashed), shown in Fig. 10.23, results in higher
series noise (due to a steeper rise, see Fig. 10.13). A nearly symmetrical function
requires a higher order signal processing chain, as shown.

A time-invariant circuit realization of a nearly symmetrical weighting function is
described in Ref. [36].

Fig. 10.23 A typical time-invariant signal processing chain resulting in a fifth order pseudo-
Gaussian impulse response (weighting function), where s is the Laplace transform variable. This
function results in lower noise coefficients A1, A2, A3, Eqs. (10.6, 10.7, and 10.8), 2.2, 1.05, and
0.78, respectively, compared to a low-order CR-RC function of equal width at the base. See Ref.
[10] for design considerations and other implementations
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10.6.2 Uncorrelated Sampling and Digital Filtering

Sampled data digital signal processing has become prevalent in detector systems for
gamma-ray and x-ray spectroscopy, for time projection chambers and in various
forms in particle physics. One of the advantages is that it provides flexibility
in the realization of mathematically optimal weighting functions. Optimal signal
processing cannot be achieved without some analogue functions. An anti-aliasing
filter is an essential part of the system. Its function is to limit the bandwidth prior
to sampling so as to satisfy the Nyquist-Shannon sampling criterion: the bandwidth
at the output of this filter must be no more than one half of the sampling frequency
(the “Nyquist limit”). If this is not satisfied, the noise at frequencies higher than
the Nyquist limit is shifted in frequency, i.e., (“aliased”) by undersampling, to the
frequencies below this limit. The resulting loss in S/N due to aliasing cannot be
recovered by any subsequent processing. The role of digital filtering is to create
optimized weighting functions in spectroscopic systems, and to enable an optimal
particle track measurement in tracking systems. In spite of the power of digital
processing, it is most efficient to cancel any long tails in the detector-preamplifier
response by analogue means. If the tail cancellation is performed digitally, much
larger numbers of samples have to be processed (deconvolved) for each event. For
asynchronous (uncorrelated) sampling in semiconductor detectors for gamma-ray
and x-ray spectroscopy see Refs. [37, 38]. In such systems optimum weighting
functions are of trapezoidal form as in Fig. 10.19, where the flat top allows uniform
weighting for a variable charge collection time.

10.6.3 Correlated Sampling

Correlated double sampling (CDS) is being used with many detectors in various
implementations and under different names. One of these is known as “baseline
subtraction”—taking a sample prior to the arrival of the usually unipolar signal (a
delayed signal or with the arrival time known). This case is illustrated in Fig. 10.16,
and it results in a bipolar weighting function, which defines quantitatively the effect
of CDS on the noise, as discussed in Sects. 10.4.2 and 10.4.3. Correlated double
sampling is an essential part of CCD signal processing in astronomy.

Signal processing by multiple correlated (synchronous) sampling has been used
for noble liquid calorimeters, such as the liquid argon electromagnetic calorimeter
in the ATLAS experiment, Refs. [39, 40].
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10.7 Equipartition and kTC Noise

Integration of the power spectrum (spectral density) arising on a capacitance from
the thermal noise current, i2

n = 4kT /R, of the resistor results in the total fluctuation
of charge (and voltage), which is independent of the value of the resistance R. The
bandwidth (equivalent to an abrupt cutoff) of the RC circuit in Fig. 10.24 is 1/(4RC),
and the total fluctuation in voltage and charge is

σ 2
v = kT /C,

σ 2
q = kT C.

(10.30)

The resistance (with the capacitance C) determines the bandwidth of the noise but
not its magnitude. The kTC noise at 300 K is quite high even on small capacitances,
as shown in Table 10.1. Most of this noise does not affect the measurement in
systems where filtering and a very high parallel (feedback) resistance is used
following a preamplifier, in other words where the noise corner time constant, Eq.
(10.9), is much longer than the width of the filter weighting function. Such a system
responds only to the portion of the spectrum where the spectral density is very low.
An example: high resolution x-ray spectrometry with silicon detectors, where time-
invariant or digital filtering is usually used. In contrast, when the measurement is
performed by taking a sample directly on the detector capacitance and the filtering
is not possible, the full kTC noise is included in the measurement, and it can be
reduced only by correlated double sampling (CDS)—if applicable, as discussed in
Fig. 10.27. CDS is just another way of excluding the noise at low frequencies from
the measurement.

