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Abstract. Work-over Rig Scheduling Problem (WRSP) is a well known
challenge in oil & gas industry. Given the limited number of work-over
rigs to cater to the maintenance needs of a large number of wells, the
challenge lies in planning an optimum schedule that minimizes the over-
all production loss. In this work, we propose a new Aggregated Rank
Removal Heuristic (ARRH) applied to Adaptive Large Neighborhood
Search to solve WRSP. The proposed approach results in more efficient
searches as compared to existing heuristics - Genetic Algorithm, Variable
Neighborhood Search and Adaptive Large Neighborhood Search.

1 Introduction

Oil wells require various maintenance services from time to time. Work-over rigs
are specialized mobile units that are designed to carry out these maintenance
activities. However rigs are expensive units and hence limited in number. The
wells that require maintenance, wait in queue for a rig to visit them and carry-out
the needed work-over, all the while remaining idle and resulting in production
loss. Hence, there is a need to generate an optimum maintenance schedule that
minimizes the production loss. The problem of optimizing schedule for work-over
rigs is combinatorial optimization problem with constraints and belongs to the
NP-Hard difficulty. As the number of wells to be serviced increases, the size of
the problem increases exponentially which can cause the execution times of these
searches to go beyond an acceptable time.

The Work-over Rig Scheduling Problem (WRSP) can be seen as a type of
the Vehicle Routing Problem (VRP) [3,10] but with the objective to minimize
the waiting time for the wells multiplied by the production loss. There have been
several solutions proposed for solving the WRSP using various heuristics which
has been summarized in [7]. Aloise et al. [1] employed Variable Neighborhood
Search (VNS) heuristic to solve WRSP. Ribeiro et al. [8] compares between three
meta heuristics, Iterated local search (ILS), Clustering search (CS) and Adaptive
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large neighborhood search (ALNS). Clustering search proceeds by assigning the
solutions obtained by the search to various clusters based on minimum hamming
distance. The authors claim that the best results were obtained with ALNS.

Several recent works [4–6,9] deals with Capacitated Cumulative Vehicle
Routing Problem (CCVRP) which shares a close analogy with WRSP. Ngueveua
et al. [6] is the first to formulate CCVRP, draw insights into why CCVRP is
tougher than CVRP and uses Memetic Algorithm (Genetic Algorithm (GA)
supported with local search) to solve it. Lysgaard et al. [5] uses the Branch-and-
Cut-and-Price algorithm to solve CCVRP. Sze et al. [9] and Liu et al. [4] proposes
hybrids of the Large Neighborhood Search to solve CCVRP and highlights the
robustness and efficiency of the approach.

Since ALNS is one of the state of the art algorithms for solving WRSP, our
work focuses on improving ALNS for achieving better solutions in a quicker time.
The key contribution of this paper is a new Aggregated Rank Removal Heuristic
(ARRH) based ALNS to solve the WRSP. We compare the proposed ARRH
based ALNS with existing ALNS to show the performance benefits in terms of
production loss.

2 Problem Definition

In this section, the work-over rig scheduling problem (WRSP) and its constraints
is formulated mathematically. Different wells require different levels of mainte-
nance which can only be serviced by a rig having a equal or higher level work-over
capability. To model WRSP, it is assumed that we know before hand the wells
that require work-over, their production loss and various travel times between
the wells. A good model of the problem and its constraints has been provided
by Ribeiro et al. [8], which has been used in our work.

Let W be the set of wells to be scheduled and K be the set of available
rigs. Every schedule s is an association of each rig k ∈ K to a directed graph,
Gk = (V k, Ak), where V k is the set of nodes and Ak is the set of arcs. Let W k be
the set of wells assigned to rig k then V k = W k ∪ {ok, zk}, where ok is the node
representing the starting position of rig k, k ∈ K, zk is the node representing
the ending position of rig k, k ∈ K. Every arc (i, j) ∈ Ak is characterized by a
time duration cij = eij +dj , where eij is the travel time between nodes i and j ,
i, j ∈ W ∪k∈K {ok} and dj is the duration of the maintenance (work-over time)
required by node j, j ∈ W . In case of missing paths between any two nodes,
travel time will be calculated as the minimum spanning time with one or more
intermediate nodes.

