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Abstract. Visual inspection of transmission and distribution networks is often
carried out by various electricity companies on a regular basis to maintain the
reliability, availability, and sustainability of electricity supply. Till date the
widely used technique for carrying out an inspection is done manually either
using foot patrol and/or helicopter operated manually. However, recently due to
the widespread use of quadcopters/UAVs powered by deep learning algorithms,
there have been requirements to automate the visual inspection of the power
lines. With this objective in mind, this paper presents an approach towards
automatic autonomous vision-based power line segmentation in optical images
captured by Unmanned Aerial Vehicle (UAV) using deep learning backbone for
data analysis. Power line segmentation is often considered as a first step required
for power line inspection. Different state-of-the-art semantic segmentation
techniques available in the literature have been used and a comparative analysis
has been done in terms of the Jaccard index on two different power line data-
bases. This paper also presents a new power line database captured using UAV
along with the baseline results. Experimental results show that out of the four
deep learning-based segmentation architectures used in our experiments the
Nested U-Net architecture out-performed others in terms of line segmentation
accuracy in various background scenarios.

Keywords: U-Net - Nested U-Net - Transfer learning -+ Unmanned Aerial
Vehicle (UAV) - Semantic segmentation + Power line inspection

1 Introduction

Visual inspection of the transmission and distribution networks is often carried out by
the electricity companies regularly to maintain the reliability, availability, and sus-
tainability of electricity supply. Traditional methods used for inspection of power
networks which are being followed from decades makes use of field surveys and
airborne surveys [1]. Moreover, during emergency situations or on regular basis the
inspection is usually carried out by a team of inspectors traveling either on foot or by
helicopters to visually inspect the power lines with the help of binoculars and some-
times with Infrared (IR) and corona detection cameras [2]. The major limitation
involved in using the above-mentioned methodology is that the method is quite slow, it
is expensive and involves danger and is also limited by the visual observation skill of
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the inspectors [3]. Therefore, in order to overcome these limitations of the traditional
methods of power line inspection, recently a number of studies have been conducted to
automate the visual inspection by using automated helicopters, flying robots, and/or
climbing robots [3]. In this paper, we also propose a methodology for automatic
inspection of the power lines in images captured by UAVs using Deep Learning
(DL) as a backbone for carrying out the analysis.

The rest of the paper is structured as follows: Sect. 2 details different existing
relevant literature reviews followed by a description of the proposed methodology in
Sect. 3. Section 3 also highlights different blocks used in our proposed methodology
which includes discussion about different pre-processing and post-processing tech-
niques and deep learning architectures used in our experiments. Next, in Sect. 4, we
highlight the experimental setup which includes a description of the databases, details
about different experiments carried out on the databases and discussion related to the
results. Finally, we conclude the paper with a brief conclusion mentioned in Sect. 5.

2 Related Works

Although a vision-based approach powered by deep learning algorithms seems to be
the most impeccable approach for power line inspection, but there are only a few works
available in the literature dealing with power line inspection. This is mainly attributed
to the lack of power line database available in the literature for performing experiments.
From the best of our knowledge, the first work related to the use of computer vision in
power line inspection has been reported in [4]. In this work, the authors have done a
survey study related to the use of computer vision in the detection of power lines, an
inspection of power lines, detection and inspection of insulators, power line corridor
maintenance, and pylon detection. In another work reported in [5], the authors have
devised a method called CBS (Circle Based Search) for power line detection. This
method was validated using several tests on real and synthetic images, obtaining sat-
isfactory results in both cases. In [6] author proposed method, named PLineD for
power line detection and inspection using UAV captured visual camera images. The
database consists of 82 images from various background scenarios of power lines
captured using hexacopter UAV. In [7], proposed a technique for a multi-class clas-
sification for power infrastructure detection and classification using deep learning
approaches. The database consists of 150 pictures taken from UAV. The proposed
method achieved 75% F-score for multi-class classification and an 88% F-score
achieved for pylon detection. For power line recognition, an F-score of 70% obtained
on 11 unseen images. In [8], the authors have proposed secure autonomous navigation
approaches for transmission line inspection. The tower detection performed using a
faster region-based convolution neural network and power line segmentation achieved
using a fully convolutional neural network. Finally constructed UAV platform was
evaluated in a practical environment.
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3 Proposed Methodology

The block diagram representation of the proposed methodology used in this work has
been shown in Fig. 1. During training, we provide the CNN architecture the training
and corresponding ground-truth mask images. Once the training gets completed the
trained network should be able to predict the binary mask corresponding to any unseen
test image containing power lines. The predicted mask obtained from the trained model
is overlying on the original input image in order to visualize the segmented power line
image as shown in the figure below.
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Fig. 1. The methodology used for power line segmentation

