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Abstract. In this paper, we propose attention maps at various scales on
multi-resolution feature extractor baseline network for human pose esti-
mation. The baseline network captures information across various scales
with the help of repeated bottom-up and top-down approach using suc-
cessive pooling and up-sampling. We propose a network named Refine-
ment Net for regressing the predicted heatmaps to 2D joint locations
to remove ambiguities in predicted position. We experiment with three
levels of attention schemes - global, heatmap and multi-resolution. Atten-
tion masks helps in generating basin of attraction that helps the network
on deciding where to “look”. The proposed network performance is at
par with the state-of-the-art two dimensional pose estimation methods
on MPII dataset.

Keywords: Human pose estimation · Multi-resolution · Attention
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1 Introduction

Pose estimation is a fundamental yet challenging problem in computer vision.
Human pose estimation is task of identifying humans in an image and recovering
their body poses. It is one of the longest serving problems in computer vision due
to complex models involved in observing poses. People’s poses are extensively
used for pedestrian detection, human-robot interaction, sign-language under-
standing, virtual reality, etc. Pose estimation can be solved very efficiently by
posing it as a deep learning problem. Hence, it has seen a lot of advancements
over the recent years.

Convolutional neural networks (CNN) have seen an explosive success in the
field of deep learning. Most state-of-the art pose estimation networks use CNN
architectures to achieve outstanding performance on publicly available datasets
such as MPII, Human3.6M, Leeds Sports, COCO, etc. In this paper, we propose a
CNN architecture, called multi-resolution network (MRN) that has conv-deconv
structure by successive pooling and up-sampling. We stack multiple MRNs to
allow repeated refinement of prediction at consecutive stages. The prediction
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maps are then fed to Refinement Network for regressing accurate 2D joint loca-
tions. Since the joint locations do not depend on the background region (non-
human), these regions need to be eliminated before feeding into the pose esti-
mation network to prevent the network from learning false features. Hence we
propose attention schemes at various scales that allows the network to learn
the required attention basin. Attention is a self-learning module and does not
require any labelled data while training. The output of the attention module is
a probability map that boosts near-human regions and suppresses other regions
that are not useful for identifying the joint locations. Detailed explanation of
the work is described in Sect. 3.

This work makes the following contributions:

– Multi-Resolution Network (MRN) - allows repeated bottom-up and top-
down inference across various scales. Output of MRN is a single heatmap for
all 16 joint locations.

– Refinement Net - Output of MRN is fed to Refinement Net for accurate
regression of 2D joint locations from output heatmap.

– Multi-scale Attention Modules - To help the network learn faster and
efficiently, we propose attention modules to boost regions of interest and
mask unimportant regions.

Baseline network without attention achieves highest accuracy of 83.2%. How-
ever, with global attention, we achieve 3.5% increase in accuracy whereas with
multi-resolution attention, we get 0.9% increase on MPII dataset.

2 Related Work

CNNs have revolutionized the task of human pose estimation by incorporating
complex feature extracting network with reduced the number of parameters as
compared to fully connected networks. Although it has significantly enhanced the
performance, learning the exact (x, y) positions of body joints from an image is a
complex task. To solve this problem, researchers turned to the heatmap, which is
made by placing Gaussian blobs at every joint location. Plenty of methods were
designed to regress the heatmap instead of (x, y) coordinates, such as Tompson
et al. [16], Newell et al. [13], Wei et al. [18].

Pose Estimation. Introduction of Stacked Hour-Glass structure by [13] has
certainly steered pose estimation to a new direction by focusing on multi-scale
feature extraction. It uses CNN as their base and produces heatmap output
for each joint location. Other major contributions to pose estimation include
[1,9,10]. Numerous variations to [13] were also experimented by [4,6,8]. Cascaded
pyramid network by [3] came up with a module named RefineNet for fine tuning
of the heatmaps obtained from previous network module. RefineNet concatenates
all the pyramid features rather than simply using the up-sampled features at
the end of hourglass module. Different from RefineNet, we propose a module
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designed to eliminate any ambiguity that could arise due to spread spectrum of
Gaussian blobs at each joint location or due to ordering of joint locations. This
module regresses the heatmap output to corresponding joint locations.

Self Visual Attention. Visual attention concept is computationally efficient
and effective for object detection [7,22], image recognition [2,17], caption gen-
eration [11,19,21], etc. In most cases, attention masks are usually learned from
extra bounding box manual annotations. Learning maps from annotated data
not only is time-consuming but also does not bring any progress to the area of
deep learning. However, very few work has been done incorporating attention
modules for human pose estimation, they include [5,15]. Attention aided pose
estimation helps the network learn the regions of interest in the image and lead
to faster convergence.