We assume dummy arcs (i, zk), i ∈ W k with zero duration. Also i ∈ W k ∪
{ok} & j ∈ W k ∀(i, j) ∈ Ak.

To denote the presence or absence of an edge (i, j) in schedule of rig k we
use a binary variable yk

ij as given by Eq. 1.

yk
ij =

{
1 if (i, j) ∈ Ak,

0 otherwise.
(1)
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We now formulate xj(s), the time waited by the node j in the queue for the
maintenance to begin in schedule s, using Eq. 2.

for s s.t j ∈ Ak, xj(s) =

{
eokj if yk

okj
= 1

xi(s) + di + eij if yk
okj

= 0 and yk
ij = 1

(2)

Objective Function: The objective function Ψ to be minimized is given by
Eq. 3.

Ψ(s | s � Gk, k ∈ K) =
∑
k∈K

∑
j∈Wk

(xj + dj)pj (3)

where, pj is the oil production rate of node j, j ∈ W .

Constraints

1. All wells demanding maintenance must be present in the combined schedule
of all rigs. That is W =

∑
k∈K ∪W k.

2. Each well is visited exactly once in the combined schedule of all rigs.∑
k∈K

∑
j:(i,j)∈Ak

yk
ij = 1, i ∈ W (4)

3. The classic network flow constraints are modeled as.∑
j:(ok,j)∈Ak

yk
okj

=
∑

i:(i,zk)∈Ak

yk
izk

= 1, k ∈ K (5)

∑
j:(i,j)∈Ak

yk
ij −

∑
j:(j,i)∈Ak

yk
ji = 0, k ∈ K, i ∈ W k (6)

4. Level Constraint: Level constraint is modeled to make sure that wells are
visited by those rigs that are equipped to serve the level of maintenance
demanded.

qk ≥ lj ∀ j : (j, i) ∈ Ak, k ∈ K (7)

where, lj is the level of maintenance request at node j, j ∈ W and qk is the
maximum level of maintenance request that can be attended by rig k.

3 Algorithms

3.1 Genetic Algorithm Supported Variable Neighborhood Search
(VNS+GA)

We provide below a brief description of the implemented GA and VNS Algo-
rithms along with the hybrid GA supported VNS.
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Genetic Algorithm. The initial population was created by means of iteration
through each rig multiple times appending a random well (not yet assigned), to
its schedule till all requests for maintenance were met by the schedule.

Crossover- In this work, to cross between two schedules the following app-
roach was used.
Let PA, PB denote the individuals to be crossed.

1. All wells that belong outside crossover point is removed from PA to form
PA′.

2. All wells that are in PA′ are eliminated from PB forms PB’.
3. Concatenation of PB′ to PA′ retaining the structure gives child C.

Mutation- In this work, mutation implements two variation in the child. A ran-
dom interchange of wells within the schedule of a rig and a random well being
shifted from one rig’s schedule to another. The number of children to be mutated
are given by a user defined parameter τ . Mating Pool- In this work the method
of Roulette wheel selection [2] is used. The number of children is given by a user
defined parameter nchild.

Variable Neighborhood Search (VNS). Our attempt to solve the WRSP
using VNS was inspired and extends the work of Aloise et al. [1] which employed
VNS heuristic to solve WRSP. The VNS framework adopts a recursive search
involving an exhaustive search of local neighborhoods and a random search of
global neighborhoods (a neighborhood is a set of possible schedules that are
similar to a given schedule in some way).