3.1 Datasets and Ground-Truth Preparation

In the proposed work, different experiments have been carried out on two power line
databases. The first database (referred to in this work as SR-RGB database) is generated
with the cooperation of Turkish Electricity Transmission Company (TEIAS) and has
been obtained from [9]. In this database, videos were captured from actual aircraft
flown over Turkey at 21 different locations during different days of the season. The
captured images available in the database have different background scenarios, and
weather conditions along with different lighting conditions. Due to varying conditions,
the database contains several difficult scenes where low contrast causes invisibility for
the power line. At present, the database contains 4000 Infrared (IR) and 4000 Visible
light (VL) images having a resolution size of 128 x 128. Out of 4000 images from each
category, 2000 images contain power lines and the rest of the images do not contain
power lines. We have only used the RGB images available in the database in our
experiments. Moreover, since the size of the images was too small, therefore the images
were first super-resolved to a size of 512 x 512 using the technique presented in [10].
Sample images from the database and there corresponding super-resolved version has
been shown in Fig. 2. As can be seen from the figure, the quality of the super-resolved
image is comparable to that of the original image and hence we used the super-
resolution technique presented in [10].
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The second database used in experiments is an in-house database that consists of
530 power line images captured by a UAV and we refer to this database as the NAL-
RGB database. The dataset consists of various background scenarios such as agrarian
and rural areas. The resolution of the images in the database is 5472 x 3078 pixels.
Therefore, due to the limitation of the GPU memory, we first cropped the images to a
size of 512 x 512 pixels, which are non-overlapping image patches from the original
input aerial image as shown in Fig. 3. Using this operation we obtained a total of 40227
images. From the total images, the images which do not contain any power lines were
removed and the final database consists of 3568 images containing power lines.

@ (b O )

Fig. 2. (a) and (b) are the original images; (c) and (d) are 4x super-resolved images

Once the database gets prepared, the next step involved in the generation of
ground-truth required for training the deep learning architectures. To generate the
ground—truth mask from the images available in both the datasets we used the VGG
image annotator (VIA) [11] which is publically available free of cost. The sample
image along with its annotation has been shown in Fig. 4 and the sample annotated
image with its binary mask is shown in Fig. 5.

(b)

Fig. 3. (a) Original image with size 5472 x 3078 (b) Cropped image with size 512 x 512
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3.2 Deep Learning Architectures

Four different state-of-the-art deep learning inspired architectures used for semantic
segmentation have been used in this work. The first architecture called U-Net is pro-
posed for biomedical image segmentation [12]. The architecture consists of an Encoder
and a Decoder as shown in Fig. 6. As shown in the figure, the encoder consists of four
blocks, wherein each block contains two 3 x 3 convolutional layers with ReL.U
activation function followed by a 2 x 2 max pool layer with stride 2 used for the down-
sampling operation. The number of feature channels gets doubled after each successive
down-sampling operation, starting with 64 feature maps for the first block, 128 for the
second, and so on. The purpose of this contracting path is to capture the context of the
input image in order to be able to do segmentation. The decoder also consists of four
blocks, wherein each block contains the up-sampling (de-convolution) layer and the
concatenation layer followed by two 3 x 3 convolution layer. After each up-sampling
operation, it halves the number of feature channels and concatenates the higher reso-
lution features from the encoder and up-sampled feature from decoder for better
localization. The final layer consists of a 1 x 1 convolution layer to map the feature
vector to the desired class. The output of this model is a pixel-by-pixel mask that shows
the class of each pixel.

\
\

Fig. 4. Images with their annotations Fig. 5. Images with their binary masks
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Fig. 6. U-Net architecture.
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The second architecture called UNet-11 is an improved version of existing U-Net
architecture. It consists of the VGG11 network as an encoder and further details of the
architecture can be found in [13]. VGG11 network contains 7 convolutional layers
along with 5 max pool layers. Each successive convolution layer is followed by the
ReLU activation function. All convolutional layer uses 3 x 3 kernels wherein max pool
layer is used to reduce the size of the feature map by 2. The third architecture called
UNet-16 is also an improved version of U-Net and is reported in [13]. It consists of the
VGG16 network as an encoder in U-Net architecture. VGG16 network contains 13
convolutional layers, with each successive layer followed by the ReLU activation
function. All convolutional layer uses 3 x 3 kernels wherein max pool layer is used to
reduce the size of the feature map by 2. The final architecture called Nested U-Net is an
improved and modified version of U-Net architecture [14]. Nested U-Net as the name
implies makes use of nested and dense skip connection between encoder and decoder
apart from the typical skip connection used in U-Net. Dense skip connection is used to
improve the flow of gradient. Nested U-Net consists of dense convolution block helpful
in collecting the semantic level of feature map from the encoder part. The block-level
representation of the Nested U-Net architecture has been shown in Fig. 7. In the figure,
the green box indicates the dense convolution block which follows the consecutive
dense convolution layer. The red line and orange line indicate the skip and nested
connection between each dense convolution layer. Deep supervision is performed after
each convolution block visualized using the blue line. In deep supervision, dense
convolution layer 0_1, 0_2, 0_3 and 0_4 are added which is finally used for pixel-wise
segmentation. Further details about the Nested U-Net could be found in [14].

