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Abstract. Mapping the environment has been an important task for
robot navigation and Simultaneous Localization And Mapping (SLAM).
LIDAR provides a fast and accurate 3D point cloud map of the envi-
ronment which helps in map building. However, processing millions of
points in the point cloud becomes a computationally expensive task. In
this paper, a methodology is presented to generate the segmented sur-
faces in real time and these can be used in modeling the 3D objects.
At first an algorithm is proposed for efficient map building from sin-
gle shot data of spinning Lidar. It is based on fast meshing and sub-
sampling. It exploits the physical design and the working principle of
the spinning Lidar sensor. The generated mesh surfaces are then seg-
mented by estimating the normal and considering their homogeneity.
The segmented surfaces can be used as proposals for predicting geomet-
rically accurate model of objects in the robots activity environment. The
proposed methodology is compared with some popular point cloud seg-
mentation methods to highlight the efficacy in terms of accuracy and
speed.

Keywords: Unsupervised surface segmentation · 3D point cloud
processing · Lidar data · Meshing

1 Introduction

Mapping of environment in 3D is a sub-task for many robotic applications and
is a primary part of Simultaneous Localization And Mapping (SLAM). For 3D
structural data sensing, popular sensors are stereo vision, structured light, TOF
(Time Of Flight) cameras and Lidar. Stereo vision can extract RGBD data
but the accuracy is highly dependent on the presence of textural variance in
the scene. Structured light and TOF cameras can extract depth information and
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RGBD data respectively in an accurate fashion. But these are mostly suitable for
indoor uses and in a low range. Lidar is the primary choice for sensing accurate
depth in outdoor scenarios over long range. Our focus in this work is on the
unsupervised geometric surface segmentation in three dimensions based on Lidar
data. We would like to emphasize that models built from such segmentation can
be very useful for tasks like autonomous vehicle driving.

According to Nguyen et al. [13], the classic approaches in point cloud seg-
mentation can be grouped into edge based methods [3], region based methods
[1,9,11,17], attributes based methods [4,6,8,19], model based methods [16], and
graph based methods [2,10]. Vo et al. [17] proposed a new octree-based region
growing method with refinement of segments and Bassier et al.. [1] improved it
with Conditional Random Field. In [9,11], variants of region growing methods
with range image generated from 3D point cloud are reported. Ioannou et al. [8]
used Difference of Normals (DoN) as a multiscale saliency feature used in a seg-
mentation of unorganized point clouds. Himmelsbach et al. [7] treated the point
clouds in cylindrical coordinates and used the distribution of the points for line
fitting to the point cloud in segments. Ground surface was recognized by thresh-
olding the slope of those line segments. In an attempt to recognize the ground
surface, Moosmann et al. [12] built an undirected graph and characterized slope
changes by mutual comparison of local plane normals. Zermas et al. [18] pre-
sented a fast instance level LIDAR Point cloud segmentation algorithm which
consisting of deterministic iterative multiple plane fitting technique for the fast
extraction of the ground points, followed by a point cloud clustering methodol-
ogy named Scan Line Run (SLR). On the other hand, in supervised methods,
PointNet [14] takes the sliding window approach to segment large clouds with the
assumption that a small window can express the contextual information of the
segment that it belongs to. Landrieu et al. [10] introduced superpoint graphs, a
novel point cloud representation with rich edge features encoding the contextual
relationship between object parts in 3D point clouds. This is followed by deep
learning on large-scale point clouds without major sacrifice in fine details.

In most of the works, neighbourhood of a point used to estimate normal is
determined by tree based search. This search is time consuming and the result-
ing accuracy is also limited for sparse point cloud as provided by a Lidar in
robotic application. This observation acts as the motivation for us to focus on
developing a fast mesh generation procedure that will provide the near accu-
rate normal in sparse point cloud. Moreover, processing Lidar data in real-time
requires considerable computational resources limiting its deployability on small
outdoor robots. Hence a fast method is also in demand.

2 Proposed Methodology

The overall process consists of three steps as shown in Fig. 1. First, the point
cloud is sensed by the Lidar, subsampled and the mesh is created simultaneously.
Second, surface normal is calculated for node points using the mesh. Finally, sur-
face segmentation is done by labelling the points on the basis of spatial continuity
of normal with a smooth distribution.
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Fig. 1. Block diagram of the entire system, the first stage can be merged with Lidar
scanning by improvising the Lidar firmware

Fig. 2. (a) A schematic showing the formation of point cloud by Lidar and (b) the
resultant point cloud

The proposed methodology segments surface from point cloud obtained by
spinning Lidars only. Spinning Lidars work on the principle of spinning a vertical
array of divergent laser distance sensors and thus extracts point cloud in spherical
coordinates. The point cloud consists of a set of coordinates P = {p(θ, φ, r)}
where θ is the fixed vertical angle of a sensor from the plane perpendicular to
the spinning axis, φ is the variable horizontal angle due to spinning of the array
and r is the distance measured by the laser sensor. This form of representation is
exploited by our methodology to structure the data in an ordered form the only
caveat being running it for a single spin. By varying the factor of sub-sampling
of φ, the horizontal density of the point cloud can be varied. Figure 2 shows
the operational procedure of a spinning Lidar and the resultant point cloud for
an object with multiple surfaces. Please note that not every point during the
sweep is considered for mesh construction as noisy points too close to each other
horizontally produces erroneous normal. Sub-sampling is done to rectify this
error by skipping points uniformly during the spin.

