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Abstract. Unconstrained, at-a-distance iris recognition systems endure
the problem of fragile bits. Existence of fragile bits in candidate iris
results into low recognition rates. Proposed approach utilizes fragile-bit
information for classification of iris bits as consistent or inconsistent. We
divide the candidate iris into patches and propose monogenic signals of
Riesz wavelets to learn fragile bits in each patch. We propose a new fea-
ture descriptor, Riesz signal based binary pattern (RSBP) to extract the
features from these patches. Each patch is assigned with a weight pivoted
on the fragile bits present in it. Dissimilarity score between the two irises
is obtained by adopting weighted mean Euclidean distance (WMED).
Experiments are conducted using both near infra red (NIR) and visible
wavelength (VW) images, obtained from the benchmark databases IITD,
MMU v-2, CASIA-IrisV4-Distance and UBIRIS v2. Results justify the
applicability of proposed approach for iris recognition.

Keywords: Iris recognition · Fragile bits · Multi-patches · Monogenic
signal

1 Introduction

Because of intricate textural pattern of the stroma in human iris, iris biometrics
manifests low miss match rates compared to rest of the biometric traits [10]. Ear-
lier works on iris biometrics deal with the iris images obtained under constrained
scenario and have obtained promising results. However, when iris images are
obtained from long stand-off distances under unconstrained imaging, acquired
iris information will be very poor because of bad illumination and less coop-
eration by the subject and results into high intra-class variations [17]. Such
degraded iris images are occluded by eye-lids, eye-lashes, eye-glasses and specu-
lar reflections. Occluded region of the candidate iris image leads to an iris code
comprising of the bits which are not consistent (fragile) over irises of the same
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person [6]. A fragile bit is defined as a bit in an iris code which is not consistent
across the different iris images of the same subject. Probability of existence of
noise at a specific region of iris varies from image to image and hence produces
fragile bits in the corresponding iris code. Figure 1 illustrates presence of noise
in sample eye images of the same subject, taken from UBIRIS v.2 database,
and noise in their unwrapped irises which leads to fragile bits. We propose an
iris recognition scheme in which, tracks and sectors are deployed to divide the
unwrapped iris region into patches. Earlier researchers have adopted region-wise,
multi-patch feature extraction approach for iris classification [11,13]. Recently
Raja et al. [15] have proposed deep sparse filtering on multi patches of normal-
ized mobile iris images. Histograms of each patch are used to represent iris in a
collaborative sub space. In our earlier work [18], we have divided the unwrapped
iris into M patches using p sectors and q tracks and have utilized Fuzzy c-means
clustering algorithm to classify the patches into best iris region and noisy region.
We have used probability distribution function in order to cluster the patches
into iris or non-iris regions. However, due to varieties of noise present in uncon-
strained imaging, clustering the iris regions based on their statistical properties
alone is difficult. We propose a learning technique which classifies the patches
based on bit fragility in each patch using monogenic functions.

Monogenic signals are 2D extensions of 1D analytical signals. An Analytical
signal, in its polar representation, gives the information about local phase and
amplitude, hence, generalizing 1D analytical signal to its 2D counterpart, using
Riesz transform, gives a deeper insight to low level image processing [5]. First
order Riesz wavelets can extract 1D inherent signals such as lines and steps in an
image and second order Riesz wavelets can capture 2D signals like corners and
junctions [9]. In Fig. 2 we have presented example of an unwrapped iris from
IITD database, its first order Riesz transformed output responses, hx(f) and
hy(f) respectively. We can observe texture variations along horizontal and ver-
tical directions. Further, Riesz transform allows us to extend Hilbert transform
along any direction. This property is called steerable property. By the virtue
of steerable property, a filter of arbitrary orientation can be created as a linear
combination of a collection of basis filters. Steerable Riesz furnishes a substantial
computational scheme to extract the local properties of an image.

