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Abstract. Automatic shouted speech detection systems usually model
its spectral characteristics to differentiate it from normal speech. Mostly
hand-crafted features have been explored for shouted speech detection.
However, many works on audio processing suggest that approaches based
on automatic feature learning are more robust than hand-crafted feature
engineering. This work re-demonstrates this notion by proposing a 1D-
CNN architecture for shouted and normal speech classification task. The
CNN learns features from the magnitude spectrum of speech frames.
Classification is performed by fully connected layers at later stages of
the network. Performance of the proposed architecture is evaluated on
three datasets and validated against three existing approaches. As an
additional contribution, a discussion of features learned by the CNN
kernels is provided with relevant visualizations.
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1 Introduction

Automatic shouted speech detection has application in areas like health-care,
security and home-care [12]. Moreover, it is also required as a preprocessing step
in applications like ASR and speaker recognition systems. Performance of such
systems that are mostly trained on normally phonated speech degrades when test
utterances include shouted content [12,14]. Thus, this work focusses on efficient
segregation of normal and shouted speech.

Production of shouted speech may be attributed to following situations –
charged emotions while speaking, communicating over long-distances, or calling
in distress. In such situations, speech production characteristics deviate from
normal. The effect of change in production characteristics is reflected in vocal
tract characteristics. Air pressure from lungs increases during shouting, leading
to comparatively fast vibration of vocal folds [9]. This changes the fundamental
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frequency (F0) of produced speech. Properties of F0 has been extensively stud-
ied in the context of shouted and normal speech. In literature, shouted speech
is considered as a high vocal effort speech. Authors in [9] have studied devia-
tion in vocal efforts for five vocal modes – whisper, soft, neutral (normal), loud
and shout. Spectral tilt and log-linear predictive coding were examined in [14]
to study the effect of different vocal efforts on automatic speech recognition.
The classification performances were tested using three variants – (a) Bayesian
classifier based on static GMMs with diagonal covariance matrices; (b) GMMs
with full covariance matrices; (c) a multi-class Support Vector Machine (SVM)
classifier with Radial Basis Function (RBF) kernel. To capture the variability
in vocal tract characteristics due to different vocal modes, Mel-Frequency Cep-
stral Coefficient (MFCC) has been largely studied along with different combina-
tion of features [12]. Mittal et al. in [9] used features derived from the Hilbert
envelope of double differenced Numerator of the Group Delay (HNGD) spec-
trum to analyze the differences between shouted and normal speech. Strength of
Excitation (SoE), F0 and dominant frequency (FD) derived from the LP spec-
trum of vowel-like regions were examined to discriminate shouted and normal
speech. Shifts in formant positions are also used in literature for detection of
shouted speech. Recently, the standard deviation in frequency and energy of the
first three formants have been explored for analyzing and characterizing shouted
speech signals [8].

Existing works have mostly focused on using excitation or spectral features
for detection of shouted speech [10]. Recent works in deep learning have shown
that effective architectures can learn robust and discriminative patterns from
data and provide promising classification performance [2]. Such representations
are learned with a framework of many affine transformations followed by a non-
linearity [4]. These automatically learned features are comparatively more robust
to local variations in data. Convolutional Neural Networks (CNN, henceforth)
have been used for feature learning from audio data for several audio processing
applications like speech-based emotion recognition [3], speech recognition [11],
hate speech detection [1] etc. CNNs are capable of capturing patterns present
in data. This motivated us to explore CNNs for shouted and normal speech
classification. Motivated by the success of CNNs in various image processing
applications [7], authors have deployed 2D CNNs on spectrograms (or other
time-frequency variants) of audio data [2,3]. However, a drawback of this app-
roach is the requirement of large datasets for learning the networks. To the best of
our knowledge, most standard datasets (available in public domain) for shouted
speech classification are small in size. Other works have reported results on pri-
vate datasets (remains undisclosed). Hence, it is difficult to get a sufficiently
large dataset for employing 2D-CNNs for shouted and normal speech classifi-
cation. This motivated us to explore 1D-CNNs consisting of one-dimensional
convolutional kernels. We propose a 1D-CNN with two convolution layers, one
max-pooling stage and three dense layers (Fig. 1). The proposed CNN is bench-
marked on three standard datasets with respect to three baseline algorithms.
To summarize, this work has the following contributions. First, a proposal of a
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1D CNN architecture for shouted and normal speech classification. Addition-
ally, CNN filters are analyzed in an attempt to interpret the learned features.
Second, construction of a dataset of 20 speakers in both shouted and normal
vocal mode.

