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Abstract. Scene parsing refers to the task of labeling every pixel in an
image with the class label it belongs to. In this paper, we propose a novel
scalable non-parametric scene parsing system based on superpixels corre-
spondence. The non-parametric approach requires almost no training and
can scale up to datasets with thousands of labels. This involves retrieving
a set of images similar to the query image, followed by superpixel match-
ing of the query image with the retrieval set. Finally, our system warps
the annotation results of superpixel matching, and integrates multiple
cues in a Markov Random Field (MRF) to obtain an accurate segmen-
tation of the query image. Our non-parametric scene parsing achieves
promising results on the LabelMe Outdoor dataset. The system has lim-
ited parameters, and captures contextual information naturally in the
retrieval and alignment procedure.

Keywords: Scene · Scene parsing · Non-parametric · Label transfer ·
Partial correspondence

1 Introduction

In the recent decade, scene parsing has become an active area of research. The
idea behind scene parsing is to label each pixel in an image to the category or
the class it belongs to. It can be said that scene parsing is one step ahead of the
traditional image segmentation. Semantic labels can be stuffs such as - grass or
sky, as well as things, such as - person or building [8]. Traditionally there two
approaches of parsing an image: (1) Parametric and (2) Non-Parametric [13].

The traditional parametric approach consists of model training phase using
the training set which is then tested using the test data [5]. Though this approach
is effective and gives highly accurate result, it does not account for the dynamic
nature of the world where the size of the data keep increasing dynamically.
Parametric approach work with “closed universe” datasets where size of the data
is fixed. Once the data size varies, the model has to be trained again which is
an overhead. The non-parametric approach [2,8,13] provides several advantages
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over the parametric approach. Instead of training the model, semantic labels
are directly transfered to the query image from the retrieval set. It works with
“Open universe” datasets whose size can vary at all time. Since it is a data-driven
approach, it requires almost no training. In non-parametric scene parsing, the
semantic label transfer can be done at pixel level (dense correspondence) [8] or
the superpixel level (partial correspondence) [2,13].

A typical pipeline of non-parametric scene parsing is shown in Fig. 1. The
image database comprises of training and test images and their corresponding
annotations or the ground-truth labels. There are three major steps involved in
non-parametric scene parsing: (1) Scene Retrieval : Given a query image, a set of
similar images are retrieved from the training images; (2) Scene Correspondence:
It is the alignment of the query image with the retrieved images (results from
the scene retrieval); for correspondence of points to be used for labeling. And
(3) Markov Random Field (MRF) Inference: It performs the task of spatial
smoothing or aggregation of labels to obtain better segmentation results.

Fig. 1. A typical non-parametric scene parsing pipeline

In this work, our aim is to propose an improved context based non-parametric
framework for the scene parsing problem. Our entire scene parsing pipeline heav-
ily relies on the correct retrieval of the similar image set to achieve a correct labels
of the query image. We aim to get a fairly similar set of images as a retrieval set
of the query image in order to perform the parsing. Our scene retrieval module
has been built by taking into account the spatial features of the query image. The
label transfer is performed based on partial correspondence using super-pixels.
An improved super-pixels features extraction techniques are used for correspon-
dence in the partial scene correspondence module. Regarding the MRF inference
module, off-the-shelf graph based MRF inferencing technique has been used. We
demonstrate our system on SIFT Flow (LabelMe Outdoor) dataset. Experimen-
tal evaluation is done based on per-pixel and per-class accuracy.

The remainder of the paper is as follows: Sect. 2 starts with the summariza-
tion of related works. It is followed by a presentation of the improved framework
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and experimental evaluation in Sects. 3 and 4. Finally, conclusions are drawn
and outlook on future work is presented in Sect. 5.

2 Related Works

Various literature on non-parametric scene parsing have been studied [2,8,13].
For label transfer from the retrieved images to the query images, the existing
state-of-the-art approaches differ in the methods of retrieval of similar images,
the nature of correspondence algorithms, and the choice of the features used.

The earliest works on non-parametric scene parsing are based on dense cor-
respondence [8]. Dense correspondence is a pixel-by-pixel alignment of the query
image with the retrieval set using dense local features such as SIFT. The per-
pixel local information are transferred from an image in the retrieval set to
the query image. Liu et al. [8] introduced the concept of “label transfer” based
on local dense SIFT Flow matching algorithm [9]. ANN (Approximate Nearest
Neighbour) bilateral matching transfers label at pixel level by integrating prior
knowledge based on local partial similarity between images [17]. Collagepars-
ing [15] is an approach that extracts mid-level content adaptive windows from
the retrieved images and the query image. The label transfer is performed by
matching the query image’s content adaptive windows with retrieval set images’
content-adaptive windows. As research on dense scene correspondence continued,
it is found that dense correspondence is complex and computationally expensive
and hence, the recent research approaches on non-parametric scene segmenta-
tion are based on partial correspondence which is super-pixel or patch based
approach.