From the above discussion, which is based on circuit analysis, one is led to
conclude that the kTC noise arises from the resistance, and yet its magnitude is
independent of the value of the resistance. One may also be led to conclude that an
“ideal” capacitance would have no noise. This is contradicted by the equipartition
theorem which makes no direct assumption about the resistance. The equipartition

Fig. 10.24 A simple circuit for calculation of kTC noise
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Table 10.1 Charge and
voltage total fluctuation vs
capacitance (T = 300 K)

Capacitance Charge fluctuation Voltage fluctuation

C [F] (kTC)1/2/qe [rms e] (kT/C)1/2 [μV]
1a 0.4 6.4·104

10a 1.26 2.0·104

100a 4 6.4·103

1f 1.26·10 2.0·103

10f 4.0·10 6.4·102

100f 1.26·102 2.0·102

1p 4.0·102 64
10p 1.26·103 20
100p 4·103 6.4

theorem states, that for a system in thermal equilibrium, the fluctuation energy per
degree of freedom is kT/2. “Per degree of freedom” applies to any variable by which
the energy of an energy storage object, or energy storage mode, can be defined. Thus
for a capacitance, C〈v2〉 = kT/2, from which Eq. (10.30) follows. So the statistical
mechanics gives the same result for the total fluctuation but without any details about
the dissipative components and the noise spectrum. A practical consequence is that
as a capacitor becomes closer to an ideal one, the noise spectrum shifts toward zero
frequency, while the total fluctuation remains constant.

We add here parenthetically that in a resonant system (an inductance- capacitance
circuit), where there are two degrees of freedom, the noise spectrum is concentrated
around the resonant frequency, while the integral of the power spectral density (total
charge fluctuation) on the capacitance equals kTC, and the total current fluctuation
(variance) in the inductance equals kT/L.

The above considerations apply also to analogous mechanical systems.
Transient behaviour of kTC noise is of great interest for switched capacitance

circuits and for pixel detectors, where pixels are read out directly without filtering,
by being sampled in a matrix arrangement, either before or after simple amplifiers
(source followers, or three transistor circuits as in, Figs. 10.32, 10.33, and 10.34).

Transient behaviour of noise on a capacitance after switching the resistance or
capacitance can best be studied by applying Campbell’s theorem, as shown in Figs.
10.25 and 10.26. In this case the integration of the variance has to be carried out from
the time when the switching takes place (zero) to the time t when the observation is
made,

σ 2
v =

(
1

2

)

4kT
1

R

∫ t

0
h2(u)du = kT

C

(
1 − e−2t/τ

)
. (10.31)

The oscillogram shows build-up of noise after switching a white noise source
onto an RC circuit, h(t) = (1/C)e−t/τ . The time constant τ equals the product of
the capacitance and the resistance after the switching. Such a build up occurs after
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Fig. 10.25 Model for
calculation of the build-up of
kTC noise on an RC circuit

Fig. 10.26 Build-up of kTC
noise on an RC circuit

a reset switch across a capacitor is opened and a much higher value of resistance
appears in parallel with the capacitance. This is illustrated in Fig. 10.27.

Figure 10.27 illustrates what happens with kTC noise in active pixel sensors
and CCDs. While the reset switch is closed, the kTC noise extends to very high
frequencies corresponding to the very short time constant rONC. When the switch
is “opened” the time constant increases by many orders of magnitude. A value of
the “old” kTC noise is stored on the capacitance, and it decays very slowly with
this very long time constant, CROFF . It is this sample of the “old” wide bandwidth
noise that is often referred to as the “reset noise”, even though its origin is not in
the reset action. During the same time after switching, the “new” kTC noise builds
up also very slowly, but faster than the stored value decays, since the rms noise
build-up proceeds as (1 − exp [−2 t/CROFF])1/2, Eq. (10.31) and Fig. 10.27. From
this illustration one can see the conditions under which correlated double sampling
may reduce significantly the kTC noise: Sample 1 may be taken any time between
opening of the reset switch and the arrival of the signal. Sample 2 may be taken any
time after the arrival of the signal but before the “new” kTC noise has built up.

