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Abstract. Exploration of brain imaging data with machine learning
methods has been beneficial in identifying and probing the impacts of
neurological disorders. Psychopathological ailments that disrupt brain
activity can be discerned with the help of resting-state functional mag-
netic resonance imaging (rs-fMRI). Research has revealed that brain
connectivity is dynamic in nature and that its dynamic properties are
affected by brain disorders. In the literature, numerous approaches have
been proposed for identifying the presence of Autism Spectral Disor-
der (ASD), yet most of them do not consider brain dynamics in their
diagnostic process. Significant amount of knowledge can be procured by
taking the evolution of brain connectivity over time into account. In this
work, we propose a new approach that leverages brain dynamics in the
classification of autistic and neurotypical subjects using rs-fMRI data.
We examined the proposed method on a large multi-site dataset known
as ABIDE (Autism Brain Imaging Data Exchange) and have achieved
state-of-the-art classification results with an accuracy of 73.6%. Our work
has shown that taking the temporal properties of brain connectivity into
account improves the classification performance.
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1 Introduction

Machine learning is being used extensively for identifying diseases of all kinds
using biological data in the recent times. Neuroimaging of the brain produces
high dimensional data which possesses abundant information regarding a per-
son’s mental health, emotions and cognitive activities. Disturbances in brain
activity patterns caused by ailments which are imperceptible to humans owing
to high dimensionality of the data can be recognized by machine learning
methods.

Functional magnetic resonance imaging (fMRI) uses blood-oxygen-level
dependent (BOLD) signals [10] to measure the level of activity of brain regions.
It has been established by various studies that anomalies in cognitive functions
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are induced by neurological diseases, and these aberrations are reflected in brain
activity patterns [3,12,13,15,18,24]. Hence, the information obtained from fMRI
scans can be used to identify the presence of psychopathological disorders.

Functional Connectivity (FC) of the brain evolves over time and has multiple
distinct states characterized by unique connectivity patterns [1,4,11].

Autism Spectrum Disorder (ASD) is a developmental disorder known to
alter brain connectivity [3,12,13,15,24]. Taking brain dynamics into account has
increased the accuracy in identifying subjects with ASD [22] which demonstrates
that brain dynamics bear notable information about the disorder.

In this work, we leverage the temporal properties of brain connectivity to
classify autistic and typically developing (TD) subjects from the ABIDE dataset
[6]. We observed significant improvement in performance when compared to
methods that do not consider brain dynamics.

2 Data Description

The Autism Brain Imaging Data Exchange (ABIDE) [6] is a collaborative project
which consists of data from 17 different imaging sites. It is a diverse dataset
comprising of data generated by different machines and scan parameters. The
demographics of the participants varies highly from one site to another, as can be
seen in Table 1. The heterogeneous nature of ABIDE dataset poses a challenge
but also provides for better generalization [20].

2.1 Data Preprocessing

The Configurable Pipeline for the Analysis of Connectomes (CPAC) is a pipeline
provided by Preprocessed Connectomes Project (PCP) which performs several
preprocessing on the fMRI data. The Automated Anatomical Labeling (AAL)
atlas has 116 region of interests (ROIs). Time series fMRI data used in this
study uses the AAL parcellation and is preprocessed with the CPAC pipeline.
Information regarding the steps involved in the CPAC pipeline is available on
the ABIDE website (http://preprocessed-connectomes-project.org/abide/).

2.2 Participants

To sufficiently account for the temporal properties of brain connectivity, data
from sites which have scan duration less than five minutes have not been con-
sidered. This step has resulted in the exclusion of four sites (Caltech, OHSU,
Pitt & Trinity) leaving us with 14 different imaging sites and 869 participants
(423 ASD, 446 TD). All of the subjects from the remaining sites included in a
previous study which reported state-of-the-art accuracy have been included [8].
The demographics of the participants are presented in Table 1.

http://preprocessed-connectomes-project.org/abide/
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Table 1. Phenotypic details of the participants. [8] (†: Information unavailable, SD:
Standard Deviation, FD: Mean Framewise Displacement, ADOS: Autism Diagnostic
Observation Schedule [17])

