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Abstract. In our study, we propose to use novel features from mitochon-
drial genomic sequences reflecting their evolutionary traits by a novel
GRaphical footprint based Alignment-Free method (GRAFree). These
features are used to classify a set of species to different classes. A novel
distance measure in the feature space is also proposed to measure the
proximity of these species in the evolutionary processes. The distance
function is found to be a metric. Further we model the evolutionary
relationships of these classes by forming a phylogenetic tree. Experimen-
tations were carried out with 157 species covering four different classes
such as, Insecta, Actinopterygii, Aves, and Mammalia. We apply our
proposed distance function on the selected feature vectors for three dif-
ferent graphical representations of genome. The inferred trees corrobo-
rate accepted evolutionary traits. This demonstrates that our proposed
distance function and feature representation can be applied to classify
different species and to capture the evolutionary relationships among
their classes.
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1 Introduction

The phylogeny can be considered as the clustering problem. In studying phy-
logeny of different species using molecular data, mostly the homologous segments
of DNA sequences are observed by computational biologists. This approach is
sensitive to the selection of segments (e.g. genes, coding segments, etc.) of the
sequence. The mitochondrial genomes (mtDNA) are haploid, inherited mater-
nally in most animals, and recombination is very rare event in it [4]. So the
changes of mtDNA sequence occur mainly due to mutations. Hence, the evolu-
tionary traits are more conserved in mtDNA. The mtDNA usually consists of a
few numbers of non-overlapping fragments called genes.
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During evolution, the genes of mtDNA very often change their order within
the mtDNA and also get fragmented [2]. This violates the collinearity of homol-
ogous regions. Apart from this fact, the complexity and versatility of the data
make it difficult to develop any simple method in comparative genomics [13].
Conventional methods compute the distance between sequences through com-
putationally intensive process of multiple sequence alignment, which remains a
bottleneck in using whole genomic sequences for constructing phylogeny [8]. As
a result, there exist a few works to discover evolutionary features in the non-
homologous regions of using alignment-free methods [17].

The existing alignment-free methods can be categorized into four types,
namely, k-mer frequency based method [1], Substring based method [11], Infor-
mation theory based method [6], and Graphical representation based method [21].

But they are not suitable to deal with a large number of taxa, and the
size of the input sequences is also limited [3]. Due to these difficulties, conven-
tional methods of phylogenetic reconstruction are restricted to working with
whole genome sequences as well as large dataset. For the last three decades, sev-
eral methods have been introduced to represent the DNA sequence with math-
ematical encoding (both numerically and graphically) [15]. It has been hypoth-
esized that each species carries unique patterns over their DNA sequence which
makes a species different from others [10]. There exist various representations of
the large genome sequences through line graph by mapping the nucleotides to
numeric representations. Considering a genome sequence as a signal (called the
genomic signal), these methods analyze respective sequences using different
signal processing techniques. Several techniques have been proposed to repre-
sent DNA sequences graphically from 2D space to higher dimensional space [16].
The graphical representation has a serious limitation of overlapping paths which
cause loss of information [16]. GRAFree takes care of this problem by considering
the coordinates of each nucleotide.

In this study, we consider three sets of structural groups of nucleotides
(purine, pyrimidine), (amino, keto), and (weak H-bond, strong H-bond) sep-
arately for representing DNA by a sequence of points in a 2-D integral coordi-
nate space. This point set is called Graphical Foot Print (GFP) of a DNA
sequence. We propose a technique for extracting features from GFPs and use
them to classify the species according to their class.

Experimentations were carried out with a dataset of total 157 species from
four different classes, namely, Insecta (insect), Actinopterygii (ray-finned fish),
Aves (bird), and Mammalia (Mammal). Our proposed method, GRAFree, clas-
sifies the species based on their classes with a high accuracy.

2 Materials and Methods

2.1 Feature Space

Definition 1 (Graphical Foot Print (GFP)). Let a sequence, S ∈ Σ+,
Σ = {A, T,G,C}. The GFP of S, φ(S), is the locus of 2-D points in an integral
coordinate space, such that (xi, yi) is the coordinate of the alphabet si, ∀ si ∈ S,
for i = 1, 2, . . . , n, and x0 = y0 = 0.
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Case-1 or GFP-RY (ΦRY ): for Purine (R)/Pyrimidine (Y) [14]

xi = xi−1 + 1; if si = G yi = yi−1 + 1; if si = C

= xi−1 − 1; if si = A = yi−1 − 1; if si = T

= xi−1; otherwise = yi−1; otherwise (1)

