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Abstract. The paper attempts to investigate the changes in the brain
network dynamics between alcoholic and non-alcoholic groups using elec-
troencephalographic signals. A novel entropy-based technique is pro-
posed in this study to understand the dynamics of the neural network
for the two groups. To do this, we have examined for the two groups
their time-varying instantaneous phase synchronization events when the
subjects are engaged in an object recognition task. Next, we have char-
acterized the complexity of the phase synchronization using Fuzzy Sam-
ple Entropy over different time scales, referred to as Multiscale Fuzzy
Sample Entropy (MFSampEn). The temporal dynamics of phase syn-
chronization arise due to the presence of deterministic characteristics
in the time series and the results of surrogate analyses confirm that.
Lastly, we check the applicability of Multiscale Fuzzy Sample Entropy
(MFSampEn) as entropy-based features in the context of alcoholic and
non-alcoholic object recognition classification.
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1 Introduction

The human brain comprises four basic modules: which often interact among
themselves to execute a cognitive task, such as reasoning, learning, planning,
and sensory-motor control/coordination. The present paper aims at studying
the biological underpinnings of the brain dynamics with respect to functional
connectivity between activated brain regions in alcoholics and non-alcoholics in
an object recognition problem. The fact that the functional brain connectivity is
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not static and that it varies over time and for different pathological disorders has
attracted the broad attention of scientists [15]. It is known that even a moderate
amount of alcohol consumption may affect the brain causing slurred speech,
decrease in anxiety and motor skills, etc. Therefore, it is important to compare
the brain network dynamics of the two groups to investigate whether long term
alcohol abuse causes any permanent damage of one/more brain regions resulting
in significant deterioration of cognitive skills.

In recent years, considerable amount of researches [2,3,17] have focused on
investigating how long term alcohol consumption affects the brain functionality.
The existing literature also reveals that heavy drinking has negative implications
on the short term memory and may sometimes even lead to blackouts [2]. It has
also come to our notice that the drinking onset age may have some influence
on alcohol-related neuro-toxicity [3]. However, all these findings have either
physiological or philosophical basis of analysis. Understanding the biological
insight of the brain functionality changes due to alcohol consumption is the
new research era.

Although there exist recent works on functional Magnetic Resonance Imag-
ing (fMRI) based study for discriminating the functional brain connectivity of
the alcoholics as compared to the healthy controls [11], there is a dearth of liter-
ature which investigates the essence of integrating brain dynamics in functional
connectivity analysis. The present work fills the void by an electroencephalo-
graphic (EEG) means of brain response acquisition. There are a considerable
amount of work on EEG Event-Related Potentials (ERP) for alcoholic and non-
alcoholic discrimination. For instance, beta power synchronization is observed
among alcoholics as compared to non-alcoholics [17] in most of the existing stud-
ies. Numerous studies on gamma band analysis indicate that gamma oscillation
is responsible for binding features of an object [17].

In this study, we set out to examine Electroencephalography (EEG) based
time-varying instantaneous phase synchronization (referred to as dynamical
phase synchronization [15]) of 10 alcoholic and 10 non-alcoholic subjects engaged
in an object recognition task. We then investigate their dynamical pattern using
multiscale fuzzy sample entropy analysis [6,12,23]. Furthermore, our experience
of working with electroencephalography (EEG) signals [8,9] reveals that for a
given brain lobe the features extracted from the acquired EEG response vary
widely across experimental instances of a given subject for similar stimulation.
Due to the presence of fuzzy properties in the experimental instances, the logic
of fuzzy sets can, therefore, be used to capture the dynamics of the brain. In
the case of sample entropy (SampEn) calculation, a Heaviside function is used
whose boundary is rigid. That is, the data points inside the boundary are con-
sidered equally, whereas the points marginally outside it are neglected. The rigid
boundary condition causes discontinuity, and this may lead to abrupt fluctua-
tions in the entropy values with a small deflection in the tolerance level, and
may even fail to provide SampEn value if no template match can be found for
a small tolerance value [23]. To circumvent this problem, Chen et al. developed
a new complexity metric, Fuzzy Sample Entropy (FSampEn), and used a fuzzy
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membership function instead of the Heaviside function. In contrast to the Heavi-
side function, a fuzzy membership function has no rigid boundary. Furthermore,
Fuzzy Sample Entropy is continuous and will not fluctuate dramatically with
a slight change in the location parameter, as given by the rule of fuzzy mem-
bership function. Real biomedical results from [23] show that FSampEn handles
noisy data better than its state-of-the-art competitors and is more capable of
determining hidden complexity. The paper presents a novel strategy to enjoy
the composite benefit of brain dynamics and FSampEn at different time scales
(MFSampEn) [6,7,15] for changes in functional connectivity dynamics due to
long-term alcoholism.