Analysis of the effects of the kTC noise in some cases is not straightforward.
Here are some general guidelines:

• Fluctuation-dissipation theorem with Johnson-Nyquist expression for thermal
noise is essential for calculation of noise spectra and for detailed information
on noise sources based on circuit analysis.
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Fig. 10.27 Transient behaviour of kTC noise caused by the reset action of the sense node in CCDs
and in pixel detectors with matrix readout (e.g., hybrid CMOS detectors)

• Equipartition theorem provides no detailed information on the noise spectra, but
provides a check on the integrals of noise spectra (the total fluctuation).

• Transient behaviour of noise in switched capacitor circuits and matrix readout
pixel arrays is best understood by means of Campbell’s theorem, which provides
noise variance vs time, as shown in Figs. 10.25, 10.26, and 10.27 and by Eq.
(10.31). The knowledge of the dissipative component (resistance) is necessary
for the transient analysis.

• A charge reset and transfer by a switch result in kTC independently of the switch
ON resistance. This noise can be subtracted only if the first sample in the CDS is
taken before the signal.

• Transfer (i.e., direct transport) of charge without switching (as in a CCD) does
not result in kTC noise. Reset of the sense node does.

A frequently asked question: Can the total charge fluctuation (variance) on
a capacitance be reduced below kTC? Yes, by “electronic cooling”, where the
apparent noise temperature of the resistance in parallel with the capacitance is
reduced by feedback, Sect. 10.8.1 and Ref. [45]. While this is useful in practice, a
note should be made that a system with active elements (gain) cannot be considered
as being in thermal equilibrium with the surrounding.

An important distinction between two classes of signal processing schemes
should be emphasized: (1) when no filtering (band limiting) takes place before
the measurement, the total kTC fluctuation will contribute fully to the charge
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measurement, and usually plays a dominant role. In contrast, (2) with charge
amplifiers followed by filtering, the contribution of this noise (then usually referred
to as “parallel noise”) can be made negligible in most cases, by avoiding the
low frequency part of the spectrum (by using a short peaking time, Fig. 10.14).
Correlated double sampling (CDS) is one form of filtering.

10.8 Some Basic Signal Processing and Detector Readout
Circuits

10.8.1 Charge Amplifier Configuration

In the most basic charge amplifier feedback configuration only two transistors
are essential to realize a complementary cascode, as shown in Fig. 10.28. The
current sources in positive and negative supplies can be realized by resistors or
by low noise transistor current sources. There is only one significant pole (C0R0)
in the first order solution for the response of this circuit. Higher order poles are
given by the unity gain frequency of the transistors used. The cascode alone is an
“operational transconductance amplifier” (very high output impedance). With the
follower amplifier ×1 it becomes an operational amplifier.

Gain and input impedance relations for the feedback charge amplifier configu-
ration are derived from Figs. 10.28 and 10.29. The frequency dependence of the
open loop gain is inherent to a high gain single pole amplifier. It is described by
two parameters, unity gain frequency ωh = gm/C0, and the gain “roll off” frequency
(3 dB point) ωl = 1/(R0C0). The dc gain is then |G0| = ωh/ωl = gm/R0, where gm

is the transconductance of the input transistor, C0 is the dominant pole capacitance
and R0 is the dominant pole resistance. Input impedance with capacitive feedback
has two terms, a resistance Rin = 1/ωhCf in series with a capacitance Cf G0. The
resistance term Rin, in conjunction with the total input capacitance, determines the
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Fig. 10.28 Basic folded cascode charge amplifier feedback configuration
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Fig. 10.29 Input equivalent circuit of feedback charge amplifier

rise time of the detector-amplifier. The rise time constant of the output voltage (i.e.,
the transfer of charge from the detector capacitance to the feedback capacitance) is
τ r = RinCin = (1/ωh)(Cin/Cf ) = (C0/gm)(Cin/Cf ), where Cin = Cdet + Campl.

The resistive input impedance has a noise corresponding to the amplifier series
noise resistance Rseq, and it appears as a resistance with a noise temperature,
Teff = TRseq/Rin. For values of Rin higher than Rseq, the amplifier can be used as
a termination for delay lines with a noise lower than that of a termination with a
physical resistor Z0 at temperature T.