Case-2 or GFP-SW (ΦSW ): for Strong H-bond (S)/Weak H-bond (W) [7]

xi = xi−1 + 1; if si = C yi = yi−1 + 1; if si = T

= xi−1 − 1; if si = G = yi−1 − 1; if si = A

= xi−1; otherwise = yi−1; otherwise (2)

Case-3 or GFP-MK (ΦMK): for Amino (M)/Keto (K) [12]

xi = xi−1 + 1; if si = A yi = yi−1 + 1; if si = T

= xi−1 − 1; if si = C = yi−1 − 1; if si = G

= xi−1; otherwise = yi−1; otherwise (3)

Definition 2 (Drift of GFP). For a length L, drift at the ith position is,
δ
(L)
i = φi+L(S)−φi(S), where (i+L) ≤ |S| and φi(S) the ith coordinate of φ(S)

Considering the drifts for every ith, i = 1, 2, . . . , n, location of the whole
sequence, the sequence of drifts is denoted by
Δ(L) = [δ(L)

0 , δ
(L)
1 , δ

(L)
2 , δ

(L)
3 , . . . , δ

(L)
m ], where (m + L) = |S|

For three different cases, we denote drifts as Δ
(L)
RY , Δ

(L)
SW , and Δ

(L)
MK , respec-

tively.
We also call the elements of Δ(L) as points, as they can be plotted on a 2-D

coordinate system. We call this plot as the scatter plot of the drift sequence.
Similarly, we get a scatter plot of a GFP. Compared to Φi(S), Δ(L) is trans-
lation invariant as its set of points does not depend on the starting point of
the sequence. It has been observed that in many cases the scatter plots of Δ
have similar structure for closely spaced species mentioned in literature. Some
typical examples in Fig. 1 show that the species from class insect (Fig. 1(a, b))
have the similar pattern in their drift sequences but the pattern of the drift
sequence of fish (Fig. 1(c)) is different from them. This intuitively indicates that
the intraclass species are closer than the interclass species.

We represent spatial distribution of these points of Δ by a five dimensional
feature descriptor: (μ,Λ, λ, θ), where μ = (μx, μy) is the center of the coordinates,
Λ and λ are major and minor eigen values of the covariance matrix, and θ is
the angle between the eigen vector corresponding to Λ and x-axis. We make F
number of non-overlapping equal length fragments from Δ and represent each
fragment using the 5D feature descriptor.

2.2 Distance Function and Its Properties

For two sequences P and Q with the feature descriptors of ith, i ≤ F frag-
ments (μP i, ΛP i, λP i, θP i) and (μQi, ΛQi, λQi, θQi), where μP i = (μxP i, μyP i)
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(a) Drepanotermes sp. (b) Ma. errator (c) Ba. antrodes (d) Br. nectabanus

(e) J. jacana (f) R. cucullatus (g) C. familiaris (h) P. t. tigris

Fig. 1. The ΔRY for L = 2000 of (a, b) the insects namely, Drepanotermes sp. and
Macrognathotermes errator, respectively. (c, d) the fishes namely, Bathygadus antrodes
and Bregmaceros nectabanus, respectively. (e, f) the birds namely, Jacana jacana and
Raphus cucullatus, respectively. (g, h) the mammals namely, Canis familiaris and Pan-
thera tigris tigris, respectively.

and μQi = (μxQi, μyQi), we propose the following distance function,

D(P,Q) =
1
F

F∑

i=1

(
α
√

μP i
TμP i + μQi

TμQi − 2μP i
TμQicos(θP i − θQi)

+ (1 − α)
√

(ΛP i − ΛQi)2 + (λP i − λQi)2
)

; where, α = [0, 1] (4)

The distance D between two sequences is found to be a metric.

2.3 Taxon Sampling and Acquiring Mitochondrial Genome

We have prepared our dataset of 157 species by selecting their mitochondrial
genomes sequenced by various researchers. We consider 30, 59, 32, and 36 species
from four classes such as mammal [9,22], bird [5], ray-finned fish [18,23], and
insect [20], respectively. The selected data have been downloaded from the NCBI
database1. The average percentage of unrecognized nucleotide of all 157 mtDNA
is 0.06% which indicates that the quality of data is good.

2.4 Classification and Phylogenetic Inference

We randomly select ten species from each class and consider the mean of them
as the representative of the corresponding class. We consider five such represen-
tatives for each class. Finally, we apply k-nearest neighbor classifier based on
1 Website of NCBI database: http://www.ncbi.nlm.nih.gov.

http://www.ncbi.nlm.nih.gov
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the representatives to classify the species. In k-nearest neighbor classification we
apply our proposed distance function (Eq. (4)) for a given value of L, F , and α.