For a given schedule its neighborhoods are generated using the following
operations

1. Swap Wells from Same Work-over rig (SWSW ): In the given schedule, swap
two wells assigned to same rig.

2. Swap Wells from Different Work-over rigs (SWDW): In the given schedule,
two wells assigned to two different rigs respectively are interchanged.

3. Add Drop (AD): In the given schedule, a well assignment to one rig is dropped
and it the well is assigned to another rig.

The local neighborhoods considered are SWSW, SWDW and AD. The global
neighborhoods are SWSW done twice and thrice, SWDW done twice and thrice
and the AD done twice and thrice.

Genetic Algorithm Supported Variable Neighborhood Search. In
Genetic Algorithm Supported Variable Neighborhood Search a GA is employed
by the VNS heuristic to carry out its local search routine. From the current
schedule several solutions in the neighborhood defined by the VNS are created
and these solutions become the initial population of GA. The idea here is to
remove the in-efficient exhaustive search and replace it by the much faster GA.
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3.2 Proposed ARRH Based ALNS

In this section, we first briefly describe the existing ALNS implementation, and
then present our proposed ARRH based ALNS.

Adaptive Large Neighbourhood Search (ALNS). Our work is inspired
from and extends the work of Ribeiro et al. [8] which highlights the superiority
of ALNS. Below we provide a brief description of ALNS, a detailed view is
available in Ribeiro et al. [8]. ALNS proceeds by destroying a part of the existing
solution and recreating it. In each iteration it removes a certain number wells
from the schedule and then inserts it back into better positions. For this purpose,
it employs various insertion and removal heuristics. The probability of selection
of a removal or insertion heuristics depends on its past performance in the search.

Objective Function- The objective function in ALNS is modified to add an
additional term λ for the broken level constraints. Here λ is a user defined
parameter.

The Proposed Aggregated Rank Removal Heuristic Based ALNS.
Aggregated Rank Removal Heuristic (ARRH) which is proposed to replace
the Worst Removal Heuristic (WRH) in ALNS. The general idea here is that
although ALNS is selecting wells based on travel times and production losses
using separate methods, such methods lack the power to make unbiased identi-
fication of opportunities that arise due to a combination of these factors. The
ARRH is designed to solve two shortcomings of the WRH as given below.

1. Bias Factor - For optimization, the general idea behind removal heuristics
is to remove those wells that has an opportunity to be placed in a better
position. However, evaluating the wells solely based on loss has a tendency to
give more preference to those wells that have higher production rate. Similarly
large wait times can also occur from wells with large work-over time or a well
isolated from others, inducing a large travel time. Hence larger production
loss doesn’t always imply the presence of an opportunity for the well to be
placed in a better position.

2. Masking Factor - The WRH takes into consideration of the contribution to
production loss only. A well’s contribution to over all production loss is driven
not only by its own maintenance requirement but also because of the previous
wells that make the well under consideration to wait for its turn. However
these other wells’ contributions are masked in WRH.

Proposed ARRH- The proposed approach, Aggregated Rank Removal
Heuristic (ARRH) works on ranked values of (a) production loss, (b) travel
times and (c) work-over time. Ranked values corresponding to each metric is
created by ordering the wells in the increasing order of the metric. Then a dis-
crete set of ordered values ranging from 0 to 1 of equal spacing is created and
assigned to the wells as their ranked value of the metric. Ranking the metric in
such fashion will help identify opportunities for a better solution without bias.



390 N. Shaji et al.

Henceforth, in this paper, the ranked values of travel times, work-over time, pro-
duction rate and ratio of production rate to work-over time will be represented
by êi,j , d̂j , p̂j and r̂j respectively. Scoring - Scoring the well based on multiple
criteria can help pinpoint the cause of the increased production loss. ARRH
removes wells with the highest scores. In this work, three criteria have been used
to determine the goodness of a solution.