A texture learning technique, exploiting local organizations of magnitude and
orientations, using steerable Riesz wavelets, has been proposed by Depeursinge
[4]. Zhang et al. [21] propose a competitive coding scheme (CompCode) for finger
knuckle print (FKP) recognition based on Riesz functions and have obtained
promising results for FKP. Two iris coding schemes, based on first and second
order Riesz components and steerable Riesz are proposed in [19]. One of the
coding scheme encodes responses of two components of first order Riesz and
three components of 2nd order Riesz so that each input iris pixel is represented
by five binary bits and another scheme generates three bits from steerable Riesz
filters. Inspired by these works, we design a descriptor (RSBP) based on 1D
and 2D Riesz signals which encodes each pixel into an 8-bit binary pattern. We
present detailed explanation of RSBP descriptor and proposed iris recognition
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Fig. 1. Samples of two eye images of same subject and color maps of their unwrapped
irises with noise that leads to fragile bits. (Color figure online)

Fig. 2. Example of an unwrapped iris from IITD database, its first order Riesz trans-
formed output responses, hx(f) and hy(f) respectively.

scheme in Sect. 2. Result analysis of experiments is discussed in Sect. 3 and we
conclude this paper in Sect. 4.

2 Proposed Iris Recognition Scheme

Outline of proposed scheme is demonstrated in Fig. 3. We create M patches of
unwrapped iris using p tracks and q sectors. To extract predominant features
from each patch, we deploy feature descriptor, Riesz signal based binary pattern
(RSBP), which represents each pixel into 8-bit binary code. We adopt Fuzzy c-
means clustering (FCM) to learn fragile bits and to cluster the iris patches into
five classes, with labels 0 to 4, where 0 refers to non-iris region (with maximum
number of fragile bits), and 4 refers to best iris region (with consistent bits).
Based on these labels each patch is assigned with a weight. Further, a magnitude
weighted phase histogram, proposed in [16], is adopted to represent each patch
as 1D real valued feature vector. Dissimilarity between the two iris codes is
computed using weighted mean Euclidean distance (WMED).

2.1 Riesz Functions

Riesz functions are the generalizations of Hilbert functions into d dimensional
Euclidean space. If x is a d-tuple, (x1, x2, . . . , xd) and f is L2 measurable d-
dimensional function, i.e. f(x) ∈ L2(Rd), then, Riesz transformation Rd of f is
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Fig. 3. Proposed iris recognition method

a d-dimensional vector signal. Rdf(x) transforms a signal from L2(Rd) space to
Ld(Rd) space and is given by,

Rdf(x) = (Rd
1f(x), Rd

2f(x), . . . , Rd
df(x)), (1)

which can be simplified further as follows.

Rdf(x) = ((h1 ∗ f)(x), (h2 ∗ f)(x), . . . , (hd ∗ f)(x)), (2)

where, ∗ represents convolutional operator and hi is d dimensional Riesz kernel
which is given by,

hi =
Γ (d+1)

2

π(d+1)/2

xi

‖x‖(d+1)
. (3)

Further, in 2-D space, taking x = (x, y), 2-D Riesz transform is given by,

R2f(x) = ((hx ∗ f)(x), (hy ∗ f)(x)) = (hxf(x), hyf(x)), (4)

where, hx and hy are 2-D Riesz kernels which are obtained by taking d = 2 in
equation (3).

hx =
1
2π

x

‖x‖3 , hy =
1
2π

y

‖x‖3 . (5)

Components in the triplet (f, hxf, hyf) are called first order monogenic com-
ponents of the function f . Further, when hxf and hyf are convolved with the
kernels, hx and hy, as the convolution operator is commutative, we get second
order components of f as, (hxxf, hxyf, hyyf). One dimensional phase encoding
method, based on zero crossings, is used to encode each of the five output signals
obtained from first and second order components into binary iris code, so that
each pixel in the input iris is represented by five binary bits. We call this iris
code as Riesz filter based iris code, RFiC1.

2.2 Steerable Riesz

Because of the steerable property of Riesz filters, response of an ith Riesz com-
ponent Rd

i of an oriented image fθ of an image f , oriented by any arbitrary
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angle θ, can be derived analytically. It can be computed as linear combinations
of responses of all the components as follows.