Mesh Construction: The significant novelty of this work is the fast mesh
generation process that enables quick realization of subsequent steps. The mesh
construction is a simultaneous process during the data acquisition stage. The
connections are done during sampling in the following manner. Let a point be
denoted as p(θ, φ, r). Let the range of θ be [θ0, θn] which corresponds to n + 1
vertical sensors in the array; and the range of φ be [φ0, φm] where m + 1 is the
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Fig. 3. (a) A schematic showing the formation of mesh on subsampled (factor 2) cloud
with the neighbour definition of a point and (b) the normal formation from the neigh-
bours

number of times the sensor array is sampled uniformly during a single spin. The
corresponding distance of the point is r from the Lidar sensor. Let the topmost
sensor in the array corresponds to angle θ0 and the count proceeds from top
to bottom the vertically spinning array. Further, let first shot during the spin
corresponds to φ0. The mesh is constructed by joining neighbouring points in
the following manner: p(θi, φj , r) is joined with p(θi+1, φj , r), p(θi+1, φj+1, r) and
p(θi, φj+1, r) for all points within range of [θ0, θn−1] and [φ0, φm−1]. The points
from the last vertical sensor, i.e., corresponding to θn, are joined with the imme-
diate horizontal neighbour. Thus, p(θn, φj , r) is joined with p(θn, φj+1, r) where
j varies from 0 to m − 1. For points corresponding to φm, p(θi, φm, r) is joined
with p(θi, φ0, r), p(θi+1, φ0, r) and p(θi+1, φm, r). The point p(θn, φm, r) is joined
with p(θn, φ0, r) to create the whole cylindrical connected mesh. For all pairs the
joining is done if both the points have an r that is within range of the Lidar. If all
the neighbours of a point is present then six of them are connected by the mesh-
ing technique instead of all eight. This is done to ensure there are no overlapping
surface triangles. Figure 3(a) shows the connectivity a point which have six valid
neighbours on the mesh. The mesh is stored in a map of vectors M = {< p, v >|
p ∈ P, v = {qn | qn ∈ P, n ≤ 6, and qn is a neighbour of p}} where
each point is mapped to the vector v containing its existent neighbors in an
ordered fashion. The computational complexity of the meshing stage in O(nsp)
where nsp is the number of sub-sampled points. As the meshing is performed
on the fly with the sensor spinning the absolute time depends on the angular
frequency and sub-sampling factor.

Normal Estimation: The structured mesh created in the previous step helps
toward a fast computation of normal at a point. A point forms vectors with its
neighbour. Pair of vectors are taken in an ordered fashion. Normal is estimated
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for that point by averaging the resultant vectors formed by cross multiplication
of those pairs. The ordering is performed during the mesh construction stage
only. For a point p(θi, φj , r), vectors are formed with the existing neighbours
as stored in M in an anti-clockwise fashion. A normal can be estimated for p
if its corresponding v has |v| ≥ 2. From the neighbour vector v of p obtained
from M , let p(θi, φj , r) forms A by joining with p(θi+1, φj , r), B by joining with
p(θi+1, φj+1, r), and so on until it forms F by joining with p(θi, φj−1, r). Then
cross- multiplication of existing consecutive vectors is performed. In general, if
every point exists, then A×B, B ×C etc. are computed ending with F ×A to
complete the circle. This arrangement is illustrated in Fig. 3(b). The normal is
estimated by averaging all the î, ĵ, k̂ components of the resultant vectors individ-
ually. The normals are stored in the map N = {< p, n >| p ∈ P, n = {îp, ĵp, k̂p}}.
Due to the inherent nature of the meshing technique, sometime points from dis-
connected objects get connected to the mesh. To mitigate this effect of a differ-
ent surface contributing to the normal estimation, weighted average is used. The
weight of a vector formed by cross multiplication of an ordered pair is inversely
proportional to the sum of lengths of the vectors in the pair.

Algorithm 1. Surface segmentation on normal distribution
L = {< p, l >| p ∈ P, l = 0};
label ← 1, stack S ← {};
for each p ∈ M do

if l = 0 for p in L then
L ←< p, l ← label >;
S.push(p);
while S �= {} do

p ← S.pop();
for each q in v corresponding to p ∈ M do

if l = 0 for q in L then

get îq, ĵq, k̂q for q from N ;

if |îp − îq| < I, |ĵp − ĵq| < J , |k̂p − k̂q| < K then
L ←< q, l ← label >;
S.push(q);