3 Network Architecture

In this section we elaborate the important constituents of the proposed human
pose estimation architecture i.e. MRN, Refinement Net, and attention modules.

3.1 Multi-Resolution Network

The proposed network architecture is as described in Fig. 1. The architecture is
inspired from Stacked Hourglass structure [13]. It was aimed at collecting infor-
mation from various scales from the image. In the original implementation of the
hourglass network, they make use of residual blocks that have skip connections
within itself. We believe that the second tier of skip connection is redundant and
does not help in learning better features required for pose estimation. Our net-
work omits the implementation of residual blocks. The network starts with 7 × 7
convolutional layer with stride 2, followed by a residual module and a round of
max pooling to bring the resolution down from 256 to 64. This is implemented
in the Front Module. The network branches off to skip connections at every
resolution to apply more convolutions at the pre-convolved layers as shown in
Fig. 1. After reaching the final resolution of 4 × 4, the network does nearest
neighbour interpolation with few more convolutional layers to bring back the
network output to 64 × 64 resolution. At the lowest resolution, two consecutive
rounds of 1 × 1 convolutional are performed. At each level of resolution, there
are 256 feature vectors. At every up-sampled resolution, the feature vector is
added with the skip connections coming from the corresponding resolution of
bottom part of the hourglass. Local evidence helps in identifying faces, hands,
etc whereas the consolidated features from various scales help in understanding
the body pose. This feature is very critical to the network’s performance over
other networks. We extend our network architecture by stacking multiple MRNs
back-to-back, feeding the output of one as input to the next. This provides the
network a mechanism for repeated bottom-up, top-down inference allowing for
reevaluation of initial estimates and features across the whole image. Multiple



464 S. Selvam and D. Mishra

MRNs help in refining the output prediction of previous MRNs. The output of
this network is a single heatmap for all joint locations in the image. The result-
ing prediction heatmap value at a position gives the probability of any joint
occurring at that location.

3.2 Refinement Network

Predictions from MRN does not provide any information about correspondence
of prediction to joint locations. That is, we do not know which Gaussian peak
corresponds to which joint in the human body. In order to regress body joint
locations from the heatmap, we propose a module named “Refinement Net”.
Output of stacked MRNs is fed to Refinement Net. Refinement net helps in
learning probability map to joint correspondence. The order of output of the
Refinement network encodes the information about the sequence of body joint
locations. Also, the heatmaps are obtained by placing Gaussian blobs at corre-
sponding true values of the 2D pixel locations in the image. So, when going back
from heatmap to joint locations, due to the spread spectrum of Gaussian blob,
multiple peaks for a single joint location may occur. To avoid this complication,
we redundantly predict 2D joint locations from the predicted heatmap from pre-
vious network. This module refines the prediction from MRN. Moreover, while
training with heatmaps, the network (Front Module + MRN) gets stuck at a
local minima corresponding to a heatmap with all joint prediction values 0.5.
Refinement Network also helps in overcoming this saddle point and allows faster
convergence of the model. Refinement network architecture is as described in
Fig. 2 and the overall network architecture is as described in Fig. 3.

Fig. 1. Multi-resolution network is
inspired from the popular Stacked
hourglass network - aimed at cap-
turing features at various resolution.
Each block in MRN is a convolutional
layer with 256 feature vectors - unlike
stacked hourglass in which each block
is a residual module.

Fig. 2. Architecture of Refinement
Net. Refinement Net helps in regress-
ing joint positions from heatmaps that
lacks information about correspon-
dence between predictions and joint
locations.
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Fig. 3. Baseline network with MRN and Refinement Network

3.3 Attention Module

Attention schemes help the network in deciding where to look. The output of the
attention module is a relevance map that boosts near-human regions and sup-
presses other regions that might not be useful for identifying the joint locations.
Attention can be of two types: 1. Hard Attention and 2. Soft Attention. In hard
attention, the attention mask has binary values - {0, 1}. 0 at a location indicates
that information content at that position is irrelevant to the task of joint pre-
diction whereas 1 indicates otherwise. In soft attention, each pixel position has
values in the range [0, 1] - indicative of the relevance of the information at that
position for output prediction. In our implementation, we extensively use soft
attention masking since hard attention masks are difficult to back propagate.
In this work, we propose attention schemes at three levels: Global, Heatmap
and Multi-Scale Attention Schemes. Moreover, we do not require any manual
annotations for attention masks.