In the non-parametric scene parsing based on partial correspondence, the
query image is aligned to the images in the retrieval set by considering a group of
pixels at a time. Partial correspondence labels cohesive groups of pixels together
without loss of geometrical information of the image and in turn significantly
reduces the number of elements to process. Label transfer based on partial cor-
respondence was first introduced by Tighe and Lazebnik [13]. The superpixels
of the query image are labelled using an MRF model, based on similar super-
pixels in the query’s nearest neighbor. It also performs simultaneous labeling of
geometric and semantic classes of the query image. Their work is extended by
Eigen et al. [2] where per-descriptor weights for each superpixels’ segment are
learnt in order to minimize classification error which in turn helps to nullify the
biasing of the semantic classes towards common classes.

In order to detect interesting objects in a scene, Tighe and Lazebnik [14]
proposed to augment their SuperParsing work with pre-trained exemplar SVMs
[10]. Although the overall per-pixel accuracy improved, it failed to detect rare
classes. Yang et al. [16] added rare classes in the retrieval set for a more bal-
anced super-pixels classification in a feedback manner in order to refine the
matching at the super-pixel level. The super-pixels in the rare classes are popu-
lated using exemplars. Various classifiers (ensemble approach) are combined to
perform superpixels based scene correspondence in [4]. The likelihood scores of
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various classifiers are combined in order to label each superpixel of the query
image with a balanced score. Label transfer via efficient filtering [11] performed
parsing by first sampling of superpixels based on some similarity score and trans-
fering labels via filtering using a Gaussian kernel which encodes how similar two
superpixels are in terms of their feature vector.

3 Non-parametric Scene Parsing

3.1 Scene Retrieval

The scene retrieval component aims to find a subset of the training set similar to
the query image. It is a critical step in the pipeline as the overall scene parsing
performance is highly dependent on correct scene retrieval. There is no chance
of recovery in later stages in case of an incorrect retrieval. We used a combina-
tion of local and global features for image retrieval. The global feature used for
obtaining the retrieval set is Gist. The local features used to obtain the retrieval
set are VLAD (Vector of Locally Aggregated Descriptors) [6] and SPM (Spatial
Pyramid Matching) [7]. Gist is low dimensional global feature which gives the
summary of an image. VLAD is an extension of Bag of Visual Words which gives
a more discriminative representation. SPM incorporates the spatial information
of an image. The approximate nearest neighbor images for the retrieval set are
obtained using KD-tree indexing. Our improved scene retrieval module performs
better retrieval of the similar images. For each of the three mentioned features,
the first three most similar images are selected as the content of the retrieval set.
Hence, the total number of images in the retrieval set is k = 9 for each query
image.

3.2 Partial Scene Correspondence

The approach followed for scene alignment is the partial scene correspondence
using superpixels. It labels large, cohesive groups of pixels at once, decreases the
number of elements to process and at the same time, preserves the geometric
information. Superpixels are segmented from the query image and the retrieval
set using fast graph based segmentation [3]. The advantage of using this approach
is that the it segments a scene or an image into a combination of coarse and fine
regions. The scale of segmentation for the query as well as for the retrieval set
is set to 200.

Five types of features are used for representing each super-pixel, (1) SIFT
histogram (1024D), RGB color histogram (128D), HSV color histogram (128D),
Location histogram (36D) and PHOG histogram of the superpixel’s bounding
box (168D). For SIFT histogram, SIFT features are extracted and encoded by 5
words from a vocabulary of size 1024 using LLC algorithm. 128-D color histogram
are obtained by quantizing color features from a vocabulary of 128 words. 36-
D location histogram is obtained by quantizing (x, y) location into a 6 × 6
grid. In order to include contextual information, the superpixels are masked by
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20 pixels and the same type of features are used for representing the dilated
superpixels. So, the total number of features for each superpixel is (1024+128+
128 + 36 + 168) × 2 = 2968. Then, similar to [16], the classification cost of each
input superpixel si ∈ Q with reference to the K-Nearest Neighbour (Nk(i)) in
Retrieval Set R (sj , xj , yj) using Kernel K(xi, xj) is given by:

P (yi = c|si) = 1 −
∑

j∈Nk(i),yj
K(xi, xj)

∑
j∈Nk(i)

K(xi, xj)
(1)

Kernel functions are real valued functions that quantifies the similarity between
two feature spaces. They map data into higher dimensional space. K(xi, xj) > 0
is the similarity of xi and xj ∈ X. To avoid operating in the high dimensional
space, a feature space is chosen in which the dot product can be computed
directly using a nonlinear function in the input space K(xi, xj) = <θ(xi), θ(xj)>
(called the kernel trick).