We also apply the same distance function to compute pairwise distances
among representatives of four classes.. By applying a hierarchical clustering tech-
nique, UPGMA [19], over this distance matrix, we get a phylogenetic tree. We
compute phylogenetic trees each separately using representation schemes, such
as, GFP-RY, GFP-SW, and GFP-MK (refer to Eqs. (1), (2), (3), respectively).

3 Results and Discussion

3.1 Comparison

For a given number of fragments, F , our proposed features vector is 5F dimen-
sional. We compare our feature vector with an existing k-mer based feature
representation [1].

As our input data is genomic sequence which contains only four characters, A,
T , G, C, hence, for k length of word, the length of the k-mer based feature is 4k.
So, the k-mer feature vector takes a significantly larger memory space than our
proposed feature vector. We have applied Euclidean, Canberra, and Chebyshev
distance functions on both k-mer based feature vector and our proposed feature
vector for different parameters value. It is observed that, our proposed feature
representation using GFP outperforms the Canberra and Chebyshev methods
using k-mer based representation and shows a comparable result with k-mer
based Euclidean method in classifying the species.

We also compare the performance of our proposed distance function with
the same distance functions. It is observed that all of these distance functions
perform differently for different parameters value. However, the best performance
of the proposed distance function is comparable to the performance of Euclidean
and Canberra. The Chebyshev distance function does not perform well in this
task of classification.

Apart from that, the phylogenetic trees derived from the proposed distance
function are consistent and supports the mostly accepted hypotheses, whereas,
the trees derived from Euclidean, Canberra, and Chebyshev distance functions
give different relationships among the four selected classes for GFP-RY, GFP-
SW, and GFP-MK.

3.2 Observations

Here, we present the clusters generated by GRAFree using the whole mitochon-
drial genome sequences of the selected species. We enumerate the value of L, F ,
and α from 50 to 5000, 1 to 200, and 0 to 1, respectively. We consider three dif-
ferent cases, such as GFP-RY, GFP-SW, and GFP-MK (please refer to Eq. (1),
(2) and (3), respectively). It is observed that for a given value of the param-
eters (L, F , and α) the classifier performs differently for GFP-RY, GFP-SW,
and GFP-MK. This fact reveals that for GFP-RY, GFP-SW, and GFP-MK, the
species contains different signatures in their corresponding drifts.
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However, the best accuracy we get 95.5%, 96.2%, and 96.2% for GFP-RY
(with L = 100, F = 150, and α = 0.50), GFP-SW (with L = 300, F = 55, and
α = 1), and GFP-MK (with L = 50, F = 50, and α = 0.50), respectively. The
confusion matrices for the best cases are shown in Table 1. This accuracy is mod-
erately better compared to those obtained using the Euclidean and Chebyshev
distance functions and comparable to the Canberra distance function. For the
same set of parameters of each case, the accuracy of the Euclidean are 96.82%,
78.34%, and 94.27%, respectively. The accuracy of the Canberra for the same
set of parameters are 96.82%, 97.45%, and 98.10%, respectively. The accuracy
of the Chebyshev is as low as <70% for all of the three cases.

Table 1. Confusion matrix of four classes Mammal (Mamm), Bird (Bird), Fish (Fish),
and Insect (Inse) for GFP-RY, GFP-SW, and GFP-MK

Original Prediction

GFP-RY GFP-SW GFP-MK

Mamm Bird Fish Inse Mamm Bird Fish Inse Mamm Bird Fish Inse

Mamm 28 2 0 0 30 0 0 0 30 0 0 0

Bird 0 58 1 0 4 55 0 0 0 59 0 0

Fish 0 0 32 0 0 0 32 0 1 4 27 0

Inse 2 2 0 32 0 0 2 34 1 0 0 35

Fig. 2. Derived trees after applying the UPGMA on the representatives of classes by
using (a) GRAFree, (b) both Euclidean and Canberra, and (c) Chebyshev. The arrow
in Fig. (b) indicates that the position of bird and fish are interchangeable in different
topologies derived from both Euclidean and Canberra.

For a particular window of L = [50, 300], F = [50, 150], and α = [0.50, 1], the
accuracy of our method are found to be (84.36 ± 4.28)%, (83.42 ± 3.15)%, and
(84.8 ± 2.91)% for GFP-RY, GFP-SW, and GFP-MK, respectively. So it can be
noticed that the proposed technique is very sensitive to the parameter values.

