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Abstract. The conventional approach for virus detection is based on
analyzing the negative stain Transmission Electron Microscopy (TEM)
images. In this regard, a new method is presented here based on judi-
cious integration of the theory of rough sets and the merits of local
texture descriptors. The proposed method identifies the relevant local
texture descriptor for representing the intrinsic properties of each pair
of virus classes. It also selects important features from each of the rel-
evant descriptors, which can suitably describe significant characteristics
of the virus particles present in TEM images. The hypercuboid equiva-
lence partition matrix of rough sets is employed to evaluate the relevance
of texture descriptors. Finally, support vector machine (SVM) is used to
categorize the virus samples into one of the known virus classes. The
efficiency of the proposed method, along with a comparison with related
approaches, is demonstrated on publicly available Virus data set.

Keywords: Virus recognition · Transmission Electron Microscopy
(TEM) images · Rough sets · Feature selection · Local texture
descriptor

1 Introduction

Analysis of negative stain TEM images has long been used for the discovery and
detection of virus particles. The visualization of virus structures has been pos-
sible only after the development of TEM. The study of virus structures through
TEM images allows organism-specific reagents for the recognition of pathogenic
agent, without any a priori knowledge of pathogens present in a sample [3]. This
enables broader examination of viruses, making TEM an inevitable method for
virus diagnosis. Negative staining is a preferred technique for observing small
particles, such as viruses, in fluids. However, high maintenance costs, level of
expertise and time required for manual inspection of the TEM images, and
advancement in automated image acquisition process entail the development
of automated analysis of TEM images for virus detection.
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TEM images provide important information regarding the shape and size
of the virus particles, which can be used to group the particles into various
classes, for example, viruses like Adeno, Astro and Rota form icosahedral struc-
ture, Cowpox, Dengue and Lassa viruses reflect regularity in their structures,
whereas Ebola, Influenza and Marburg viruses are highly irregular in shape.
Early approaches for virus identification were mostly dependent on the mor-
phology of the particles [1,2]. But, the morphological information obtained from
the TEM images does not proved to be sufficient for classification of the viruses.

Apart from morphology, different viruses exhibit different surface textures
when imaged using TEM. This information can be efficiently utilized using vari-
ous texture analysis techniques for automatic classification of the virus particles
from TEM images. Matuszewski et al. [12] have transformed the spatial informa-
tion of the images into frequency domain using discrete Fourier transform and
then, extracted features from the multiple spectral rings formed at the magni-
tude spectrum of TEM images to differentiate the four icosahedral structured
viruses, namely, Adeno, Astro, Rota and Calici. In [17], a method has been pro-
posed based on higher order spectral features, to capture the contour and texture
information from the same four icosahedral virus images for the diagnosis. The
radial density profile (RDP) has been used in [19] to discriminate the intensity
variation between three maturation stages of human cytomegalovirus capsids
present in the cell sections of TEM images. The RDP has also been computed
based on Fourier magnitude spectrum (FRDP) in [9], which can be interpreted as
a generalization of the spectral rings considered in [17]. Moreover, Harandi et al.
[6] have mapped the original data to a high-dimensional Hilbert space and then
computed the Covariance Descriptors (CovDs) in infinite-dimensional spaces, to
address the virus classification problem. Finally, several Bregman divergences
have been used to compute the dissimilarities between the resulting CovDs in
Hilbert space, among which Jeffreys and Stein divergences based on the SVM
have been found to achieve the best result. Recently, a new method, based on
convolutional neural network, has been proposed in [7], which transforms a TEM
image to a probabilistic map for virus particle detection.