– Suffocation - If any rig is overloaded with many wells with high production
losses and large work-over times no matter the ordering, the wells assigned
to the rig will face large production losses, indicating that some of the wells
assigned to the rig needs to be removed and placed in the schedule of another
rig. The suffocation coefficient for a rig is calculated by Eq. 8.

Γ (k) =
∑

j∈Wk

p̂j + d̂j (8)

– Ordering - Ordering criterion measures how the wells are ordered in the sched-
ule of a rig. It follows the same criteria as described in Bassi et al. [11]. The
ordering coefficient for a rig is calculated by Eq. 9.

ζ(k) =
4

n(n + 1)

∑
j∈Wk

i r̂j (9)

Where i = 0, . . ., n is the numbering of wells in schedule of rig r.
– Travel-time - The suffocation and ordering criteria deals with the distribution

and arrangement of rigs based on p̂j and d̂j . An optimization based only on
these criteria alone may lead to coupling between wells that are far apart
and induce large travel times rendering the entire procedure in-feasible. The
travel time criterion mitigates this by evaluating the travel times at the edges
of each well. The travel time coefficient is given by the Eq. 10.

ξ(i) =

⎧⎪⎨
⎪⎩

2 ˆei,i+1 if yoki = 1
2 ˆei,i−1 if yizk = 1

ˆei,i+1 + ˆei,i−1 Otherwise

(10)

Where i ∈ W k and (i, i + 1), (i − 1, i) ∈ Ak

In order to give an equal importance to all criteria, the coefficients by the design
of the equations are set to vary between 0 and 2.

The criteria mentioned above reflects on some trends we want to see in the
schedule however, they are not mutually exclusive. A schedule that is suitable to
one criteria need not suit another. Therefore there is a need to strike a balance
between them using stochastic aggregation.

In ARRH wells are removed based on a score given by Eq. 11.

s(i) = xΓ (k|i ∈ k) + yξ(i) + zζ(k|i ∈ k) (11)
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where i is the well,
r is the rig to which i belongs in the current solution,
x, y, z are random numbers between 0.8 and 1.

A time complexity comparison between ARRH and WRH shows that they
both have similar average time complexities O(|W |2), where |W | is the number
of wells that needs to be serviced. Note that that time complexity for both the
heuristics is not dependent on the number of rigs.

4 Results

4.1 Experimental Setup

The data used to create different instances of the problem were created using
random simulations. All algorithms were implemented using python 3, on a
Windows 10 Enterprise 64 Bit system with Intel(R)Core(TM) i7-8650U CPU
@ 1.90 GHz and available physical memory of 9.82 GB. For readability and ease
of comparison all losses reported are scaled down by a factor of 5000.

The parameters were created as:

– Production loss (pj)- Production loss of each well is sampled from a uniform
distribution ranging from 20 to 60.

– Work-over times (dj)- Work-over times were sampled from a uniform distri-
bution ranging from 20 to 80.

– Travel times (ei,j)- x and y co-ordinates were sampled from a uniform distri-
bution ranging from 0 to 100. Travel times were calculated as the euclidean
distance between two points.

4.2 A Brief Comparison of GA, VNS+GA and ALNS

All three algorithms were tried to solve an instance where VNS failed to deliver
results in a feasible time. That is, for 50 wells and 10 Rigs, VNS gave a loss
of 78.8956 for an epoch taking 9138 s. Hence we had an estimated 130 h for 50
epochs. For 5 runs, ALNS, VNS+GA and GA gave 70.04, 78.23, 110.51 average
losses respectively, for a run time of 2000 seconds. The parameters used for the
algorithm are given in Table. 1. The Fig. 1(a) compares the production loss with
respect to the run time of these three algorithms.