Site ASD TD FD

Age mean (SD) ADOS mean (SD) Count Age mean (SD) Count

CMU 26.4 (5.8) 13.1 (3.1) M 11, F 3 26.8 (5.7) M 10, F 3 0.29

KKI 10.0 (1.4) 12.5 (3.6) M 16, F 4 10.0 (1.2) M 20, F 8 0.17

LEUVEN 17.8 (5.0) † (†) M 26, F 3 18.2 (5.1) M 29, F 5 0.09

MAX MUN 26.1 (14.9) 9.5 (3.6) M 21, F 3 24.6 (8.8) M 27, F 1 0.13

NYU 14.7 (7.1) 11.4 (4.1) M 65, F 10 15.7 (6.2) M 74, F 26 0.07

OLIN 16.5 (3.4) 14.1 (4.1) M 16, F 3 16.7 (3.6) M 13, F 2 0.18

SBL 35.0 (10.4) 9.2 (1.7) M 15, F 0 33.7 (6.6) M 15, F 0 0.16

SDSU 14.7 (1.8) 11.2 (4.3) M 13, F 1 14.2 (1.9) M 16, F 6 0.09

STANFORD 10.0 (1.6) 11.7 (3.3) M 15, F 4 10.0 (1.6) M 16, F 4 0.11

UCLA 13.0 (2.5) 10.9 (3.6) M 48, F 6 13.0 (1.9) M 38, F 6 0.19

UM 13.2 (2.4) † (†) M 57, F 9 14.8 (3.6) M 56, F 18 0.14

USM 23.5 (8.3) 13.0 (3.1) M 46, F 0 21.3 (8.4) M 25, F 0 0.14

YALE 12.7 (3.0) 11.0 (†) M 20, F 8 12.7 (2.8) M 20, F 8 0.11

Fig. 1. Flowchart of the proposed Dynamic FC classification pipeline.



196 P. S. Dammu and R. S. Bapi

3 Methods

3.1 Proposed Dynamic FC Approach

In this work, we propose a new strategy to extract the temporal properties of
brain connectivity and consequently use them as features to test for presence of
autism.

When working with dynamic FC using sliding window correlation, it is essen-
tial that the duration of scan of all subjects are equal. It is also preferable if the
scan parameters such as repetition time between each frame acquisition (TR)
is identical for all of the subjects. Since ABIDE consists of data from various
imaging sites, we do not have a single uniform TR for the entire dataset, rather
we work with different scan parameter settings. The most common TR among
the sites present in ABIDE is 2 s while a few of them have a different TR value.
To handle this situation, we use linear interpolation on data from sites that
have TR values other than 2 s and bring all of the data to a uniform TR setting
(TR = 2 s).

For every subject, frames corresponding to the first 308 s (approximately
5 min) were selected and adjusted to 2 s TR, if required. This resulted in 154
frames (154 frames * 2 s TR = 308 s) for each subject. A sliding window of size
22 frames was slid in steps of 1 frame, resulting in 132 windowed correlations.
Since these resultant correlation matrices are symmetric, only the upper trian-
gular values of each matrix are extracted. The principal diagonal is also dropped
since it contains self-correlation information of each brain region. The remaining
features are then vectorized and used in subsequent steps.

Learning brain connectivity dynamics using clustering approach was prac-
tised in previously published studies [1,25] and was observed to yield adequate
characterization. However, a limitation to this approach is that the number of
dynamic FC states (number of clusters, k value) has to be specified manually or
determined using a criterion such as the elbow method. Research has revealed
that brain dynamics matures with age, and is also influenced by the demograph-
ics of subjects being studied [19,23]. The number of brain states revealed for
adult subjects were higher in comparison to children [23], suggesting that a sin-
gle k value may not be able to sufficiently characterize a highly diverse dataset
such as the ABIDE dataset. Therefore, we implemented group clustering for k
values ranging from 6 to 31 on all of the participant data to generate temporal
properties and let the classifier learn the optimal features. Subject-wise mean
lifetimes for each state is computed for all k values and stacked horizontally to
generate a vector of size 481 for every subject. Finally, the classifier is trained
on the dynamic temporal properties generated in the previous step (Fig. 1).

3.2 Classifier Methods

Machine learning classification methods, namely Support Vector Machines
(SVM) [26], Random Forests (RF) [9], Extreme Gradient Boosting (XGB) [5,7]
and Deep Neural Networks (DNN) [16] were trained on both dynamic and static
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features. Hyper-parameters were tuned over a sufficiently large search space.
The classifiers were first tuned using random search over a large search space
and then followed by a grid search on a finer and smaller search space consisting
of high performing parameters.