To derive the phylogenetic relationships among the selected classes, we con-
sider all (here five) representatives of each class. We apply our proposed distance
measure to derive the pairwise distances followed by the UPGMA. For a given
value of L, F , and α the trees are generated for three different cases (GFP-RY,
GFP-SW, and GFP-MK). It is observed that for both GFP-RY, GFP-SW, and
GFP-MK all the representatives of a particular class placed under a same clade.
It is also observed that the interclass relationships of the three trees carry the
same topology (Fig. 2) which shows that the GRAFree is robust in deriving the
phylogeny among different classes.
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Table 2. Time and space complexity to compute distance between two sequences

Methods Time complexity Space complexity

Deriving features Computing distance

GRAFree O(M − L + 1) O((M − L + 1)F) O(F)

Euclidean O(k(M − k + 1)) O(4k) O(4k)

Canberra O(k(M − k + 1)) O(4k) O(4k)

Chebyshev O(k(M − k + 1)) O(4k) O(4k)

Fig. 3. The execution time for different methods. All the methods are executed in the
same system. System configuration: 16 GB RAM, Intel Core i5 processor.

3.3 Complexity Analysis

We have derived both time and space complexities of GRAFree and the other
reference methods. It is found that the GRAFree is most time and space economic
method among all the reference methods (refer to Table 2). It can also be noticed
that the execution time of GRAFree is less than all the other methods (Fig. 3)

4 Conclusion

We have proposed a 5F-dimensional feature space and a new metric for clas-
sifying the species using large scale genomic features in the method GRAFree.
GRAFree uses the graphical representation of the genome. In this study we have
selected three graphical representations of a genome considering residues inde-
pendently. This method can classify the species based on their class (taxonomy
rank). The selection of the value of the parameters used in the GRAfree needs
further study. We observe presence of evolutionary traits among the selected
classes in the proposed feature descriptor extracted from the whole mitochondrial
sequences. These exhibit the effectiveness of the proposed feature representation
along with the metric for measuring the pairwise distances of species.

References

1. Bernard, G., Ragan, M.A., Chan, C.X.: Recapitulating phylogenies using k-mers:
from trees to networks. F1000Research 5, 2789 (2016)

2. Bernt, M., Braband, A., Schierwater, B., Stadler, P.F.: Genetic aspects of mito-
chondrial genome evolution. Mol. Phylogenet. Evol. 69(2), 328–338 (2013)



112 A. Mahapatra and J. Mukherjee

3. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in
the ancestral species. Genome Res. 12, 26–36 (2002)

4. Eyre-Walker, A., Awadalla, P.: Does human mtDNA recombine? J. Mol. Evol.
53(4), 430–435 (2001)

5. Fulton, T.L., Wagner, S.M., Fisher, C., Shapiro, B.: Nuclear DNA from the extinct
Passenger Pigeon (Ectopistes migratorius) confirms a single origin of New World
pigeons. Ann. Anat. - Anatomischer Anzeiger 194(1), 52–57 (2012). Special Issue:
Ancient DNA

6. Gao, Y., Luo, L.: Genome-based phylogeny of dsDNA viruses by a novel alignment-
free method. Gene 492(1), 309–314 (2012)

7. Gates, M.: A simple way to look at DNA. J. Theor. Biol. 119(3), 319–328 (1986)
8. Huang, Y., Wang, T.: Phylogenetic analysis of DNA sequences with a novel char-

acteristic vector. J. Math. Chem. 49(8), 1479–1492 (2011)
9. Kumar, V., et al.: The evolutionary history of bears is characterized by gene flow

across species. Sci. Rep. 7, 46487 (2017)
10. Langille, M.G.I., Hsiao, W.W.L., Brinkman, F.S.L.: Detecting genomic islands

using bioinformatics approaches. Nat. Rev. Microbiol. 8(5), 373–382 (2010)
11. Leimeister, C.A., Morgenstern, B.: Kmacs: the k-mismatch average common sub-

string approach to alignment-free sequence comparison. Bioinformatics 30(14),
2000–2008 (2014)

12. Leong, P., Morgenthaler, S.: Random walk and gap plots of DNA sequences. Bioin-
formatics 11(5), 503–507 (1995)

13. Moret, B.M.E.: Phylogenetic analysis of whole genomes. In: Chen, J., Wang, J.,
Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 4–7. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21260-4 3

14. Nandy, A.: A new graphical representation and analysis of DNA sequence structure:
I. Methodology and application to globin genes. Curr. Sci. 66(4), 309–314 (1994)

15. Nandy, A., Harle, M., Basak, S.C.: Mathematical descriptors of DNA sequences:
development and applications. ARKIVOC 2006(9), 211–238 (2006)
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