The apparent noise temperature of the resistance Z0 realized by the capacitance
in feedback is TRseq/Z0, and this is why it can be called “electronically cooled
termination” or “electronically cooled damping”, Ref. [45]. The resistance in
parallel with the feedback capacitance adds two more terms to the input impedance
of the preamplifier: inductance Rf /ωh in series with a resistance Rf /G0. It is
important to note the condition to achieve an aperiodic (“damped”) response of the
feedback amplifier.

The feedback configuration allows the ultimate in noise performance because the
parallel noise sources can be made negligible by using a transistor with a very low
gate leakage current and a very high feedback resistance (megaohms to gigaohms).
The feedback resistor can be avoided altogether by the use of optoelectronic
feedback or a transistor switch to maintain amplifier voltages in the operating range.
Signal integration is performed on the feedback capacitance Cf . The long tail can
be cancelled in subsequent pulse shaping by a simple pole-zero cancellation circuit
(not shown in the figure). Pulse shaping at the preamplifier by reducing RL or Rf

would result in increased noise from the thermal noise of these resistors. The object
of the design is to avoid dissipative components at the detector-amplifier input and
thus to make Rf as large as possible.



472 V. Radeka

10.8.2 Cascaded Charge Amplifier Chain with Pole-Zero
Cancellation

While the basic charge amplifier concept of a simple cascode circuit with a single
dominant pole and capacitive feedback has not changed since the days of vacuum
tube technology, the charge restoration techniques to control the operating point
of the input transistor have evolved, particularly with the advent and widespread
application of CMOS monolithic circuit technology. The dc feedback in charge
amplifiers via a resistor (Rf in Fig. 10.28) has always been a problem in applications
striving to achieve the ultimate in noise performance. Very high values in the
gigaohm range are required in x-ray and gamma-ray spectroscopy, as this resistor
injects a noise current inversely proportional to this resistance directly into the
input node (i.e., “parallel noise”, Sect. 10.4.5). In most applications the resistance
values required are higher than the practical range of polysilicon resistors in CMOS
technology. In some applications where the detector capacitance is very low it is
best to avoid entirely any resistor and any continuous dc feedback. Various charge
restoration techniques using switching or “reset” have been developed. An example
is the CCD readout as shown in Fig. 10.35.

Continuous charge restoration is usually simpler to implement and better suited
in many applications where its noise contribution is negligible, i.e., with higher
detector capacitances and shorter weighting functions (peaking times). Most present
gas, noble liquid and silicon particle detectors fall into that category. Additional
considerations in the choice between switched and continuous charge restoration
are the knowledge of the event arrival time and whether switching transients pose a
problem. Continuous feedback in MOS technology is realized by a transistor with
a long and narrow channel (L»W). The resistance of such a device will depend on
the signal amplitude and on the detector leakage resulting in a nonlinear response.
An elegant solution for accurate nonlinearity compensation is shown in Fig. 10.30.
The transistor-capacitor network between the two amplifiers is an exact replica
of the feedback network but increased in width by a factor N. Both networks
operate at equal voltages on the two transistors and this ensures the compensation of

Fig. 10.30 Charge amplifier with continuous reset, pole-zero cancellation and compensation of
non-linearity in the feedback transistor [10, 46]
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Fig. 10.31 An alternative configuration for a charge amplifier with pole-zero and transistor
nonlinearity compensation [10]

Fig. 10.32 Matrix readout of integrating pixel detectors. Transistors switches are integrated on the
detector substrate

nonlinearity and pole-zero cancellation. The charge (current) gain in the first stage
including the pole-zero network equals N.

An alternative configuration is shown in Fig. 10.31. An advantage of this
configuration is that it separates the bias point of the transistors Mf and Mo from
the virtual ground of the amplifiers. This results in a larger dynamic range. The
configuration in Fig. 10.31 can be used as an input stage (charge amplifier) or
as a second stage where several gain stages are needed. An analysis of both
configurations is given in Ref. [10, 70, 71]. An overview of dc charge restoration
circuits is given in Ref. [47].