The rest of the paper is organized in the following manner. The proposed
approach is described in Sect. 2. The experimental results on standard datasets
are presented and discussed in Sect. 3. Learned filters are visualized in Sect. 4.
We conclude in Sect. 5 and sketch the future scope of present work.

Fig. 1. Proposed 1D CNN architecture.

2 Proposed Approach

Existing works in shouted and normal speech classification have mostly used
spectral features, like spectral tilt [14], formant locations [8], MFCCs [14] etc.
This motivated us to first transform the input speech signal to frequency domain.
Due to quasi-periodic nature of speech, it is segmented in small overlapping
frames. Each frame s[n] (n = 0, 1, . . . 2N − 1) of length 2N is transformed to
frequency domain as S[k] =

∑2N−1
n=0 s[n]e

−j2πkn
2N ; k = 0, 1, . . . , 2N −1, where S[k]

represents spectrum of s[n]. Since, s[n] is real, only half the magnitude spectrum
(S[k]; k = 0, 1, . . . N − 1) is used as input to 1D CNN. This work uses a frame
size of 20 ms with a shift of 10 ms. We have used audio signals sampled at
16 KHz. Thus, each frame of 20 ms interval contains 2N = 320 samples. Hence,
input to the 1D CNN has N = 160 dimensions. The proposed architecture of
the 1D CNN is described next.

A conventional architecture of 1D CNN comprises sets of convolutional and
pooling layers followed by fully connected dense layers. Small-sized 1D filters are
used in each convolutional layer to capture the local feature of input data. The
output of convolutions is passed through an activation function for non-linear
transformation of data. Pooling is performed to obtain the hierarchical represen-
tation in data. All tunable parameters of the architecture are learned through a
feed-forward and back-propagation approach, which minimizes a cost function.
The rest of the paper is organized in the following manner. The proposed app-
roach is described in Sect. 2. The experimental results on standard datasets are
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presented and discussed in Sect. 3. Learned filters are visualized in Sect. 4. We
conclude in Sect. 5 and sketch the future scope of present work. The 1D CNN is
illustrated in Fig. 1.

Table 1. Classification performance in terms of F-score

SNE-Speech FIN-SN IIIT-H VLSD

Fnor Fsh Fnor Fsh Fnor Fsh

Raitio-FS [13] 0.79± 0.01 0.79± 0.00 0.9± 0.01 0.89± 0.00 0.72± 0.01 0.74± 0.02

Mittal-FS [9] 0.83± 0.01 0.79± 0.01 0.92± 0.01 0.90± 0.00 0.76± 0.02 0.79± 0.02

Zelinka-FS [14] 0.95± 0.01 0.93± 0.00 0.99± 0.00 0.99± 0.00 0.87± 0.01 0.86± 0.01

1D-CNN 0.97± 0.003 0.96± 0.003 0.99± 0.002 0.99± 0.001 0.9± 0.01 0.9± 0.01

Convolutional Layer. Convolutional operations are performed on local regions
of input data through different kernels. Each convolutional kernel extracts certain
patterns from the input data. The mathematical representation of convolutional
operation in layer l is given by yl

i = f
(
xl � Kl

i + bli
)

where, K denotes the con-
volutional kernel, i corresponds to kernel index and bli is the bias of ith kernel in
lth layer. Here, xl and yl

i represent the input and output of lth layer respectively.
The convolution operator is represented by � and f(.) corresponds to activation
function. The proposed architecture has two convolutional layers with 32 and 64
kernels respectively. Kernel size in both the layers is 7 × 1. ReLU (max(0, x))
is used as an activation function to address the vanishing gradient problem [6].
The 160 × 1 input is processed by these two convolutional layers to produce a
(148 × 1) × 64 tensor.

Max-Pooling. Pooling operation is used to downsample data for reducing
model complexity of CNN. Pooling retains necessary representational informa-
tion for further layers. A single 2 × 1 max-pooling stage (with stride 2) is used
in our proposal. This max-pooling stage downsamples the (148× 1)× 64 tensor
to (74 × 1) × 64.