Global Attention. Global attention is implemented at the input resolution.
Every image is passed through global attention module and then to MRN and
Refinement Net. The output of the module is an attention mask, same size as
that of the image. The attention mask is element-wise multiplied (denoted by
�) with all 3 channels of the image. This emphasizes the regions of interest and
de-emphasizes unimportant regions in the original image. The output is then fed
to MRN followed by Refinement Net. Global attention module also has hourglass
structure with skip connections. It is aimed at capturing masking information
from various scales across the image. Figure 4 shows the architecture of Global
attention scheme.

Attention mask on the image is generated by passing the image through
attention convolutional layers described in Eq. 1 where f denotes the attention
transformation, I denotes the input image, W att is the weights of the attention
module, M is the attention mask and X is the input to stacked MRNs.

M = fatt(I;Watt) (1)

X = I � M (2)
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Fig. 4. Global Attention Scheme - Attention basins are generated on the input image.
Unimportant regions are masked before passing through the network. Attention map
dimension is as that of the input image.

Heat Map Attention. Heat map attention masks are implemented on the out-
put of stacked MRNs. Attention module for heatmap predictions is an redundant
layer that helps in filtering out wrong predictions before passing the predictions
onto subsequent stages. This is important because, in our implementation of
stacked MRN network, the subsequent stages learn from the previous stage’s
prediction. Applying attention onto each of the predicted output heatmaps will
help the network learn faster and efficiently. Attention mask in each layer is
element-wise multiplied with the predicted heatmap and passed to the next stage
of the hourglass. Figure 5 shows the architecture of heatmap attention scheme.

Let Xi denote the output (heatmap) of ith MRN. To generate attention
maps on Xi, we pass it through attention module (Eq. 3). This mask is element-
wise multiplied with heatmap prediction and added with original prediction to
enhance the regions of interest (Eq. 4). This is done in order to overcome the
problem of vanishing gradient. Attention mask Mi is a relevance map that con-
sists of values in the range [0, 1]. 1 implies high relevance and 0 implies low
relevance. When this mask is multiplied with the predicted heatmap which is
a probability map whose range is also [0, 1], the resulting values are infinitesi-
mal that leads to vanishing gradient when propagated through multiple stacks
of MRN. Hence, we add identity mapping to avoid this complication. Yi is the
input to (i+1)th MRN.

M i = fatt(Xi;W i
att) (3)

Y i = Xi � M i + Xi (4)

Fig. 5. Heatmap attention scheme - Attention basins are generated for each heatmap.
Unwanted regions of the heatmap are masked before passing through subsequent stacks
of MRN. Each attention map dimension is 64 × 64 - as that of MRN input/output.
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Multi-Resolution Attention. Instead of building an explicit attention mod-
ule, we can incorporate attention into MRNs itself. This attention scheme learns
attention masks on all resolutions present in MRN. The attention masks run
parallel to the skip connections in MRN. Each resolution attention mask is
element-wise multiplied with corresponding resolution layer output and prop-
agated to the subsequent layers in each hourglass and eventually to subsequent
MRN stacks and Refinement net. Multi-resolution attention emphasize relevant
information present at each scale. This improves the quality of each resolution
layer output as well as predicted 2D joint positions. Figure 6 shows the architec-
ture of multi-resolution attention scheme.

Let Xi
t denote the ith layer in the top half of the MRN and Xi

b denote its
corresponding layer in the bottom half in a MRN. Attention maps are generated
only on bottom half of MRN. Attention maps are learnt from Xi

b. Xi
b is passed

through the attention module. This mask is element-wise multiplied with the
corresponding feature vector for upsampled layer in the network and added with
the original feature vector to enhance the regions of importance to overcome the
problem of vanishing gradient as described in Subsect. 3.3. Yi is added with the
skip connections coming from the corresponding top section of the MRN. Xi

s

denotes the skip connection coming from i th top layer in MRN. Zi is the input
to (i+1)th layer in MRN. This is described in Eqs. 5, 6, and 7.

M i = f i
att(X

i
b;W

i
att) (5)

Y i = Xi
t � M i + Xi

t (6)

Zi = Y i + Xi
s (7)

3.4 Training Details

Entire network was trained on MPII dataset with single person annotations
with all visible body joints. At every convolutional layer, kernel and activity
regularization are added to avoid over-fitting. We add batch normalization at
every convolutional layers to speed up the training process, except in the 1 ×
1 convolutional layers. Leaky ReLu activation is imposed for all convolutional
layers, except the attention layers. We use sigmoid activation to generate the
attention masks. Kernels of size (3, 3) and stride (1, 1) are used throughout
MRNs. The network weights are all initialized with tensors of all ones. Adam
optimizer is used to optimize the network on a single Titan X GPU. The network
is trained on mini-batches of size 30 and shuffled between epochs. Network is
trained using MSE as loss function between 16 predicted (x, y) joint positions
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Fig. 6. Multi-resolution attention scheme - attention basins are generated on every
scale in MRN. Unimportant regions are filtered out before passing through subsequent
resolution levels in MRN. Each attention map has dimensions as that of each scale in
MRN - 64 × 64, 32 × 32, 16 × 16, 8 × 8 and 4 × 4.

and ground truth as described in Eq. 8. For images with multiple people in it,
output is predicted on a single person with all visible body joints.