10.8.3 Pixel Matrix Readout

Large pixel arrays can be conveniently read out by a matrix arrangement as
illustrated in Fig. 10.32. The charge due to a photon or charged particle is stored
on a pixel capacitance. The switches (one/pixel) connect a row of pixels to charge
amplifiers located at the bottom of the columns. In this way, a multiplexing density
is achieved between that for a separate readout for each pixel and the CCD with only
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Fig. 10.33 Basic circuit diagram of the matrix readout with a switch (and no amplification) in
each pixel [41–43]

one readout for the entire array. Such an array can be used in single event counting
mode at sufficiently low event rates, or in charge integrating mode at very high
event rates. This type of readout allows the use of the same technology, or different
technologies, for the detector and the switching transistors. For many applications
this approach is the best compromise between interconnect complexity and the
speed of readout. An example of such an imaging detector for x-ray radiography
is described in Ref. [41], and a silicon detector with Junction FET switches in
Ref. [42]. The equivalent circuit diagram of such a readout with correlated double
sampling is given in Fig. 10.33. It is convenient to group the noise contributions in
this case in two classes: those that can be reduced by correlated double sampling
and those that cannot. Referring to the notation in Fig. 10.33, the former are the
reset (kTC) noise of capacitances Cf and Cs, and the latter are the reset noise of
the charge collecting pixel Cd, shot noise from pixel dark current and amplifier
series white noise. The reset (kTC) noise on the pixel capacitance Cd cannot be
reduced by double correlated sampling according to the discussion in Sect. 10.7
and as illustrated in Fig. 10.27, because both the signal and the kTC noise start
building up after the charge transfer from the pixel to the charge amplifier. Thus for
the simplest matrix readout the minimum noise is limited by the pixel capacitance,
Table 10.1, e.g., ~ 400 electrons rms for Cd ~ 1 pF at 300 K. There will also be a
significant contribution by the amplifier noise if the connection capacitance along
the column to the amplifier is large due to the size of the pixel array.

A much lower noise can be achieved in pixel arrays with “amplified pixels” as
illustrated in Fig. 10.34. Each pixel has three or more transistors to perform the
basic functions of reset, amplification and row selection. A CMOS matrix readout
die can be bump-bonded (or in the future, directly bonded) to a pixel detector, or
serve as a monolithic active pixel sensor (MAPS), Ref. [44]. Performing the reset in
each pixel separately from the charge transfer (unlike in the simplest matrix readout
without in-pixel amplification) allows almost complete cancellation of the pixel
kTC noise by double correlated sampling, in applications where the time interval
between the two samples is not too long (see Fig. 10.27). Noise levels in the range
of 10–20 electrons rms have been achieved with small pixels (20–30 fF). The same
level of noise has been achieved with larger pixels (~1 pF) and more conventional
charge amplifiers and pulse shaping [48]. A lower noise with silicon pixel detectors
has been achieved by integration of a field effect transistor on the high resistivity
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Fig. 10.34 Three transistor cell for readout of pixel detectors comprised of a source follower (SF),
reset transistor switch and select transistor switch, illustrated for a bump-bonded hybrid detector.
In monolithic active pixel CMOS detectors (MAPS), the readout cells are integrated with sensing
diodes [44]. An overview is given in Ref. [43]

detector die (DEPFET, Ref. [49]). The lowest noise has been achieved with CCDs,
Sect. 10.8.4. Each of these results was obtained after optimization for a particular
application and each one involves a different set of parameters.

10.8.4 Charge Conserving (CCD) Readout

The charge coupled device (CCD), Fig. 10.35, is a device with the highest charge
detection sensitivity among the photon and particle detectors. Low noise in the
single electron rms range has been achieved [35, 69], thanks to a very low
capacitance of the readout node and the integrated source follower (~15–30 fF), and
the absence of any continuous conduction path to the sensing node. A switched reset
is used after reading out the charge. Correlated double sampling is used to make
the kTC noise negligible, as discussed in Sect. 10.7. Nearly complete kTC noise
cancellation is achieved because the first sample is taken before the signal charge
is transferred to the readout node (floating gate). Dual slope integration/trapezoidal
weighting function is used for optimal filtering of the transistor (source follower)
series noise, as discussed in Sect. 10.4.6.
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Fig. 10.35 An illustration of CCD read-out. The source follower (shown only schematically) is
integrated on the CCD substrate as a buried channel enhancement mode MOSFET. The signal
charge transferred from left to right is sensed at the floating electrode between the output gate and
the reset gate. Csn is the “node capacitance” = floating gate + gate to source capacitance of the
transistor

