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Abstract. Intraocular anti-vascular endothelial growth factor (VEGF)
therapy is the most significant treatment for vascular and exudative dis-
eases of the retina. The highly detailed views of the retina provided by
optical coherence tomography (OCT) scans play a significant role in the
proper administration of anti-VEGF therapy and treatment monitoring.
With increasing cases of visual impairment worldwide, computer-aided
diagnosis of retinal pathologies is the need of the hour. Recent research on
OCT-based automatic retinal disease detection has focused on using the
state-of-the-art deep convolutional neural network (CNN) architectures
due to their impressive performance in image classification tasks. How-
ever, these architectures are large in size and take significant time during
testing, thus limiting their deployment to machines with ample memory
and computation power. This paper proposes a novel deep learning based
OCT image classifier, utilizing a small CNN architecture named as Sim-
pleNet. It provides better classification accuracy with 800x fewer param-
eters, 350x less memory requirement, and is 50x faster during testing
compared to state-of-the-art deep CNNs. Unlike other papers focusing
on the prediction of specific diseases, we focus on broadly classifying
OCT images into needing anti-VEGF therapy, needing simple routine
care or normal healthy retinas.
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1 Introduction

The macula, located in the central part of the retina, is the primary sen-
sory region associated with vision. Retinal pathologies like choroidal neo-
vascularization (CNV), diabetic retinopathy (DR), age-related macular degener-
ation (AMD) and diabetic macular edema (DME) affect macular health. These
diseases deteriorate normal vision and are also the primary causes of irreversible
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vision impairment across the world [14]. Intraocular administration of anti-
vascular endothelial growth factor (anti-VEGF) has become the standard treat-
ment modality for these vision-threatening diseases [2]. Retinal optical coherence
tomography (OCT) imaging provides highly detailed views of the morphology
of the retina and is being widely used by retinal specialists in the decision mak-
ing and treatment monitoring process of anti-VEGF indications [1]. A 3D-OCT
volume may contain as many as 1600 B-scans [4] and individually interpreting
each scan is a time-consuming task for ophthalmologists. Moreover, the interpre-
tation of retinal OCT scans varies heavily among human experts [3]. Automatic
computer-aided diagnosis of OCT scans, employing deep convolutional neural
networks (CNNs) have the potential to revolutionize retinal disease diagnosis by
performing accurate and rapid classifications on large amounts of OCT data [9].

Recent researches have used deep learning on OCT images for retinal pathol-
ogy identification based on segmentation or classification methods. Nugroho et
al. [11] showed that deep neural networks like Resnet50 and DenseNet-169 out-
performed handcrafted features based HOG and LBP methods for classifica-
tion of OCT images. Kermany et al. [6] utilized transfer learning, based on
InceptionV3 architecture, on OCT scans to classify AMD and DME, to guide
the administration of anti-VEGF therapy. Rasti et al. [13] proposed a multi-
scale deep convolutional neural network consisting of multiple feature-learning
branches, each having different input image sizes, to identify dry-AMD and DME
from normal retinas. Prahs et al. [12] focused on predicting anti-VEGF treatment
indication from OCT B-scans, by developing a deep CNN based on Googl.eNet
Inception models. The authors classified OCT images into two classes, “injec-
tion” and “no injection” groups. Li et al. [10] integrated handcrafted features
with features extracted from VGG, DenseNet and Xception networks for OCT-
based retinal disease classification.

However, these studies [6,10-12] made use of deep CNNs with millions of
parameters to extract features from OCT scans, which not only limited their
deployment to machines with large memories but also entailed long testing times
for each B-scan. Moreover, most studies [6,10,11,13] focused on specific retinal
pathology classification without generalizations to other retinal diseases. From
an ophthalmologist point of view, it is essential to classify whether anti-VEGF
treatment is required or routine care would suffice so that proper strategies and
treatment plans can be designed for the patients. Therefore, in this study, we
propose a fully automated classification algorithm, utilizing a CNN with fewer
parameters for macular OCT B-scans concerning the requirement of anti-VEGF
therapy. In this research, OCT scans are classified into “urgent referral”, “rou-
tine referral” or “normal” categories. Urgent referral corresponds to OCT scans
of patients requiring immediate anti-VEGF therapy to prevent irreversible blind-
ness, whereas routine referral corresponds to mild forms of pathologies which do
not require anti-VEGF medication but do require routine care. Normal corre-
sponds to patients with healthy eyes. Not only do we predict whether anti-VEGF
injections are needed or not, but we also predict whether a patient has other
mild forms of eye disease requiring routine care. The main contribution is that a
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novel CNN with 800x less number of parameters, requiring 10x less memory and
50x less testing time per scan is proposed, which provides better classification
performance compared to the well known deep CNNs.
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Fig. 1. Data preprocessing: retinal curvature flattening and image cropping