Loss = Mse(Px,y;Gx,y) =
16∑

i=1

(Gi
x,y − P i

x,y)
2 (8)

Tasked Learning. The training method is derived from [15]. We represent
body joint learning as task A and attention learning as task B. The result of
task B has great influence on task A. For example, if task B filters out body
regions, task A would never converge to a better solution, because the input
feature maps do not contain much important information. So, firstly, we freeze
the parameters of task B, and initialize all attention masks with all ones tensors
and train task A. Then we freeze the parameters for task A, and train task
B. Finally, we jointly train the two tasks. Training algorithm is as described in
Algorithm 1. The learning rate is dropped by a factor 10 at the completion of
each tasked training epoch.

4 Results

We compare our results with leading state-of-the-art results in Table 1. The
metric used for comparison is average accuracy (in percent) over all body joints.
Example results can be found in Fig. 7 for baseline network and in Fig. 9 for
attention aided architecture. We also analyze the performance of the baseline
network and attention aided network only various categories such as walking,
dancing, exercising, standing, etc. Table 2 stages the results. Intermediate results
of the baseline network are staged in Fig. 8.
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Algorithm 1. Tasked Training Algorithm
1: procedure train(model, input, maxepochs)
2: for i in range(max epochs) do

3: prediction ← model.predict(input)

4: error ← (ground truth − prediction)2

5: Back propagate error

6: Initialize model.attention weights to ones

7: while convergence not attained do

8: model.attention weights.trainable ← False � Freeze attention weights
9: train(model, input, max epochs)
10: model.attention weights.trainable ← True � Release attention weights
11: model.pose network weights.trainable ← False � Freeze baseline network weights
12: train(model, input, max epochs)
13: model.pose network weights.trainable ← True � Release baseline weights to

make the network end-to-end trainable
14: train(model, input, max epochs)
15: Reduce learning rate

� while loop continues

Table 1. Comparison of results on MPII human pose dataset

Method Average
accuracy

Method Average
accuracy

Method Average
accuracy

[16] 82.0 [14] 82.4 [12] 85.0

[18] 88.5 [13] 90.9 [5] 91.5

[20] 92.0 [15] 92.0 Ours - Fig. 3 83.2

Ours - Fig. 4 86.7 Ours - Fig. 5 78.6 Ours - Fig. 6 84.1

Fig. 7. Example results of our baseline (MRN + Refinement Net) on MPII dataset
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Fig. 8. Intermediate features extracted from the network. Bottom half of MRN does
human localization whereas top half of the network derives higher level features from
localized.

Fig. 9. Example results of our attention aided baseline network on MPII dataset. First
column is the original input images. Second column is the corresponding attention
masks generated for the input image. Third column is the predicted 2D joint locations
of the network.

Table 2. Category-wise assessment of average accuracy (in percentage) on MPII
dataset

Our

method

Standing Walking Dancing Skiing Exercising Bicycling Mountain

biking

Volleyball Basketball

Fig. 3 81.93 93.62 76.67 84.29 82.82 83.12 80.00 60.2 78.42

Fig. 4 83.86 92.98 76.67 81.43 87.00 82.69 82.38 62.46 80.18

Fig. 5 81.93 89.36 76.67 80.00 79.90 79.89 73.31 60.82 78.42

Fig. 6 85.44 89.36 76.67 84.29 87.00 83.12 80.00 67.38 81.93
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5 Conclusion

Our work is a significant contribution to attention-based human pose estimation
since seldom researches have explored this field. Baseline network performs at
an average accuracy of 83.2%. The reduced accuracy compared to [13] is due to
omission of residual connections at the benefit of lesser number of parameters.
With the use of attention schemes, the performance of the network (in terms of
accuracy and time to convergence) has significantly improved. Global attention
schemes gives an additional 3.5% increase in accuracy whereas multi-resolution
attention gives an additional 0.9% improvement. However, heatmap attention
modules decrease the performance of the baseline network by a significant 4.6%.
Heatmaps have very concise and important information about the body joints.
Imposing attention on heatmaps leads to disposal of important regions from the
heatmap. Moreover when multiple MRNs are stacked, this leads to successive
filtration of the heatmaps by the attention modules which leads to significant
loss of information, reflecting in the reduced accuracy of the network.
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