The paper is divided into 4 sections. In Sect. 2, we provide in detail the prin-
ciples and methodology of the proposed technique. Section 3 deals with experi-
ments on EEG data acquisition and results obtained thereof, and Sect. 4 discusses
the conclusion.

2 Principles and Methodologies

2.1 Dynamical Phase Synchronization (DPS)

Phase Difference Eliminating Phase Slips. After preprocessing of the EEG
signals acquired from the subjects’ scalp, the phase information of the EEG sig-
nals are extracted using the Hilbert transform. The instantaneous frequency
(in Hz) is then derived from the obtained phase signal φ(t) using first-order
differences. The activity in the gamma band (30–50 Hz) shows prominent oscil-
lations with a narrow bandwidth and is thus ideal for estimating instantaneous
frequency taking into account the background noise [4]. Also, primarily, gamma-
band activity is considered for effects of addiction in the behavior of people [17].
Thus, in this study we have focused on the gamma band oscillations.

However, there may lie a directional trend in the phase differences which
affects the probability of two sets of simultaneous data points of length m hav-
ing distance <r. To circumvent this, we derived an unwrapped phase signal
Φ(t)(−∞ < Φ(t) < ∞). The phase differences across the electrodes indexed in
time is then determined as:

ΔΦi,j(t) = Φi(t) − Φj(t) (1)

where i, j denote the electrodes.
In order to eliminate the trend while calculating the multiscale fuzzy sample

entropy (MFSampEn) as in [15], the obtained phase differences are wrapped
into units of radians, as mod(Δφi,j , 2π). If we expand the plot of mod(Δφij , 2π)
versus time (in a sec) for an electrode pair, we obtain a pattern of dynamical
synchronous and asynchronous phase differences as DPS [15].

2.2 Multiscale Fuzzy Sample Entropy

Let the input be a data matrix X of size (N −m)×m, length N , pattern length
m and location parameter R.
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X =

⎡
⎢⎢⎢⎣

x(1) x(2) · · · x(m)
x(2) x(3) · · · x(m + 1)

...
...

...
x(N − m) x(N − m + 1) x(N − 1)

⎤
⎥⎥⎥⎦

In sample entropy, self-matches are eliminated and X has N − m rows in
order to match dimension in the m and m + 1 pattern lengths. These measures
remove the bias in the estimations.

In order to determine the vectors' similarity, we use a Gaussian fuzzy mem-
bership function [23], given by μ(d(i, j), R, c), where d(i, j) denotes the distance
between (N−m) vectors as the maximum difference of their corresponding scalar
components, R is the location parameter determining the location of the func-
tion, and c is the shape parameter determining the steepness of the function,
with larger c implying a higher relaxation.

The B(i) term derived, represents the probability that there exists a pattern
in the pattern space X that is similar in nature to the ith pattern.

Hence, φm = Probability that a given pair of patterns of length m are similar
with each other. The output of the system, lnφm − lnφm+1, represents the rate
at which new information is created by the underlying system.