Rfθ(x) =
d∑

i=0

gi(θ)Rd
i f(x), (6)

where, gi(θ) are coefficient functions or coefficient matrices. Equation (6) can be
rewritten as,

Rfθ = ωT Rd, (7)
where ω is weight vector given by, ω = [ω1, ω2, ω3]. We take a steering matrix
Mθ proposed in [4] and obtain the linear combination of second order Riesz
components hxx, hxy and hyy of f as follows.

Rfθ(x, y) = ω1M
θhxxf(x, y) + ω2M

θhxyf(x, y) + ω3M
θhyyf(x, y) (8)

Based on the procedure given in [19], we obtain three more bits from the input
pixel. If kπ

n , k = 0, 1, . . . , n − 1 are n orientations of θ and I(x, y) is the input
unwrapped iris, then, at every pixel (x, y), linear sum of steerable Riesz responses
RIθ(x, y) is computed for each orientation θ using Eq. (8). Thus, each pixel will
be having n representations for n orientations. Further, at every point (x, y)
an integer value N which varies from 0, to n − 1 is computed to represent the
dominant orientation.

N(x, y) = argmaxθ(RIθ(x, y)). (9)

In our experiments, we have taken n = 6, so that, each pixel has six orientation
representations. Equation (9) gives the dominant orientation at (x, y) and gener-
ates a matrix consisting of integers from one to six, representing six orientations.
These integers from 0 to 5 are represented by a corresponding three bit binary
code in the set {000, 001, 011, 111, 110, 100}. These bits combined with hxf and
hyf , the horizontal and vertical responses, along with a Gabor bit, produce a
6-bit representation of a pixel and the iris code, thus obtained, is called RFiC2.

2.3 Riesz Signal Based Feature Descriptor (RSBP)

Design of RSBP is based on the method by Rajesh and Shekar [16], which uses
complex wavelet transform for face recognition. However, we have developed
this code on Riesz wavelet transforms. Proposed method is explained in Fig. 4.
First and second order Riesz functions are operated on unwrapped iris using
convolution operation, to obtain five real valued Riesz responses for each pixel.
These responses are encoded into a binary bit using 1D phase informations of
zero crossings. Further, steerable Riesz method produces three more bits based
on the dominant orientation and thus, we obtain a binary pattern of 8-bits.
While computing the decimal equivalent of this binary pattern, we have taken
response of first order Riesz along horizontal direction as the most significant
bit (MSB) and last bit in steerable Riesz output as LSB. Because, as we observe
with experiments, responses of first order horizontal Reisz are more prominent.
In Fig. 4 one can observe the distinguished features in RSBP image and in its
color map.
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Fig. 4. Riesz signal based binary pattern (RSBP) (Color figure online)

2.4 Iris Code Matching

To explain representation and matching, let I1 and I2 be two unwrapped irises
and I1

i and I2
i be the corresponding ith patches, and ω1

i and ω2
i be the weights

assigned to these patches where i ∈ {1, 2, . . . ,M}, M representing the total
number of patches. In order to represent iris features, we adopt the approach
in [16]. RSBP image is subdivided into P number of p1 × q1 sized sub-blocks.
In every sub-block, we compute k bin length histogram. Further, histograms
of all of these sub blocks are concatenated to obtain 1D feature vector. We
compute the dissimilarity score Edi between the feature vectors fv1i and fv2

i ,
corresponding to the patches I1

i and I2
i , using Euclidean distance metric. Taking

ωi as the common weight for both I1
i and I2

i , the weighted mean Euclidean
distance (WMED) between the two irises is calculated by,

Ed(I1, I2) =
∑

ωiEdi∑
ωi

(10)

When both I1
i and I2

i have non zero weights, ωi will be the maximum of the
weights ω1

i and ω2
i and when one of them has zero weight, then ωi is set to zero.