Dense Layers. Fully connected dense layers are used at the later stages of
the CNN. Each node in such a layer is connected to all nodes in the previous
layer. The output of a dense layer node is mathematically represented as dl =
f(Wldl−1 + bl), where, W and b represent weight and bias respectively. The
(74 × 1) × 64 tensor is flattened to obtain a layer containing 4736 nodes. This
is followed by two hidden layers with 200 and 20 nodes respectively till last
(output) layer. Each dense layer uses a ReLU activation function. The last layer
hosts soft-max activation function and has 2 nodes corresponding to shouted
and normal speech.

Model Training. The predicted and actual output are used to estimate the
prediction error of the CNN. The CNN parameters are optimized using cross-
entropy loss function with ADAM optimizer [5]. Parameters of the model are
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optimized by minimizing the error with a learning rate of 0.0001. We have trained
the CNN for a maximum number of 150 epochs with a mini-batch size of 512.

Table 2. Cross-dataset classification performance in terms of F-score for 1D-CNN.

SNE-Speech FIN-SN IIIT-H VLSD

Fnor Fsh Fnor Fsh Fnor Fsh

SNE-Speech – – 0.54± 0.044 0.78± 0.01 0.65± 0.03 0.73± 0.002

FIN-SN [12] 0.86± 0.01 0.82± 0.01 – – 0.82± 0.01 0.78± 0.01

IIIT-H VLSD [9] 0.80± 0.02 0.80± 0.02 0.79± 0.03 0.86± 0.01 – –

3 Experiments and Results

The proposed approach is evaluated on three datasets. The first dataset (FIN-
SN, henceforth) contains 1024 Finnish sentences uttered by 22 (11 males and
11 females) native speakers of Finnish language [12]1. The speech signal was
recorded at 16 kHz for both normal and shouted vocal modes. Second, the IIIT-
H Volume Level Study Database (IIIT-H VLSD, henceforth) [9] (See footnote 1)
comprises normal and shouted data of 17 (10 males and 7 females) non-native
English speakers. A total of 102 English sentences are recorded at 48 kHz sam-
pling rate. Third, a dataset contributed by the authors (SNE-Speech, henceforth)
consists of 20 (10 female and 10 male) non-native English speakers. Speakers
were asked to utter 30 English sentences in normal and shouted vocal modes.
Speakers belong to different states of India. Therefore, the accent may vary
from speaker to speaker. Out of 30 sentences, 15 are in imperative mood that
people might use to threaten someone. While remaining 15 sentences have a
neutral mood. All recordings were done in a controlled environment with TAS-
CAM DR-100mkII 2-channel portable digital recorder, electroglottograph (with
two electrodes) and Praat software. Speech and corresponding Electroglottogram
(EGG) signals were sampled at 44.1 kHz. The dataset comprises a total of 1200
sentences in both normal and shouted vocal mode. All audio signals of all three
datasets are resampled at 16 kHz for our experiments.

Our proposal is validated against three baseline approaches. Features used
to analyze shouted speech in [13] are considered as baseline Raitio-FS. These
features are F0, Normalized Amplitude Quotient (NAQ), Sound Pressure Level
(SPL) and the difference between first and second harmonics (H1-H2). The effect
of varying the glottal dynamics on speech production due to different vocal
modes are analyzed in [9]. The F0, alpha (ratio of closed phase to the glottal
cycle), beta (ratio of low-frequency energy to the high-frequency energy in nor-
malized HNGD spectrum) and standard-deviation of low-frequency energy have
been reported to have different characteristics in different vocal modes. This

1
Authors of this work would like to thank Pohjalainen et al. [12] and Mittal et al. [9] for sharing
their dataset.
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work is considered as baseline Mittal-FS [9]. Baseline Zelinka-FS [14] reported
classification of five vocal modes using 20-MFCCs using 40 filters. Authors in
[9,13] presented an analysis of shouted and normal speech. They did not report
any classification result. For the comparison purpose, classification is done using
SVM classifier. Classification performance for shouted (Fsh) and normal (Fnor)
speech are reported in terms of F1-scores of individual classes.