Finally, in order to get the multiscale framework of fuzzy sample entropy
[23], we take an approach as in [6,7] to put the original time series through a
“coarse-graining” process. The process is done in the sense that multiple coarse-
grained time series are obtained by estimating the mean of the data points within
non-overlapping windows of increasing length, τ (where τ represents the scale
factor and 1 < j ≤ N

τ .) The length of each coarse-grained time series is N
τ . The

rescaled coarse-grained time series can be calculated using the equation,

yj
(τ) =

1
τ

jτ∑
i=(j−1)τ+1

xi (2)



222 A. Chowdhury et al.

Next, the fuzzy sample entropy (FSampEn) [1,23] is calculated from each
coarse-grained time series and is plotted against each scale factor. The calculation
of FSampEn for different coarse-grained time series have been done choosing the
values of m and R as 2 and 0.15 respectively [6], where m denotes embedding
dimension and R denotes location parameter.

2.3 Surrogate Analysis

For each subject, a surrogate data time series is estimated using the iterated
amplitude-adjusted Fourier transform (IAAFT) [19] against the original phase
difference Δφi,j(t) to search for the presence of nonlinear deterministic processes
in DPS. IAAFT is an iterative variation of amplitude-adjusted Fourier transform
(AAFT) [22] and making use of the iterative scheme to achieve the arbitrarily
close approximation to the autocorrelation and the amplitude distribution [19].
The surrogate method follows a process of randomization of phase components
of the signals.

2.4 Power Spectrum Analysis

A fast Fourier transform based average power calculation has been undertaken
here. For the calculation, a Hanning window approach [10] has been employed for
each epoch of 20 s. Power spectral density (PSD) (dB/Hz) has been calculated.

2.5 Classification of Alcoholic and Non-alcoholic Brain Responses
Using Multiscale Fuzzy Sample Entropies as EEG Features

To classify the brain responses of alcoholic and non-alcoholic group, the multi-
scale fuzzy sample entropy (MFSampEn) [23] information are used as features
to train and test a SVM classifier.

3 Experiments and Results

3.1 Experimental Dataset

The experimental data used in this paper has been obtained from the public
EEG database [13,14,24] of the State University of New York Health Center
and owned by Henri Begleiter. The recordings were collected from a pool of
ten alcoholic and ten non-alcoholic (control) subjects while being engaged in a
visual object recognition task. The data-set contains EEG recordings acquired
with 64 electrodes, which includes 3 reference electrodes and the sampling rate
of the EEG device used is 256 Hz. Total 260 objects were used to produce the
memory set, where the object images were depicted from 1980 Snodgrass and
Vandwart Picture set [20]. The subjects for the experiment were exposed to
two consecutive pictures of objects from the picture set in such a way that
the first picture differs from the second picture with regards to its semantic
category, i.e., four footed animal, fruit, weapon, etc. The subjects’ mental task
involved identifying whether the pictures shown are matching or non-matching.
The detailed framework is explained in [24].
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3.2 Data Pre-processing

In the pre-processing stage, the EEG signals are first band-pass filtered using
elliptical band pass filter of order 6 with a pass band of 30–50 Hz. In the next step,
eye-blinking artifacts are removed manually by checking for 100µV potential
lasting for a period of 250 ms. Other environmental and physiological artefacts
are removed following Independent Component Analysis (ICA) [5].

3.3 Feature Level Discrimination Between Alcoholic
and Non-alcoholic Groups

The experiment is carried out to find a clear discrimination between alcoholic
and non-alcoholic brain responses from the phase difference information obtained
using Dynamical Phase Synchronization method. The experiment is carried out
into two steps. In the first step, we extract the instantaneous phase information
by Hilbert transform and instantaneous frequency by dividing the phase signal
by 2nπ. The instantaneous phase and frequency obtained for the electrode Fp1
and Fp2 for both the alcoholic and non-alcoholic groups are presented in Fig. 1.