4.3 Comparison of ALNS Vs ARRH Based ALNS

ALNS and ARRH based ALNS were compared for 18 instances and the results
are tabulated in Table. 2. All instances were run 5 times repeatedly to decrease
the uncertainty in the result. The entries made into the table are:

– Instance: Specifies the instance, the n/m notation stands for n wells and m
rigs.
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Table 1. User defined parameters

Heuristic Symbol Meaning Value

GA npop Population Size 700

nchild Number of Children 600

τ Rate of Mutation 13

VNS+GA npop Population Size 20

nchild Number of Children 16

τ Rate of Mutation 2

ALNS and M ALNS ε Controls Number of wells removed 0.4

φ Number of iterations in a segment 50

λ Penalizes broken level constraints 15

ν Avoids determinism in Shaw removal heuristics 2

Φ Avoids determinism in Route removal heuristic 3

ρ Avoids determinism in Worst removal heuristic 2

Tstart Starting temperature in Simulated Annealing 15

c Temperature reduction factor 0.995

(a) Comparison between ALNS, GA
supported VNS and GA.

(b) Comparison between ALNS and
ARRH based ALNS

Fig. 1. Loss vs time comparison

– Time: To be fair both algorithms were run for the same time for an instance
and is mentioned in the table in seconds.

– Average Loss: Gives the average loss over 5 times.
– Best: Gives the best-found solution from the 5 times.
– Deviation: Here deviation is defined as AverageLoss−Best

Best × 100.

Figure 1 provides a comparison between ALNS and proposed ARRH based
ALNS. As seen from the graph, proposed ARRH based ALNS results in improve-
ment in production losses as compared to ALNS for the same run time. Further if
there is a benchmark of production losses ARRH based ALNS is able to achieve
it faster.
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Table 2. ALNS Vs ARRH based ALNS

Instance Time (s) ALNS ARRH based ALNS

Average Deviation Best Average Deviation Best

50/5(1) 250 123.44 1.59 121.47 119.53 1.69 117.50

50/5(2) 250 126.12 3.53 121.66 123.46 2.10 120.86

50/5(3) 250 139.07 1.86 136.47 132.12 5.22 125.22

50/10(1) 250 74.91 3.63 72.19 73.48 1.97 72.03

50/10(2) 250 78.23 3.50 75.49 74.65 1.55 73.49

50/10(3) 250 77.45 4.78 73.75 73.95 2.71 71.94

100/5(1) 3600 494.75 1.31 488.24 472.08 2.39 460.78

100/5(2) 3600 450.97 2.22 440.94 442.14 1.19 436.86

100/5(3) 3600 395.22 3.18 382.63 390.52 3.51 376.81

100/10(1) 3600 246.63 1.80 242.17 236.45 1.53 232.83

100/10(2) 3600 260.58 0.73 258.65 257.27 0.99 254.70

100/10(3) 3600 236.34 1.17 233.57 231.89 0.68 230.29

ALNS and ARRH based ALNS were also compared using Manhattan dis-
tance to calculate distance between the wells. The results were collected for 5
instances of 20 and 30 wells each and ARRH based ALNS was found to give
an average improvement of 2.14 % over ALNS. This insight is similar to results
obtained from euclidean distance, hence the approach is robust to various dis-
tance metrics.

5 Conclusion

The Workover Rig Scheduling Problem (WRSP) has been addressed to improve
the production losses of the well. We presented the implementation of the Genetic
Algorithm based Variable Neighborhood Search algorithm for the same problem.
This combination had a significant improvement than both GA and VNS imple-
mentations. However, GA based VNS was not found to be superior than existing
Adaptive Large Neighborhood based (ALNS) approach. In this paper, a new
heuristic - Aggregated Rank Removal Heuristic (ARRH) had been proposed to
be implemented with the existing Adaptive Large Neighborhood Search (ALNS)
algorithm for WRSP. The proposed ARRH is based on the utility of rank-based
methods to make unbiased judgments about the schedules. The results indicates
that this proposed approach results in the lower production losses than ALNS
approach for equal run times. In this work, a removal heuristic was designed
and used on the basis of ranking. In future we aim to introduce a rank based
insertion heuristic as well.
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