2 The Proposed Method

2.1 Data Preprocessing

Due to various biological structures and acquisition disturbances, retinal layers
in raw OCT scans may be shifted or oriented randomly, consequently causing
high variability in their locations and axes [13]. Retinal layers in OCT scans
also appear naturally curved due to standard OCT image acquisition practices
and display [8] which varies between patients and imaging techniques [16]. Reti-
nal curvature flattening and image cropping gives uniformity to images before
automated classification and is widely used in literature. To this end, the reti-
nal flattening algorithm proposed by Srinivasan et al. [16] is adopted with some
modifications.

Figure 1 shows the steps for preprocessing the retinal OCT images. Median
filtering with a mask of size 7 x 7 is initially applied to remove the speckle noises
present in the grayscale OCT images. The high-intensity white patches resulting
from random orientation in raw OCT scans were removed by replacing pixels
with values above 250 with zero. The image is then binarized to obtain image
pixels with intensities above the mean intensity of the image, thus, highlighting
the retinal layers. The hyper-reflective retinal pigment epithelium (RPE) layer
is estimated by locating the last occurrences of high intensities in the binarized



150 S. Barnwal et al.

image. Interpolation and a 5 x 5 median filter are applied to remove outliers
from the estimated RPE layer. A second-order polynomial fit is obtained on the
estimated RPE, and each column in the original raw image is shifted up or down
to obtain a flat RPE. The diagnostic information in the OCT images is contained
in the retinal layers. Therefore, each B-scan is cropped horizontally, considering
220 pixels above and 20 pixels below the RPE to remove the vitreous and choroid-
sclera regions. Finally, each image is resized to 60 x 200 pixels. Figure 2 shows
raw OCT scans in various classes before and after preprocessing.

Preprocessed Raw OCT image Preprocessed p.. oCcT image Preprocessed

Raw OCT image OCT image OCT image OCT image

(a) (b) (c)

Fig. 2. Raw OCT images showing random orientation, retinal curvature, and variabil-
ity in location. Corresponding preprocessed images after retinal curvature flattening,
cropping, and resizing (a) Urgent referral category (b) Routine referral category (c)
Normal category

2.2 Proposed Architecture for Classification: SimpleNet

In this paper, a small CNN architecture with 30,793 parameters is used as the
classifier. The proposed SimpleNet consists of four convolutional layers, two
batch normalization layers, two max-pooling layers, and a final fully connected
output layer consisting of three nodes with softmax activation function. The
convolutional layers extract features from the preprocessed OCT images using
convolution operation performed with convolution filters (kernels). The mathe-
matical formulation of the convolution operation across different layers is given
as follows:

XE=Y o(xiT swl; +0h) (1)

K3

where * represents the convolution operation, Xé_l and X jl represents the fea-
ture maps at the convolutional layer [ — 1 and [ respectively, wf ; and bé are
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the trainable weights and biases. ¢ represents the rectified linear unit (ReLU)
activation function given as

f(z) = max(0, z) (2)
The dropout layer after the convolution layer prevents the CNN from overfitting
on the data while the batch-normalization layer accelerates and stabilizes the
training of the CNN [18]. The max-pooling operation takes the highest value
from each kernel and reduces the size of feature maps. The fully-connected layer
employs a soft-max activation function for the output layer to predict input
images into three categories, i.e., urgent referral, routine referral, or normal
categories. The details of the SimpleNet model is summarized in Table 1.

Table 1. Details of the proposed SimpleNet architecture

Layers (type) Number of | Number of Size of kernel | Stride | Padding | Number of
feature neurons in for each parameters
maps layer feature map

Input 1 60 x 200 x 1

Convolution + ReLU | 20 56 X196 x20 5 x5 x 1 1 520

Convolution + ReLU | 20 52 X192 x20 |5 x5 x 20 1 10020

Dropout (10%) 52 x 192 x 20

Batch Normalization 52 x 192 x 20 80

Max-pooling 13 x48 x 20 |4 x4 1

Convolution + ReLU | 40 11 x 46 x 40 |3 x 3 1 0 7240

Convolution + ReLU | 30 9x44x30 |3x3 1 0 10830

Dropout (20%) 9 x 44 x 30

Batch Normalization 9 x 44 x 30 120

Max-pooling 2 x 11 x 30 4 x4 1

Flatten 660

Fully-connected 3 1983

Total = 30793

The training process uses Adam as the optimizer with a learning rate of 0.001,
while the “categorical cross-entropy” cost function is used to train the output
layer. The training was performed in batches of 128 images per step. Given the
imbalance between classes in the training set (Fig.3(b)), different weights are
assigned to loss functions of each class based on the number of images it contains.