The concepts of local binary pattern (LBP) [16] and RDP (LBP+RDP) have
been used in [9] to identify different viruses from TEM images using random
forest classifier. Nanni et al. [13] have presented two methods, namely, NewH
and Fusion; the former focuses on extracting descriptors from the co-occurrence
matrix with the goal of enhancing the performance of Haralick’s descriptors
[5], while the latter is an ensemble of local phase quantization variants with
ternary encoding. From the results reported in literature, it can be noticed that
different virus classes are well described by different textures, which hinders
the overall virus detection ability. One of the main problems in virus detection
is uncertainty, which may have been originated due to incompleteness in class
definition and overlapping class boundaries. An effective paradigm to deal with
incompleteness and uncertainty is the theory of rough sets [18]. It provides a
mathematical framework to model uncertainties related to the given data.
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In this regard, the paper presents a new method for automatic virus classifi-
cation from TEM images, by judiciously integrating the merits of local texture
descriptors and the theory of rough sets. Given a set of virus TEM images, the
proposed method first identifies a subset of important features from the origi-
nal feature set of the local texture descriptors, computed at a specific scale and
then forms the relevant feature set corresponding to each class-pair which can
appropriately differentiate the pair of virus classes. The theory of rough hyper-
cuboid approach is employed to evaluate the relevance of a texture descriptor in
categorizing virus samples into multiple classes. In the proposed approach, the
important feature set is selected in such a way that it not only characterizes the
virus samples present in the data set, but also the classes to which the samples
belong. The set of relevant texture descriptors, selected from the important fea-
ture sets, corresponding to each the class-pair is considered to form the feature
set for multiple virus classes. The SVM with linear kernel is used to evaluate
the performance of the proposed method. The effectiveness of proposed method,
along with a comparison with related approaches, is demonstrated on a real-life
Virus image database.

2 Proposed Algorithm

The inherent texture properties of virus TEM images are quite different from
each other. The inter-class structural similarities, intra-class variations in appear-
ance, uncertainty in virus class definitions, and presence of noise further amplify
the difficulty of texture identification. In this context, the proposed method
introduces a new approach for classifying viruses from TEM images. It first
identifies important features, which effectively capture significant characteristics
of each pair of virus classes, from the relevant texture descriptors evaluated at
a particular scale, and finally forms the feature set for multiple virus classes.

Suppose, U = {y1, · · · , yk, · · · , yn} denote the set of n training images of virus
particles, where each image yk ∈ �m. Let C = {F1, · · · , Fj , · · · , Fm} represent
the set of m features. So, a virus TEM image yk can be represented by a set
Hk = {Hk1, · · · ,Hkj , · · · ,Hkm}, containing m feature values corresponding to
yk, where Hkj = yk(Fj) represents the value of feature Fj obtained for image yk.
In the proposed approach, four local texture descriptors are considered, which
are LBP: local binary pattern [16], LBPri: rotation-invariant LBP [15], LBPriu2:
rotation-invariant uniform LBP [15], and CoALBP: co-occurrence of adjacent
LBP [14]. So, Hk represents the normalized histogram, obtained from either of
the four local descriptors, for the image yk. Let, Hk be arranged in descending
order and denoted by H̃k = {H̃k1, · · · , H̃kj , · · · , H̃km} such that H̃k1 ≥ H̃k2 ≥
· · · ≥ H̃km, and the corresponding feature indices of H̃k is preserved in the set
Jk = {Jk1, · · · , Jkj , · · · , Jkm}. Assume, each of the TEM images of U belongs to
one of the c virus classes U/D = {B1, · · · , Bi, · · · , Bc}, where D denotes the set
containing class label information.

Primarily, significant properties of an image yk is represented by the values
of Hk, which represents the normalized histogram of yk. However, the proposed
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method assumes that not all the feature values of Hk contribute uniformly in
representing the characteristics of the image yk. Indeed, only a subset of features
of C can precisely illustrate important properties of yk, which is defined as the
important feature set of yk and denoted by Ik, where Ik ⊆ C. However, each
image has it’s own characteristics, which can be reflected by a specific set of
important features.

The cumulative sum of first q features of the sorted normalized histogram H̃k

is computed to select the important features of yk and denoted by E(yk, q), which
is defined as the energy function in the current study. Certainly, E(yk,m) = 1
and E(yk, q) ∈ [0, 1],∀yk ∈ U. It signifies the fraction of total energy, present in
H̃k, which is retained by the first q features of yk. Thus, relevant information
regarding the properties of the image yk can be suitably represented by the
energy of yk, evaluated from H̃k. In order to retain a given fraction of energy E0

of the sample yk, the required number of important features dk is obtained as
the minimum value of q for which E(yk, q) attains E0 value. The average number
of important features d corresponding to the entire set of samples U is computed
from the individual dks. As defined in [10], the set of important features Ik of
the sample yk can be obtained from the first d features of sorted histogram H̃k,
as follows:

Ik = {Fj | Jkq = j and q ≤ d}. (1)

Thus, the important feature set Ik ⊆ C of the image yk consists of only those
features which can efficiently describe the inherent properties of yk.