Fig. 1. Instantaneous phase and frequency of (a) Alcoholic and, (b) Non-alcoholic
control group

In the second step, we compute the phase differences before and after phase-
wrapping around mod(Δθ, 2π), and frequency differences between each electrode
pair. For instance, the phase difference before and after phase wrapping, and
frequency difference between Fp1 and Fp2 for alcoholic and non-alcoholic control
group are depicted in Fig. 2. It is evident from Fig. 2 that phase wrapping reduces
the noise as a result of the removal of the trend, present in the EEG data, thus
providing better discrimination between two classes: alcoholic and non-alcoholic.
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Fig. 2. (a) Instantaneous phase difference before phase wrapping and instantaneous
frequency difference and, (b) Instantaneous phase difference after phase wrapping of
alcoholic and non-alcoholic control group

3.4 Experimental Results

Multiscale Fuzzy Sample Entropy Analysis of DPS. The MFSampEn
analysis of the surrogate data for the DPS with the phase components random-
ized and the original DPS profile for both the groups show that there is an
overall increasing value of MFSampEn with respect to time scale. Furthermore,
the FSampEn values of the surrogate is higher over all time scales, as shown in
Fig. 3(a). Hence, we can conclude that nonlinear deterministic processes dictate
DPS in brain network dynamics. Additionally, the group comparison indicated
elevated FSampEn values of DPS for the alcoholic group across all scales in
comparison to its control counterpart.

Fig. 3. (a) MFSampEn plot for the DPS of alcoholic group and its surrogate, and (b)
Variation of PSD for the alcoholic and non-alcoholic group for Fp1 electrode

Power Spectral Density Analysis. After observing for each electrode, it is
observed that the power spectral density of the control group is greater than the
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power spectral density of the alcoholic group. Figure 3(b) illustrates the variation
of PSD for the alcoholic and non-alcoholic groups for Fp1.

Classifier Performance. In this section, we attempt to judge the feature
extraction ability of Multiscale Fuzzy Sample Entropy (MFSampEn) [23] as
features from alcoholic and non-alcoholic groups. Here, we have employed Sup-
port Vector Machine (SVM) [21] to compare the classification performances of
MFSampEn with other entropy-based features, eg., FSampEn, MSampEn, Sam-
pEn [18], and ApEn [16]. The classification performances obtained are listed in
Table 1.

Table 1. Relative study of SVM classifier accuracies (in %) for four entropy based
features

Entropy based features Classification accuracy

Multiscale fuzzy sample entropy 97.75

Multiscale sample entropy 91.87

Sample entropy 79.65

Approximate entropy 77.13

4 Conclusion

This paper examines the complexity and power analysis of alcoholic and non-
alcoholic subjects in the context of visual object recognition task. The complexity
metric employed in this study is multiscale FSampEn (MFSampEn) whose merits
lie in the fact that it gives more accurate entropy definition than MSampEn
and ApEn. MFSampEn has more consistency and has less dependence on data.
Experimental results indicate that the complexity of alcoholic subjects is more
than those of non-alcoholic subjects. When both the groups are compared, it
has been observed that the power spectral density of the alcoholic group is less
than its non-alcoholic counterpart.

References

1. Azami, H., Fernández, A., Escudero, J.: Refined multiscale fuzzy entropy based on
standard deviation for biomedical signal analysis. Med. Biol. Eng. Comput. 55(11),
2037–2052 (2017)

2. Balli, T., Palaniappan, R.: On the complexity and energy analyses in EEG between
alcoholic and control subjects during delayed matching to sample paradigm. Int.
J. Comput. Intell. Appl. 7(03), 301–315 (2008)

3. Brust, J.: Ethanol and cognition: Indirect effects, neurotoxicity and neuroprotec-
tion: a review. Int. J. Environ. Res. Public Health 7(4), 1540–1557 (2010)



226 A. Chowdhury et al.

4. Cohen, M.X.: Fluctuations in oscillation frequency control spike timing and coor-
dinate neural networks. J. Neurosci. 34(27), 8988–8998 (2014)