0_0 0_4

Output mask

Input Image
y
Y

——»  3x3 ConvTranspose2d +RelU - Dense Convolutional block
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Fig. 7. Nested U-Net architecture (Color figure online)
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4 Experimental Results and Discussion

In this section, we discuss different experiments performed on two power line database.
All this experiment is performed in the PyTorch environment on GTX GeForce 1080Ti
GPU. For U-Net and Nested U-Net, we used the open-source implementation available
at github.com/Nested-UNet, whereas for UNet-11 and UNet-16 we implemented the
architecture on our own. The evaluation metric used is called the Jaccard index
(Intersection over Union) which is defined as a similarity measure between a finite
number of sets.

4.1 Results on SR-RGB Database

As discussed in Sect. 3.1 the SR-RGB dataset consists of 2000 images out of which
499 images were blurred and were found difficult to annotate so we removed those
images. After removing blurred images, the SR-RGB dataset consists of 1501 power
line images. We selected 1200 images for training and 301 images were used for
validation purposes.

The training and validation plot of different deep learning architectures such as U-
Net, UNet-11, UNet-16, and Nested U-Net has been shown in Fig. 8. These plots have
been obtained by training these networks using a batch size of 4, learning rate value of
le-4 with Adam optimizer. The values of these hyperparameters have been obtained by
performing a number of experiments using different values of these hyperparameters.

UNet UNet-11

0
epochs epocrs
UNet-16 Nested-UNet

epochs wocts.

Fig. 8. Training and validation plot of different deep learning architectures on SR-RGB
database.

The Jaccard index value obtained on validation images from the database corre-
sponding to U-Net, UNet-11, UNet-16, and Nested U-Net is 0.59, 0.59, 0.60, and 0.59
respectively. From here, we can find out that all the architectures performed equally
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well on this dataset. The segmented output image obtained after performing the
blending operation on the predicted output mask corresponding to the input test image
using the Nested U-Net architecture has been shown in Fig. 9. From the out segmented
result, it is clear that the trained model is perfectly capable of segmenting the power
lines contained in the input test image.

4.2 Results on NAL-RGB Database

The NAL-RGB database consists of 3568 RGB images having a resolution of 512 x
512 pixels. From 3568 images, we have used 2850 images for training and the
remaining 718 images have been used for validation/testing purposes.

The training and validation plot of different deep learning architectures such as U-
Net, UNet-11, UNet-16, and Nested U-Net has been shown in Fig. 10. These plots have
been obtained by training these networks using a batch size of 4, learning rate value of
le-4 with Adam optimizer. The values of these hyperparameters have been obtained by
performing a number of experiments using different values of these hyperparameters.

Fig. 9. Visual results obtained using the Nested U-Net trained model on SR-RGB database.

The Jaccard index value obtained on validation images from the database corre-
sponding to U-Net, UNet-11, UNet-16, and Nested U-Net is 0.64, 0.66, 0.67, and 0.70
respectively. From here, we can find out that the Nested U-Net performed well com-
pared to the other three architectures. This is mainly attributed to the deep supervision
used in Nested U-Net architecture. The segmented output image obtained after per-
forming the blending operation on the predicted output mask corresponding to the input
test image using the Nested U-Net architecture has been shown in Fig. 11. From the
segmented output result, it is clear that the trained model is perfectly capable of
segmenting the power lines contained in the input test image.
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Fig. 10. Training and validation plot of different deep learning architectures on the NAL-RGB
database.

Fig. 11. Visual results obtained using the Nested U-Net trained model on NAL-RGB database.

5 Conclusion

In this paper, we have presented a methodology for the automatic segmentation of the
power line in UAV image using deep learning backbone for data analysis. Power line
segmentation is often considered as the first step required for power line inspection. We
have also introduced a new database captured using UAV and presented baseline
results using different deep learning architectures available in the literature for semantic
segmentation. Different deep learning architectures were trained and validated on two
power line database and a comparative analysis was done using the Jaccard index as the
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evaluation metric. From the experiments, we found that the Nested U-Net performed
relatively well compared to the other deep learning inspired image segmentation
architectures. This is mainly due to the deep supervision used in Nested U-Net
architecture. Thus, the proposed methodology could potentially be used for automatic
inspection of power lines in UAVs captured images.
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