Now, it is most likely that the samples from a specific virus class will be
represented by similar sets of important features, whereas samples from differ-
ent classes will be represented by different important feature sets. Therefore,
the probability of occurrence P (Fj |Bi) of a feature Fj in the important sets of
samples belonging to a particular class Bi is obtained and a threshold parameter
ε is introduced to differentiate noisy features from important features. The fea-
ture set C(Bi) representing the class Bi is formed with only those features Fj ’s
which have P (Fj |Bi) values greater than or equal to ε. So, the set C(Bi) will
only contain a feature Fj if it is found to be important for most of the samples
of Bi and also reflects the relevant characteristics of the virus class Bi. Let, the
significant characteristics of a pair of classes, say {Bi, Br}, be represented by the
set C({Bi, Br}). So, the set should contain those features which can efficiently
reflect the properties of both the classes Bi and Br. Hence, C({Bi, Br}) is formed
by taking intersection of the two sets C(Bi) and C(Br).

Let us consider a set of t modalities M = {M1, · · · ,Mp, · · · ,Mt}, where
each modality corresponds to a specific texture descriptor evaluated at a par-
ticular scale. Given the set of modalities, the proposed method computes the
relevance Γp({Bi, Br}) of the feature set Cp({Bi, Br}) under modality Mp to
assess the efficacy of the set in describing important properties of the class-pair
{Bi, Br}. In order to quantify relevance, the concept of hypercuboid equivalence
partition matrix of rough hypercuboid approach [11] is employed. The relevance
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Γp({Bi, Br}) of the feature set Cp({Bi, Br}) with respect to the pair of classes
{Bi, Br} is obtained as follows [11]:

Γp({Bi, Br}) = 1 − 1
nir

nir∑

k=1

vk(Cp({Bi, Br})) (2)

where, nir is the number of samples which belongs to class-pair {Bi, Br} and

vk(Cp({Bi, Br})) =
{

1 if hik(Cp) = 1 and hrk(Cp) = 1
0 otherwise, (3)

where hi(Cp) = [hik(Cp)]1×nir
=

⋂

Fj∈Cp

hi(Fj). (4)

Here, hik(Fj) ∈ {0, 1} represents the membership of sample yk in i-th equivalence
partition induced by the feature Fj and is determined as follows:

hik(Fj) =
{

1 if L(Bi) ≤ yk(Fj) ≤ U(Bi)
0 otherwise. (5)

The interval [L(Bi),U(Bi)] is the value range of the feature Fj for the class
Bi. So, the feature value yk(Fj) of each object yk belonging to the class
Bi corresponding to the feature Fj ∈ Cp({Bi, Br}) falls within the interval
[L(Bi),U(Bi)], which implies that an equivalence partition is nonempty. The
intersection between every two such intervals corresponding to the features of
set Cp({Bi, Br}) may form an implicit hypercuboid, as indicated by the shaded
rectangle in Fig. 1. It encloses the misclassified objects that belong to more than
one equivalence partitions with respect to the attribute set Cp({Bi, Br}). The
relevance Γp({Bi, Br}) of the set Cp({Bi, Br}), with respect to the pair of classes
{Bi, Br}, depends on the cardinality of the implicit hypercuboid.
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Fig. 1. Example of rough hypercuboids in two dimensions: two class hypercuboids
corresponding to upper approximations of Dengue and Influenza virus classes, along
with implicit hypercuboid (boundary region) denoted by the shaded region.

So, it can be observed from (2) that the relevance increases with decrease in
the cardinality of implicit hypercuboids. If Γp({Bi, Br}) = 1, then no implicit
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hypercuboid is formed and both the classes Bi and Br can be defined precisely
using the knowledge of Cp({Bi, Br}). On the other hand, if Γp({Bi, Br}) = 0,
then both the classes cannot be defined using the information of Cp({Bi, Br}).
However, if Γp({Bi, Br}) ∈ (0, 1), then Bi and Br can be approximated using
the feature set Cp({Bi, Br}). The most relevant feature set C̃ir for the class-
pair {Bi, Br} is formed by considering the relevance value of the feature set
Cp({Bi, Br}), corresponding to each of the t modalities, as follows:

C̃ir = arg max
Cp({Bi,Br})

{Γp({Bi, Br})}. (6)

Finally, the feature set D, corresponding to all the virus classes, is formed as

D =
⋃

C̃ir. (7)

The SVM is used to predict the texture patterns present in TEM images of test
samples of virus particles, based on the final feature set D obtained using (7).

3 Performance Analysis

In order to establish the efficacy of the proposed method in classifying the virus
particles present in TEM images, extensive experiment is conducted on Virus
image database and the corresponding results are presented in this section.