10.9 Electronics Technology Outlook

10.9.1 Scaling of CMOS

The process of reduction of the size of CMOS transistors has continued for
more than 40 years, and it is only very recently that it has started approaching
fundamental physical limits. In this process the device is being scaled down in all
three dimensions and in voltage, while the doping concentration is being increased.
All dimensions are being reduced by a scaling factor α. This reduction includes all
geometrical parameters of the device such as the gate oxide thickness tox, channel
length L, channel width W, and junction depth. The substrate doping concentration is
increased by the same scaling factor. The voltages applied were also expected to be
reduced by the same scaling factor. These scaling rules were very clearly described
in some detail already in 1974 [50], and the resulting device properties as a function
of α are given in Table 10.2.

The scaling by a factor α = √
2 every ~2 years has followed the Moore’s law [50]

remarkably well until recently, with one exception. In the last few steps below the
channel length L ~ 0.13 microns it is not possible to reduce the applied voltages by
the same scaling factor. Downscaling has made the speed of the MOSFETs higher,
the power dissipation per circuit lower, and it has enabled an ever-increasing level
of integration (the number of transistors on a single chip). Aside from the enormous
progress in all digital devices, it has made possible increasingly complex functions
in the readout of detectors by integration of mixed signal (analogue and digital)
circuits in Application Specific Integrated Circuits (ASICs).
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Table 10.2 Scaling rules:
dependence of device
properties on scale factor α

Device property Scaling rule

Electric field E const.
Conductance (transconductance) = I/V const.
Current density const.
Power density const.
Capacitance 1/α
Speed = I/CV = gm/C = fT α

Switching energy = CV2 1/α3

Power/gate = CV2f 1/α2

Circuits density (transistors/unit area) α2

The principal impact on analogue ASICs has been:

• More, faster transistors
• Lower capacitance-lower noise readout of small detector pixels
• Better radiation resistance
• Prospects for vertical integration with high resistivity silicon detectors

However, the impact on analogue circuits has been very positive only up to a
certain point of scaling. Scaling of CMOS into the deep submicron range (below
100 nm down to a few nm) has some undesirable consequences for low noise
amplifier design:

• The low supply voltage “headroom” in scaled CMOS processes imposes limits
on analogue circuit topologies. The increasing ratio of VTH/VDD rules out the
use of many classical analogue design topologies.

• The cascode connection, useful in providing high gain loads and current sources,
becomes difficult to realize once VDD falls below ~1.2 V.

• The electrostatic control of the channel by the gate is reduced, resulting in
reduced ratio Idon/Idoff. In CMOS transmission gates, commonly found in
sample/hold and switched capacitor circuits, self-discharge rates increase due to
incomplete current cutoff.

• The reduced electrostatic control of the channel results also in a lower ratio of
the drain conductance and the transconductance, i.e., the gain of the transistor.
To achieve a certain gain more amplification stages may be needed.

• The dynamic range of capacitance based circuits, memories and sample & hold
circuits, is reduced (the ratio of stored charge to the kTC noise), both due to the
reduced Vdd and due to a lower storage capacitance.

• Gate tunneling current arising with thin oxides contributes shot noise.

While the scaling in the CMOS technology is driven by the entire information
technology industry, some applications require higher operating voltages than
dictated by the smallest feature sizes. This has been recognized, and the large
semiconductor foundries offer options with a thicker gate oxide in their deep
submicron platforms. For example, a nominal gate oxide thickness in the 65 nm
platform (or “node”) is about 65/50 ≈ 1.2 nm, but the process includes also on the
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same wafer an oxide thickness of ~5 nm, that requires a minimum channel length of
~250 nm and allows a supply voltage of ~2.5 V. This will make possible in a single
ASIC both high density digital circuits with the minimum feature size, and higher
voltage input/output circuits and precision analogue circuits with an effectively
larger feature size.

Analog design below 100 nm becomes gradually more difficult. The complexity
of ASIC design rules and the costs of the design tools increase steeply as the feature
size is reduced. This is discussed in some detail in Ref. [51].

While the developments in electronics technology have already made possible
very large and complex detectors, the power dissipation associated with increasingly
complex signal and data processing has been a problem and will remain a principal
limitation and challenge.