end

end

end

end

else
search next p in M

end

end
Result: L
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Segmentation by Surface Homogeneity: Based on the normal at a point,
as computed in the previous step, we now propagate the surface label. A label
map L = {< p, l >| p ∈ P, l = 0} is used for this purpose. This label map
stores the label of each point p by assigning a label l. If for any point p, its
l = 0 denotes the point is yet to be labelled. The criteria of assigning the
label of p to its neighbour q depends on the absolute difference of their normal
components. Three thresholds I, J,K are empirically set depending on the type
of environment. Segment labelling is propagated by a depth first search approach
as described in algorithm 1. Two neighbouring points will have same label
provided the absolute difference of corresponding components of their normals
are within component-wise threshold. Computations of normals and mesh, as
discussed earlier, generates the normal map N and the mesh M respectively.
Subsequently algorithm 1 uses N and M to label the whole sub-sampled point
cloud in an inductive fashion. Due to sub-sampling, all points in P will not get
a label. This issue is resolved by assigning the label of its nearest labelled point
along the horizontal sweep. An optional post-processing may be arranged by
eliminating segments with too few points.

3 Experiments Results and Analysis

The proposed methodology is implemented with C++ on a linux based sys-
tem with DDR4 8 GB RAM, 7th generation i5 Intel Processor. Experiments
were performed on a synthetic dataset which simulates Lidar point clouds. The
methodology is compared with the standard region growing algorithm used in
point cloud library [15] and a region growing algorithm combined with merging
for organized point cloud data [19] and it is observed that it excels in terms of
both speed and accuracy.

We have used the software “Blensor” [5] to simulate the output of the Velo-
dyne 32E Lidar in a designed environment. Blensor can roughly model the
scenery with the desired sensor parameters. BlenSor also provides an exact mea-
surement ground truth annotated over the model rather than the point cloud.
We have included primitive 3D model structures such as cylinder, sphere, cube,
cone and combined objects placed in different physically possible orientations in
the scene to simulate the real environment. Different percentage of occlusion and
crowding levels is included in the model environment to test out the property
of scene complexity independence, of the proposed solution. We have a total
of 32 different environments with increasing order of different types of objects,
occlusion, complexity of geometry and pose, and crowding levels. We have used
Gaussian noise as our noise model for Lidar with zero mean and variance of 0.01.
With Velodyne 32E Lidar the total number of sensors in the spinning array is
32 and a resolution of 0.2 degree is set for horizontal sweep resulting in 1800
sensor firing in one spin. Thus for our dataset the range of θ and φ are [θ0, θ31]
and [φ0, φ1799]. The output at different stages of our methodology is shown in
Fig. 4.
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Fig. 4. (a) Synthetic scene with scanned point cloud overlayed (b) Point cloud with
distance color coded from blue(least) to red(highest) (c) Mesh and normals with sub-
sampling factor of 5 (d) Point cloud segment surface ground truth (e) A detailed look
at the mesh and normals (f) Segmented point cloud by proposed methodology (Color
figure online)

Table 1. Comparison of execution times (all units in milliseconds) of different com-
peting methods.

Method Sampling
interval

Average time
(in ms)

Max time
(in ms)

Min time
(in ms)

Proposed method 5 54.33 63 41

10 35.06 48 28

15 25.53 32 20

Region growing [15] 275.13 1507 134

Region growing with merging [19] 368.46 1691 129

Performance of Proposed Methodology: The input scene and point cloud
along with the output at different stages are given in Fig. 4. It should be men-
tioned that the different colors of the mesh are due to separation of ground plane
on the basis of normal and is rendered for better visualization only. Performance
is evaluated using the precision-recall and f1 score metric. As the segments may
lack semantic labels, edge based comparisons were performed with overlapping
of dilated edge points with ground-truths. We vary the sampling interval from
5 to 15 in steps of 5, as a sampling interval of 5 corresponds to 1 degree of
sweep of the Lidar. The thresholds for checking normal homogeneity are kept at
< î, ĵ, k̂ >=< 0.2, 0.2, 0.2 >. These values are determined empirically for scenes
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Table 2. Comparison of accuracy of different competing methods

Method Sampling
interval

Average
F1 score

Average
precision

Average
recall

Proposed method 5 0.7406 0.7616 0.7224

10 0.7147 0.7330 0.6998

15 0.6910 0.7190 0.6673

Region growing [15] 0.3509 0.4752 0.2804

Region growing with merging [19] 0.3614 0.3849 0.3430

with standard objects on a flat surface. Our methodology is compared with [15]
and [19]. The tuning parameters of the methods are kept at default settings.
Table 1 shows the execution times for different methods and clearly reveals that
the proposed method is much faster. In Table 2, we present the accuracy values
for the competing approaches. This table indicates that our solution is much
more accurate. Overall, the results demonstrate that we are successful in pro-
viding a fast yet accurate solution to this complex problem.

4 Conclusion

In this work we have presented an unsupervised surface segmentation algorithm
which is fast, accurate and robust to noise, occlusion and different orientations
of the surface with respect to the Lidar. This work serves as the first step for
mapping environments with geometric primitive modelling in SLAM applications
for unmanned ground vehicles. In future, supervised classifier can be utilized for
segment formation on data collected by Lidar on a real environment. Thereafter,
the surface segments will enable the model generation of 3D objects.
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