3.1 Algorithms Compared

The proficiency of the proposed method is validated through comparison with
several texture descriptors, which are LBP [16], LBPri [15], LBPriu2 [15] and
CoALBP [14], obtained at different scales. Here, S1: scale 1, S2: scale 2, S3: scale
3, S4: scale 4, S123: concatenation of S1, S2 and S3, and S124: concatenation of
S1, S2 and S4 are considered. In the current study, the descriptors along with
the corresponding scales, are chosen arbitrarily and therefore, any other sets of
descriptors are equally compatible to be used in the proposed descriptor selection
method. In case of CoALBP, 4-neighborhood is considered, while 8-neighborhood
is considered for the rest.

The performance of several existing approaches for virus classification is ana-
lyzed with reference to the proposed method, which include Haralick textural
features [5], Fourier RDP (FRDP) [9], dominant LBP (DLBP) [10], discrimi-
native features for texture description (DFTD) [4], LBP+RDP [9], NewH [13],
Fusion [13] and Jeffreys/Stein [6]. Here, 10-fold cross-validation is performed
to evaluate the classification accuracy of related approaches as well as proposed
method. The comparative performance of different algorithms is studied through
box-and-whisker plots, tables of means, medians, standard deviations, and p-
values computed through both paired-t and Wilcoxon signed-rank tests, with
95% confidence level. In box-and-whisker plots, the central line on each box rep-
resents the median, the upper and lower quartiles are depicted by upper and
lower boundaries of the box, respectively. The whiskers are drawn from mean to
three standard deviations, so that extreme data points are also included. The
outliers are plotted individually, denoted as ‘+’.
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Fig. 2. Effect of energy E and threshold ε on classification accuracy.

3.2 Description of Data Set

The effectiveness of the existing approaches as well as proposed method is stud-
ied through evaluation on the real-life Virus data set [8]. The samples of the
database are imaged using negative stain TEM. The set includes 15 different
virus classes, each of which is represented by 100 TEM images. Different viruses
exhibit different structural properties. However, the diameter or cross-section
remains almost constant within a particular virus class. Usually, the diameter
varies from 25 nm to 270 nm depending on the morphology of the viruses. The
virus particles, which are presented in the data set, include Dengue, Cowpox,
Ebola, Influenza, Adenovirus, Astrovirus, Rotavirus, Norovirus, Crimean-Congo
Haemorrhagic Fever, Lassa, Marburg, Orf, Papilloma, Rift Valley, and WestNile.

Fig. 3. Performance of different local texture descriptors and proposed method.

3.3 Optimum Values of Different Parameters

In the current study, the feature set C(Bi), representing the important properties
of the class Bi, is obtained for a particular value of Energy E and threshold ε.
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Table 1. Classification accuracy of various local descriptors and proposed method

Descriptors Scales Mean Median StdDev Paired-t:p Wilcoxon:p

LBP S1 42.00 42.33 2.70 2.35E−11 2.52E−03

S2 44.60 44.33 4.10 2.75E−10 2.50E−03

S3 41.20 40.00 3.91 2.72E−10 2.52E−03

S4 45.73 46.00 1.78 2.24E−11 2.50E−03

S123 55.00 55.00 4.21 1.22E−08 2.53E−03

S124 60.53 59.33 3.20 4.80E−08 2.52E−03

LBPri S1 37.87 38.33 3.45 5.71E−13 2.53E−03

S2 42.33 42.33 1.87 2.02E−11 2.52E−03

S3 40.00 40.67 2.04 4.12E−11 2.52E−03

S4 44.53 44.33 2.96 1.62E−12 2.53E−03

S123 48.87 49.67 3.19 4.90E−10 2.53E−03

S124 55.67 55.67 4.36 4.53E−08 2.52E−03

LBPriu2 S1 37.53 37.33 3.06 4.62E−11 2.53E−03

S2 41.13 40.33 3.61 3.86E−10 2.52E−03

S3 36.47 36.00 3.19 1.14E−11 2.52E−03

S4 42.40 44.00 4.67 2.04E−09 2.53E−03

S123 51.20 51.67 3.73 9.55E−11 2.46E−03

S124 52.93 52.00 3.03 1.40E−10 2.50E−03

CoALBP S1 73.20 74.00 3.14 1.82E−05 2.52E−03

S2 67.47 67.67 2.81 5.54E−09 2.47E−03

S4 46.73 47.33 2.64 2.07E−11 2.52E−03

S124 78.87 78.00 2.92 2.75E−03 7.49E−03

Proposed 82.07 82.00 2.62

So, the values of both the parameters have an influence on the performance of
the proposed method in classifying the virus particles into multiple classes.