Along with the quest in the CMOS scaling continuing down to the nodes in the ~7
to 28 nm range, an additional path to higher circuit densities and to higher speed of
digital circuits (by shortening the interconnections) is three-dimensional integration
of several thin layers of CMOS circuits [52, 53]. A significant breakthrough in
particle and photon silicon detectors will be integration (by direct bonding) of a
thick (50–500 μm) high resistivity p-i-n detector die to one or more thin (~10 μm)
CMOS layers of readout electronics.

10.9.2 Transistors at Low Temperatures: Applications
in Future Detectors

Most of the electronics for particle detectors has been based on silicon CMOS
devices following the trends in electronics industry. Over the last two decades the
technology of silicon–germanium heterojunction bipolar transistors (SiGe HBT)
has been developed [54]. These devices have some key properties superior to
the bipolar junction transistor (BJT), notably a much higher current gain and
a much higher unity-gain frequency. The HBT, unlike the BJT can operate at
liquid nitrogen temperature, and furthermore, with an increased current gain.
Recently emerging cryogenic applications have generated renewed interest in low
temperature properties of both CMOS and HBT technologies [54, 55]. As with
HBTs, it has been found that various CMOS device properties improve at low
temperatures. The mobility and the transconductance increase by a factor of two
to three as the temperature decreases from 300 K to 43 K, and the (inverse)
subthreshold slope decreases from ~90 mV/decade to ~20 mV/decade resulting in
a higher ratio of the transconductance to the drain current. The transistor (series)
thermal noise has been observed to decrease monotonically from 300 K to 40 K [56].
There is one caveat: CMOS transistors have to be operated (at any temperature)
under conditions where hot electron generation, which is more pronounced at low
temperatures, is minimized [57].
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In particle physics, recently developed cold monolithic electronics has enabled
scaling up of liquid argon time projection chambers to a very large size, required for
studies of neutrino oscillations and nucleon decay. Such detectors, which originated
with the ICARUS project [58], in the size range of up to few hundred tons, will have
to be built in the range, unthinkable so far, of tens of kilotons. The number of sense
electrodes (wires) and the readout amplifiers will be in the range of ~5·105 to 3·106,
assuming a reasonable electron drift length in the time projection chamber (TPC)
and the sense wire length. Readout by monolithic amplifiers (with multiplexing)
placed at wire electrode frames, results in a significantly lower noise (due to a
lower capacitance) than with long cables bringing the signals from each sense
wire to the outside of the cryostat, and in a much lower number of cables and
feedthroughs. This also allows the design of the cryostat to be freed from the signal
cable constraints. The “cold electronics” in this case will have a beneficial impact
on both the engineering and the physics, i.e., a higher signal-to-noise ratio allowing
better background rejection and a higher precision in the track measurement and
reconstruction increasing the sensitivity for detection of interesting phenomena [59,
60]. Such a detector, on a smaller scale (~75 tons of liquid argon with ~8300 sense
wires and electronic channels immersed in liquid argon), has been built and operated
for two years. Uniformity and stability of the gain and noise has been demonstrated
[61].

10.9.3 Beyond the Moore’s Law

As the MOSFET technology advances further into the nanoscale domain (gate
widths down to 5–10 nm), Moore’s law, as defined for CMOS transistors, is running
up against the physical, technical and economical limitations, and eventually
against the granularity of matter (silicon lattice constant ~0.54 nm). Physical
phenomena associated with small dimensions, such as quantum mechanical effects
and fluctuations in the decreasing number of dopants, take place. These effects cause
leakage currents (incomplete drain current turn-off and gate tunnelling currents) and
dispersion in device parameters (threshold voltage). Associated with the necessity
for tighter control of all device and fabrication process parameters are increasing
costs.

Recent research toward smaller, faster and lower power devices has been concen-
trated on “beyond CMOS” devices [62–64]. As with the CMOS, new developments
are being driven by the needs for high density-high speed digital and computer
circuits. Besides the physical variables considered as “computational variables”
familiar in CMOS (current, voltage, charge), other variables are being considered
(electric dipole, magnetic dipole, orbital state). Among possible device concepts
being explored are:

• Tunneling FET
• Graphene nanoribbon FET
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• Bilayer pseudo spin FET
• SpinFET
• Spin transfer torque/domain wall
• Spin torque oscillator logic
• All spin logic device
• Spin wave device
• Nanomagnet logic
• III–V tunnel FETs

Each of these devices may have some properties superior to CMOS, but none, so
far, satisfies the set of simple criteria that CMOS does. For example, upon analysis,
the spintronic devices have longer switching delays and higher switching energies,
due to inherent time of magnetization propagation.