The kernel function is the Chi-square kernel. It is a kernel based on Chi-
square distribution.

K(xi, xj) = 1 −
N∑

i,j=1

(xi − xj)
1
2 (xi + xj)

(2)

3.3 MRF Inference

In order to fuse global semantic constraints, a random field model is used. For
this, a four connected MRF (Markov Random Field) is chosen whose energy
function is given by the equation:

E(Y ) =
∑

p

Edata(yp) + λ
∑

pq

Esmooth(yp, yq) (3)

where p and q are pixels, λ is the pairwise energy weight. The data term of one
pixel is given by the result of Eq. 1 and the smoothness cost is given by label
variant cost as Esmooth(yp, yq) = d(p, q).μ(c, c′). d(p,q) is the color dissimilarity
between two neighbouring pixels and μ(c, c′) is the penalty of assigning c and c’
to adjacent pixels. The objective is to find the labeling that optimizes the energy
function.

For semantic labeling, inferencing on E(Y) is performed via Alpha-Beta Swap
[1]. It is a graph-cut algorithm that minimizes or optimizes the E(Y) by exchang-
ing labels between an arbitrary set of pixels labeled α and another arbitrary set
of pixels labeled β.

4 Experiments

Here we evaluate and compare our method with state-of-the-art approaches on
SIFT Flow (LabelMe Outdoor) dataset. It consists of 2688 outdoor scene images
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with 2488 images as training set and 200 images as test set as in [8]. The images
are 256 × 256 pixels with 33 labels. The metric used for evaluation are: (1) Per-
pixel accuracy : The percent of correctly labeled pixels in total and (2) Per-class
accuracy : The average percent of correctly labeled pixels in each class.

The average per-pixel recognition rate rp is calculated as

rp =
1

Σimi
ΣiΣp∈Λi

1(o(p) = a(p), a(p) > 0), (4)

where, for a pixel p in image i, the ground-truth label is a(p) and system output
is o(p); for unlabeled pixels, a(p) = 0. The symbol Λi represents the image lattice
for test image i and m = Σp∈Λi

1(a(p) > 0) is the number of labeled pixels for
image i. It is to be noted that some pixels may remain unlabeled.

The average per-class recognition rate rc is

rc =
ΣiΣp∈Λi1(o(p)=a(p),a(p)=l)

ΣiΣp∈Λi1(a(p)=l)
, l = 1, 2, 3, ...L (5)

For each query, the number of retrieval set is set to 9. Parameters for super-
pixels segmentation are set to: k = 200, sigma = 0.8 and minimum-area = 25.
The nearest neighbour (K) superpixels for label transfer is set to 100. The MRF
parameters are set to: λ = 6 and α = 0.7. It has been identified that 5 of the 33
labels are common classes while the rest of the labels are rare classes. Our result
is compared with recent works in Table 1.

Table 1. Comparison with the state-of-the-art systems on LMO dataset

Per-pixel Per-class

Liu et al. [8] 74.75% N/A

Tighe et al. [13] 73.2% 29.1%

Gould et al. [5] 65.7% 14.2%

Razzaghi et al. [12] 75.84% 31.3%

Eigen et al. [2] 75.3% 39.2%

Our approach 73.5% 21.719%

The class distribution graph of the labels is shown in Fig. 2. From the plot,
it is been shown that building, sky, road, mountain, sea and tree are the most
common class distribution. It also shows that the system failed to detect rare
classes such as desert, bus, balcony, bird, cow, pole, moon and sun. Some of our
labeling results along with the ground truth is shown in Fig. 3.
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Fig. 2. Classes of objects in the dataset and their frequency.

Fig. 3. Some results on SIFT flow dataset. On the left are query images, and results
of scene parsing. On the right are ground truth images for comparison.

5 Conclusion

In this work, we present a novel non-parametric scene parsing framework whose
overall per-pixel labeling accuracy is improved by accurate retrieval and par-
tial correspondence. By combining various features for similar image retrieval,
we have boosted the strength of the partial correspondence matching. Evalu-
ation results have shown that our system obtains compatible performance on
SIFT Flow dataset. Dividing the query image and retrieval set into non-uniform
grids based on salient region detection and performing partial correspondence
on corresponding grids will be a good research direction.
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