4 Results and Discussion

Significant improvement in classification performance has been observed when
dynamic features were used. The 10-fold cross-validation scores for all classifiers
using both dynamic and static features are presented in Table 2. When dynamic
features were used, all of the classifiers achieved accuracies greater than 71%,
XGB being the highest performing classifier with 73.6% accuracy. In the case
of static features, the classifiers demonstrated accuracies in the range of 65%
to 70% and XGB outperformed the rest with an accuracy of 70.1%. It has to
be noted that further optimization might increase performance of the classifiers,
especially in the case of DNNs where the number of hyper-parameters are high
and comprehensive optimization of the neural networks architecture is compu-
tationally expensive.

Table 2. Comparing classification performances of machine learning methods using
Static FC and Dynamic FC features. (Classifier with the highest accuracy is boldfaced.)

Method Accuracy Sensitivity Specificity F1 score

SVM, Static 0.674 0.710 0.635 0.689

RF, Static 0.651 0.699 0.599 0.670

XGB, Static 0.701 0.719 0.682 0.710

DNN, Static 0.663 0.676 0.650 0.676

SVM, Dynamic 0.735 0.764 0.704 0.748

RF, Dynamic 0.717 0.759 0.673 0.733

XGB, Dynamic 0.736 0.750 0.720 0.744

DNN, Dynamic 0.710 0.713 0.706 0.714

To ascertain that there is a significant increase in classification accuracy,
we performed a paired sample t-test on the 10-fold cross-validation accuracies
generated for both static and dynamic features. We have 10 scores per each
group, i.e. 10 scores generated using static features and 10 scores generated
using dynamic features, and this gives a degree of freedom of 9 (df = n − 1).
The results of the paired t-test are tabulated in Table 3 and we observe that in
every case, the p-value obtained is less than the significance level (0.05). This
demonstrates that using dynamic features has yielded a considerable increase in
the classification performance.
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Table 3. Results of paired sample t-test on the 10-fold cross-validation accuracies of
methods using Static FC and Dynamic FC features. (2nd and 3rd columns show the
mean 10-fold cross-validation accuracies of the corresponding method.)

Method Static features accuracy Dynamic features accuracy P-value T-value

SVM 0.674 0.735 0.001 4.549

RF 0.651 0.717 0.035 2.465

XGB 0.701 0.736 0.036 2.448

DNN 0.663 0.710 0.007 3.391

Fig. 2. ROC curves of methods using Static FC and Dynamic FC features.

Receiver operating characteristic (ROC) curves for all of the methods using
both static and dynamic features are plotted in Fig. 2, along with their respective
area under the curves (AUC). From the plot, we clearly notice that each method
when using dynamic features outperforms its counterpart using static features.
The AUCs ranged from 0.77 to 0.79 when dynamic features were used as opposed
to 0.72 to 0.76 when static features were used.

The ability to harness the temporal properties of FC and use them in classi-
fication is what sets our approach apart from the previously reported ones. Most
of the approaches relied on stationary FC for classification [8,14,21]. A classifi-
cation method which took dynamic FC into consideration was published earlier
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in the literature but the experiments presented in the paper were conducted on
a relatively small dataset with 60 subjects (30 ASD, 30 TD) [22]. Our method
has shown to be capable of handling large datasets while being relatively less
expensive computationally.

The previously reported state-of-the-art accuracy was 70% [8] and the study
was conducted on data from 17 different imaging sites with 1035 subjects (505
ASD, 530 TD). It has to be noted that fewer site-wise variations may lead to an
increase in classification performance, and the accuracy drops as the population
size increases [2,8,20]. Another recent study reported state-of-the-art accuracy
of 71.4% using the AAL parcellation on a sample size of 774 subjects (379 ASD,
395 TD) [14].

Evidently, our approach has improved the state-of-the-art results by achiev-
ing an accuracy of 73.6% on a sample of 869 participants (423 ASD, 446 TD).
However, as it has been discussed earlier that the site-wise variations and sample
demographics have an impact on the performance of the model, caution should
be taken while comparing studies conducted on different samples.

5 Conclusion

In this paper, we proposed a new framework that leverages brain dynamics
for classifying autistic individuals and neurotypicals. Our work has shown that
considering the dynamic nature of brain connectivity can yield improved results
in the identification of autism. Usage of more advanced techniques for modeling
the brain dynamics could further improve the diagnostic process.
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