5. Comon, P.: Independent component analysis, a new concept? Sig. Process. 36(3),
287–314 (1994)

6. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex
physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)

7. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological
signals. Phys. Rev. E 71(2), 021906 (2005)

8. Ghosh, L., Konar, A., Rakshit, P., Nagar, A.K.: Hemodynamic analysis for cogni-
tive load assessment and classification in motor learning tasks using type-2 fuzzy
sets. IEEE Trans. Emerg. Top. Comput. Intell. 3(3), 245–260 (2018)

9. Ghosh, L., Konar, A., Rakshit, P., Ralescu, A.L., Nagar, A.K.: EEG induced work-
ing memory performance analysis using inverse fuzzy relational approach. In: 2017
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE
(2017)

10. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier
transform. Proc. IEEE 66(1), 51–83 (1978)

11. Herting, M.M., Fair, D., Nagel, B.J.: Altered fronto-cerebellar connectivity in
alcohol-naive youth with a family history of alcoholism. Neuroimage 54(4), 2582–
2589 (2011)

12. Humeau-Heurtier, A.: The multiscale entropy algorithm and its variants: a review.
Entropy 17(5), 3110–3123 (2015)

13. Ingber, L.: Statistical mechanics of neocortical interactions: canonical momenta
indicators of electroencephalography. Phys. Rev. E 55(4), 4578 (1997)

14. Ingber, L.: Statistical mechanics of neocortical interactions: training and testing
canonical momenta indicators of EEG. Math. Comput. Model. 27(3), 33–64 (1998)

15. Nobukawa, S., Kikuchi, M., Takahashi, T.: Changes in functional connectivity
dynamics with aging: a dynamical phase synchronization approach. NeuroImage
188, 357–368 (2019)

16. Pincus, S.M., Gladstone, I.M., Ehrenkranz, R.A.: A regularity statistic for medical
data analysis. J. Clin. Monit. 7(4), 335–345 (1991)

17. Porjesz, B., Begleiter, H.: Alcoholism and human electrophysiology. Alcohol Res.
Health 27(2), 153–160 (2003)

18. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approxi-
mate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6),
H2039–H2049 (2000)

19. Schreiber, T., Schmitz, A.: Improved surrogate data for nonlinearity tests. Phys.
Rev. Lett. 77(4), 635 (1996)

20. Snodgrass, J.G., Vanderwart, M.: A standardized set of 260 pictures: norms for
name agreement, image agreement, familiarity, and visual complexity. J. Exp. Psy-
chol. Hum. Learn. Mem. 6(2), 174 (1980)

21. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and
support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010)

22. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.: Testing for
nonlinearity in time series: the method of surrogate data. Phys. D 58(1–4), 77–94
(1992)

23. Xie, H.B., Chen, W.T., He, W.X., Liu, H.: Complexity analysis of the biomedical
signal using fuzzy entropy measurement. Appl. Soft Comput. 11(2), 2871–2879
(2011)

24. Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W., Litke, A.: Event related poten-
tials during object recognition tasks. Brain Res. Bull. 38(6), 531–538 (1995)


	A Dynamical Phase Synchronization Based Approach to Study the Effects of Long-Term Alcoholism on Functional Connectivity Dynamics
	1 Introduction
	2 Principles and Methodologies
	2.1 Dynamical Phase Synchronization (DPS)
	2.2 Multiscale Fuzzy Sample Entropy
	2.3 Surrogate Analysis
	2.4 Power Spectrum Analysis
	2.5 Classification of Alcoholic and Non-alcoholic Brain Responses Using Multiscale Fuzzy Sample Entropies as EEG Features

	3 Experiments and Results
	3.1 Experimental Dataset
	3.2 Data Pre-processing
	3.3 Feature Level Discrimination Between Alcoholic and Non-alcoholic Groups
	3.4 Experimental Results

	4 Conclusion
	References