We have used SVM (with RBF kernel) for the classification task of base-
line approaches. Grid search is performed to find the optimal classifier param-
eters. All experiments are carried out with train-test split of 80:20. For each
approach, the classification task is performed five times on randomly drawn
instances of training and testing. Each reported result in Table 1 represents the
mean and standard-deviation of F-scores for all five experiments. Classification
performance of 20-MFCCs is higher than the other two baselines in all three
datasets. The MFCC gives almost similar performance as of 1D CNN for FIN-
SN dataset. The 1D CNN provides comparatively better classification results in
all three datasets. All the approaches show lower results in IIIT-H VLSD dataset.
This dataset contains few shouted recordings which are perceptually similar to
normal speech. This may be the reason for lower performance in this dataset.
Classification results using 1D-CNN validate its ability of efficient representation
learning.

Fig. 2. Visualization of responses of few selected filters from the first convolution layer
of the proposed CNN architecture as shown in Fig. 1. First and fourth columns cor-
respond to inputs to the filters for normal and shouted speech respectively. Similarly,
third and sixth columns correspond to outputs of the filters for normal and shouted
speech respectively.

4 Analysis and Filter Visualization

The convolution filters of CNNs learn some specific properties of input data. The
proposed 1D-CNN is trained on the DFT spectrum of speech frames. Thus, filters
of the proposed CNN might learn spectral characteristics of normal and shouted
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speech. We attempt to develop some intuitive understanding of the features
learned by these filters. Figure 2 shows the shapes of some selected filters from
the first convolution layer (CL, henceforth) of the trained CNN. We observe
that each filter in first CL learns highly varying harmonic content of the input
spectrum. The learned harmonic patterns seem to be quite different for normal
and shouted speech (Fig. 2). We believe that this representation learning leads
to better discrimination between the two classes.

A cross-dataset performance analysis is performed to establish the general-
ization performance of our proposal. The CNN is trained on one dataset and
tested on the other two datasets. Table 2 shows the cross dataset performance.
The results indicate the dependency of the CNN model on the training data
up to some extent. Datasets FIN-SN and SNE-Speech have different languages.
Dataset IIIT-H VLSD has a comparatively smaller corpus and accent of speak-
ers is quite different from that of SNE-Speech. These might be the reasons of
lower classification performance for cross datasets. This motivated us to train
the CNN on combined dataset.

Table 3. Classification performance in terms of F-score for combined dataset.

Training data 1D-CNN
Fnor Fsh

40% of SNE-Speech + 40% of FIN-SN + 40% of
IIIT-H VLSD

0.96± 0.005 0.97± 0.009

60% of SNE-Speech 0.95± 0.012 0.96± 0.006
60% of FIN-SN 0.98± 0.003 0.99± 0.004
60% of IIIT-H VLSD 0.86± 0.029 0.85± 0.025

Proposed CNN architecture is trained on combined data drawn from all three
datasets to make it robust towards language and accent variations. For train-
ing, 60% of all three datasets (60% of SNE-Speech + 60% of FIN-SN + 60%
of IIIT-H VLSD) are randomly drawn and remaining data is used for testing.
Table 3 illustrates the performance of the 1D CNN model trained on combined
data. The results show that the trained model gives almost similar performance
as mentioned in Table 1 except for IIIT-H VLSD dataset. IIIT-H VLSD is com-
paratively smaller dataset than the other two. Thus, the trained model might
be biased towards the other two datasets. This conveys that the trained model
is relatively robust towards language and accent than the one learned from indi-
vidual datasets.

5 Conclusion and Future Scope

This work proposed a 1D CNN architecture for shouted and normal speech
classification. The proposal is evaluated on three datasets and validated against
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three baseline methods. The CNN was able to efficiently learn discriminating
features from the magnitude spectrum of speech frames. CNN convolution layer
visualization reveals that filters in the first convolution layer learn the harmonic
structure of speech spectra. Efficacy of the learned features is validated by decent
generalization performance obtained with cross-data and combined data perfor-
mance analysis. The CNN performance indicates that the proposed approach is
effective for shouted and normal speech classification.

In the future, further exploration of the effect of different kernel and convo-
lution layer sizes can be explored. Slight degradation in performance of cross-
dataset experiments indicates the dependency of the model on language. Thus,
further explorations are required to design language-independent CNN based
methods. The performance of the proposed CNN based approach for different
noisy speech conditions also requires further investigations.
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