3 Experimental Analysis

To justify the applicability of our scheme for iris recognition, we have experi-
mented our approach on the benchmark NIR iris datasets IITD [8], MMU v-2
[2], CASIA-IrisV4-Distance [1] and VW dataset UBIRIS.v2 [14] and the results
are compared with state-of-the-art publications which have worked on the same
datasets. In this work, our primary objective is iris feature extraction and repre-
sentation. Hence, iris segmentation is done using the approach given in [18] and
for unwrapping (normalization), Daugman’s rubber sheet model [3] is adopted.
Regarding the parameter set up for our experiments, in case of NIR images,
resolution for unwrapping is 64 × 256 and for UBIRIS v.2 it is 64 × 512. Using 2



468 B. H. Shekar et al.

tracks and 8 sectors, we divide the unwrapped iris into 16 patches so that, each
patch is of size 32 × 32 for NIR images and 32 × 64 for VW images. We have
conducted the experiments in two scenarios, without multi-patches and with
multi-patches using the coding methods RFiC1, RFiC2 and RSBP. RFiC1 and
RFiC2 represent the iris into binary-bit patterns and hence Daugman’s Ham-
ming distance is used to find the dissimilarity score. Size of Riesz kernel is set to
15 [19]. FCM is trained with 60% of the images (60% × 16 number of patches)
from each of the dataset, so that training to test ratio is 3:2.

Discussion: We have used the equal error rate (EER), d − prime values and
ROC curve to evaluate proposed technique for comparison and analysis. In
Table 1 we present the results of our experiments conducted without multi-
patches scenario (S1) and with multi-patches scenario (S2). We observed average
decrease of 7.9% in EER values and increase of 5.9% in d − prime values from
S1 to S2. With RSBP method there is 9.48% of decrease in average EER value
and 6.7% of increase in d − prime value. ROC curves of these experiments are
presented in Fig. 5.

Table 1. EER and d − prime values obtained by proposed methods with respect to
different datasets without (S1) and with (S2) multi-patches.

Method Scenario IITD MMU v-2 CASIA v-4 dist UBIRIS v.2

EER d′ EER d′ EER d′ EER d′

RFiC1 S1 0.0228 5.6306 0.0575 3.3081 0.0952 2.5549 0.1120 2.178

S2 0.0207 5.6321 0.0515 3.3891 0.0918 2.5651 0.1009 2.5592

RFiC2 S1 0.0206 5.8188 0.0636 3.3864 0.0879 2.7280 0.1033 2.176

S2 0.0200 5.8811 0.0541 3.6956 0.0871 2.7358 0.0898 2.7113

RSBP S1 0.0106 5.9106 0.0440 3.4166 0.0710 2.8160 0.09910 2.268

S2 0.0100 6.1167 0.0417 3.7783 0.0706 2.8203 0.0811 2.7290

We compare the proposed technique with the state-of-art methods which
work on fragile bits or multi-patches techniques. Results of comparison analysis
are presented in the Table 2. In [12] author compare the usefulness of different
regions of the iris for recognition using bit-discriminability. Kaur et al. [7] have
computed discrete orthogonal moment-based features on the ROI divisions of
the unwrapped iris. Vyas et al. [20] have extracted gray level co-occurrence
matrix (GLCM) based features from multiple blocks of normalized iris templates
and concatenated them to form the feature vector. Since, these authors have
worked with multi-patches concept on the same datasets, we have compared their
published results with our results and the figures displayed in Table 2 illustrate
that our method compares favourably with existing approaches.
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Fig. 5. ROC curves of the RFiC1, RFiC2 and RSBP obtained on MMU dataset without
and with multi-patches approach respectively.

Table 2. EER and d− prime values with respect to UBIRIS v.2 and IITD databases
compared with the recent related publications. NA implies not available.

Database Method EER d− prime

UBIRIS v.2 Proenca [12] NA 1.8900

Kaur et al. [7] 0.1000 2.8800

Proposed 0.0811 2.7290

IITD Kaur et al. [7] 0.0100 4.8000

Vyas et al. [20] 0.0122 NA

Proposed 0.0100 6.1167

4 Conclusion

Fragile bits present in an iris code mainly increase the intra-class variations,
thereby increasing false reject rate. Proposed method uses the fragile bit infor-
mation to rank the iris regions by assigning the weights which are further used in
matching the iris code and hence, the intra-class variations are suppressed and
at the same time inter-class variations are enhanced. We have also proposed a
new iris feature extraction and representation approach using a descriptor RSBP,
based on 1D and 2D Riesz transformations and experiments illustrate that it is
well suited for iris recognition.
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