The value of E is varied from 0.50 to 1.00 at an interval of 0.05, while the
value of ε is varied from 0.00 to 0.70 at an interval of 0.10 and the correspond-
ing classification accuracy of the proposed method is noted in order to obtain
the optimum values of the parameters. The SVM classifier with linear kernel is
applied on virus TEM images and the effect of the values of E and ε on 10-
fold classification accuracy is reported in Fig. 2. The results depicted in Fig. 2
demonstrate that the accuracy of the proposed method increases with increase
in energy E and decrease in threshold ε, and highest classification accuracy is
obtained at E = 0.95 and ε = 0.30, which validates the concept of energy and
threshold defined in the current study. While low energy provides restricted rep-
resentation of the important feature sets of samples, high energy signifies more
information captured from the images, leading to a descriptive representation
of the sets. The features, which have occurred in the important feature sets
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inadvertently with low probability of occurrence, are removed by incorporat-
ing the threshold parameter ε in the algorithm. So, for the proposed approach,
the values of parameters E and ε are fixed at 0.95 and 0.30. Hence, a precise
representation of the set C(Bi), reflecting the characteristics of the class Bi, is
obtained with the features which preserves 95% of total energy by at least 30%
samples of each Bi.

3.4 Comparison with Existing Approaches

In general, a specific descriptor, obtained at a particular scale, may be used
to describe the textural properties of all the TEM images present in the Virus
data set. However, the proposed method identifies class-pair specific modality to
capture the inherent characteristics of each of the virus classes.

In order to validate the significance of class-pair relevant modalities over
uniform modalities, extensive experiment is carried out on Virus data set, con-
sidering fifteen modalities corresponding to four local descriptors LBP, LBPri,
LBPriu2 and CoALBP, evaluated at both individual and concatenated scales.
Figure 3 and Table 1 report the classification accuracy achieved by the proposed
method as well as various local texture descriptors on the samples of Virus
database. The results presented in Fig. 3 and Table 1 reveal that highest mean
and median values are achieved by the proposed method, irrespective of descrip-
tors and scales considered. Also, statistical significance analysis reveals that the
proposed method attains significantly lower p-values in all the 44 cases. In this
regard, it is to be mentioned that the proposed method attains 82.07% accu-
racy on Virus database with 2327 number of features, selected from the initial
feature sets of fifteen modalities corresponding to the four local descriptors,
evaluated at four different scales. If the feature sets of all the modalities are
concatenated, then 80% accuracy can be achieved with 4280 features. Thus, the
proposed method can efficiently identify class-pair specific modalities to describe
each pair of classes with lesser number of features.

Finally, the performance of several existing approaches for virus classifica-
tion is analyzed with reference to the proposed method, which include Haralick
textural features [5], FRDP [9], DLBP [10], DFTD [4], LBP+RDP [9], NewH
[13], Fusion [13] and Jeffreys/Stein [6]. In these methods, important information
is captured from the TEM images to categorize the virus samples into one of
the known fifteen virus classes. The performance of the proposed approach with
reference to different existing methods is analyzed in Fig. 4. It is evident from
Fig. 4 that the methods corresponding to Haralick features, DLBP, DFTD and
FRDP exhibit poor performance in recognizing viruses from TEM images. On
the other hand, the methods like LBP+RDP, NewH, Fusion, and Jeffreys/Stein
show improvement in the performance. However, the proposed method attains
highest classification accuracy on Virus data set with respect to all the existing
methods.
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Fig. 4. Analysis of performance of the proposed approach and existing methods.

4 Conclusion

In the current study, a new method is developed for automatic recognition of
virus particles from negative stain TEM images. The main contribution of the
paper lies in considering relevant modality corresponding to each pair of classes
present in Virus database, rather than considering uniform modalities for all the
classes. The relevance of each modality is computed based on hypercuboid equiv-
alence partition matrix of rough hypercuboid approach. A subset of important
features is selected for each of the relevant modalities by reducing the impact of
both noisy pixels present in a virus image as well as noisy virus images present in
a particular virus class. The proficiency of the proposed approach with respect
to different existing method is established on real-life Virus image data set.
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