Any “Beyond CMOS” device should have many of the same characteristics as
CMOS devices:

• Power gain >1
• Ideal signal restoration and fan-out (output of one device can drive two or more

devices)
• Feedback prevention (output does not affect input)
• High ON/OFF current ratio ~ 105–7

• Low static power dissipation
• Compatibility with Si CMOS devices for mixed functions

The consensus about the future technology has been so far: No new device is
yet on the horizon with a potential to completely replace CMOS. More likely,
new devices may emerge by gradual evolution. New or special functions (e.g.,
memories, [34]) may become possible in the nanoscale devices by new physics and
such devices may be merged into CMOS circuits to enhance overall performance.
Impedance matching may be necessary from the quantum resistance values (kohms)
down to the 50–100 ohm range. The overall logic operations and communications
will still be based on CMOS. Future integrated circuits are likely to still contain
a majority of CMOS devices with a few other beyond-CMOS devices performing
various specialized functions. An in depth evaluation of the various device concepts
under investigation is given in Ref. [65, 72].

Work on carbon nanotubes as active electronic devices and passive devices
(interconnects) has been going on for the last three decades. Some interesting
devices and phenomena have been described extensively in literature [64]. Carbon
nanotube as a channel in an MOS transistor structure has higher mobility, reducing
electron transit time. However, accurate placement of carbon tubes, and the need to
form higher current channels by placing multiple carbon tubes in parallel, has been
a challenge to fabricate uniform devices. Graphene based devices are analyzed in
Ref [66].

In the quest for nanoscale devices and higher density of analogue and digital
functions other limitations appear. Since all logic circuits (even spintronics circuits)
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need electrical contacts at the terminals of gates and channels (source and drain)
their size will be limited by the metallization dimensions.

As far as particle and photon detectors are concerned, further progress in digital
circuit technology, based on nanoscale nodes, will result in increased functionality
of the detector circuits, particularly those integrated with detectors, as long as they
are economically available from multi-project foundry services or as commercial
components. The development of multi-layer (3D) circuits for detectors has been
challenged by limited access to this technology, given the relatively small quantities
needed in physics experiments and high costs.

As far as the analogue front-end circuits for particle detectors are concerned, it
appears that CMOS will be less useful below the ~65 nm node (Sect. 10.9.1 and
Ref. [51]). In higher precision circuits, such as analogue to digital converters and
switched capacitor memories, the dynamic range is limited by the low power supply
voltages (one volt or less) at the upper end and by the kTC noise at the lower end.
Fortunately. the provision of thicker oxide devices on the same nanoscale platforms
leaves the choice of the operating voltage, the gate length and width to the designer
(as discussed in Sect. 10.9.1).

An interesting domain, outside of the CMOS mainstream, has been presented by
single-electron transistors (SETs), [67, 68]. Single electron transistors are devices
with a capacitance so small that a single electron can generate a measurable voltage
(above the thermal voltage). To be observable, the mean energy of the electron on the
capacitance must be several times larger than its thermal energy (kTC noise). This
sets an upper limit on the capacitance of the control electrode (gate) of the transistor
(and the sensor connected to the transistor) and on the operating temperature. From
Sect. 10.7 and Table 10.1, an upper limit for the capacitance at room temperature
would be 1 aF (10−18 F). Alternatively, the temperature would have to be 300 mK, to
allow a capacitance in the range of ~1 fF. SETs, although known for more than three
decades, have not been considered suitable for integration due to large variability in
their fabrication.

SETs might be suitable as very sensitive electrometers for equally low capaci-
tance sensors. That sensitivity is for the most part due to their low capacitance and in
part due to improved carrier transport properties. At 300 K they are not matched to
even the smallest pixels of present particle and photon detectors, and will be useful
only with an entirely new generation of very fine grained detectors operated at low
temperatures.
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