3 Experimental Studies and Results

3.1 Database

The publicly available OCT database proposed by Kermany et al. [6] was used
in our study. The large database containing 109,309 validated OCT images from
5319 adult subjects, were split into train and test sets of independent patients.
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Fig. 3. (a) Original training data distribution per class (b) New distribution of training
instances per class

The OCT images in the dataset have four categories; CNV, DME, DRUSEN,
and NORMAL. The data distribution of the four classes in the training set is
shown in Fig. 3(a). The test set contained 250 images from each category. CNV
and DME require urgent care in the form of anti-VEGF medication, whereas
drusen, which are lipid deposits under the retina, requires routine medications.
Thus, we combined CNV and DME into a new class called “urgent referral,” and
DRUSEN was labeled as a “routine referral.” The new training set distribution
is shown in Fig. 3(b).

3.2 Performance Comparison

We compared the proposed method with VGG16 [15], ResNet50 [5] and Incep-
tionV3 [17] based classification. We used the transfer learning technique where
we removed the fully connected layers, froze the convolutional layers, and fed the
features extracted from it to a fully connected layer with 3 nodes and softmax as
the activation function. Batch-normalization layers were, however, trained again
for this specific classification problem. 5-fold cross validation was used to present
an accurate estimate of the efficacy of each model on unseen data. Each of these
models was trained with Adam as the optimizer and categorical cross-entropy
as the cost function for the output layer. Class weights of 0.71, 4.19, and 0.74
were given to loss functions of normal, routine referral and urgent referral classes
respectively to overcome the imbalance in training set [7]. Table 2 presents the
performance metrics for SimpleNet, VGG16, Resnet50, and InceptionV3 for 5-
fold cross-validation on the preprocessed dataset. It can be seen that SimpleNet
heavily outperforms other architectures in terms of space and testing times while
achieving better classification performance (Fig.4).

Table 3 shows the class wise performance of the proposed SimpleNet archi-
tecture. The best SimpleNet model achieves a prediction accuracy of 97.7% with
a sensitivity of 100%, 95% and 97.8% for the normal, routine referral and urgent
referral classes respectively.
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Fig. 4. Graph showing performance metrics of the proposed SimpleNet model against
transfer learning based classification methodology according to 5-fold cross-validation
on preprocessed data

Table 2. Details and performance metrics of the proposed SimpleNet model against
transfer learning based classification methodology based on 5-fold cross-validation.
Testing was done on GPU with 5GB GPU memory and card model Nvidia Tesla
K20c. The card was fitted on a Dell Workstation of Model R7610 with 32 GB memory
and 600 GB SAS HDD.

Classification |Number of |Number of |Average Size on |[Sensitivity, Specificity,
method parameters |trainable |testing time |disk Precision, Fl-score] (%)
parameters |per image (s)|(MB)

SimpleNet (30,793 30693 0.0464 0.15 |[95.67, 95.7, 97.12,
95.63]

VGG16 14,789,955 |75,267 2.1444 56.4 [94.15, 94.25, 95.71,
93.89)

InceptionV3 21,956,387 |153,603 0.9027 84.4 (83.37, 90.46, 92.00,
86.74]

ResNet-50 23,888,771 354,179 1.4566 73.2 (83.68, 90.86, 92.28,
87.12]

Table 3. Performance metrics of the best SimpleNet model for each class on the test
set of 1000 preprocessed images

Categories Sensitivity (%) | Specificity (%) | Precision (%) | Fl-score (%)
Normal 100.0 99.07 97.28 98.62
Routine referral | 95.20 98.67 95.97 95.58
Urgent referral  97.80 98.80 98.79 98.29




154 S. Barnwal et al.

4 Conclusions

In this paper, a novel deep CNN called SimpleNet was proposed, which per-
formed classification with an accuracy of 97.7%, an average sensitivity of 97.67%
and an average specificity of 98.84%. It was shown that our proposed model was
highly efficient in terms of storage space and testing times compared to the state-
of-the-art CNNs, performing 50 times faster testing and consuming 350 times
less space, with better classification performance. The fast and accurate features
of the proposed method make it highly suitable for use in eye clinics and remote
health care centers.
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