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Abstract. Graph based analysis of Evolutionary Algorithms (EAs),
though having received little attention, is a propitious method of anal-
ysis for the understanding of EA behavior. However, apart from mere
proposals in literature, the graph model(s) of EAs have not been aptly
demonstrated of their full potential. This paper presents a critical anal-
ysis of an existing prominent graph model of EAs. The comprehensive
analysis involved modelling as graphs, the interactions within Differen-
tial Evolution (DE) algorithms (DE/rand/1/bin and DE/best/1/bin by
way of example), while solving CEC2005 benchmark functions. Subse-
quently, the graph-theoretic measures- degree centrality, clustering coef-
ficient, betweenness centrality and closeness centrality- were deployed to
investigate the potential of graph model in providing insights about EA
dynamics. However, the model falls short in providing useful insights
about the DE runs. The observed insights were qualitative in nature and
not competitive compared to empirical analysis. This indicates the need
for considerable research attention in designing robust graph models.

Keywords: Evolutionary algorithm dynamics · Graph-based analysis ·
Differential evolution · Graph model

1 Introduction

Evolutionary Computation (EC) is primarily concerned with the design and
analysis of robust search algorithms, called Evolutionary Algorithms (EAs),
modelled after natural evolution. Besides robustness, EAs stochastically exhibit
complex population dynamics, which renders them difficult to comprehend and
be harnessed. Empirical [5], theoretical [6] and visual [7] analyses are the means
by which research efforts are being undertaken to comprehend the dynamics and
behavior of EAs. Few research works have attempted to represent and visualize
interactions within EAs as graphs. However, these works have merely proposed
several graph-theoretic measures to analyze EA dynamics, without appropriate
validation.
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The first research on graph-based analysis of EAs was presented in [12].
Ivan Zelinka et al. [15] modelled Differential Evolution (DE) and Self-Organizing
Migrating Algorithm (SOMA) as graphs and this idea was extended, with little
or no modification, to Differential Evolution (DE) [2,8,9] and Particle Swarm
Optimization (PSO) [8]. Various properties of graph that could provide insights
into EA dynamics were suggested in [2,8], and are summarized in Table 1. In all
these works, several graph-theoretic measures were mapped to some EA dynam-
ics/property, but lacked appropriate validation of these mappings.

Table 1. Graph measures and possible insights about EAs [2,8]

Graph measures Insights about EA dynamics

Degree centrality To identify premature convergence or stagnation
in an EA run

Clustering coefficient To show the population diversity

Betweenness centrality Incidentally, the node having the highest
betweenness and the best fitness are the same

Closeness centrality A measure of rate of distribution of information in
the graph (as well in population)

Clique For general subgraph analysis

k-Club and k-Clan To isolate individuals which are redundant

This paper presents critical analysis of a prominent graph model, proposed
in [15], and applied in [2,8,9,14]. The in-depth analysis involves modelling the
interactions within DE/rand/1/bin and DE/best/1/bin algorithms as graphs,
while solving CEC2005 benchmark functions [10]. Subsequent to modelling, the
graph-theoretic measures- degree centrality, clustering coefficient, betweenness
centrality and closeness centrality- are employed to investigate the potential of
the graph model in understanding EA dynamics. The remaining sections of this
paper are structured as follows: Sect. 2 outlines the prominent graph model from
the literature, in the context of DE algorithm. Section 3 explains the experi-
mental design. Section 4 presents the simulation results and analysis. Section 5
concludes this work with suggestions on future studies.

2 Graph Model for DE

Differential Evolution is a simple, robust evolutionary algorithm, primarily
applied for continuous optimization problems. For each target vector in the
DE population, three random solutions, in the population, interact to create
a mutant vector, which in turn undergoes crossover with the corresponding tar-
get vector to create a trial vector. In graph creation, the identified graph model
focuses on these individuals, except the transitory mutant vector. The graph cre-
ation has been explained in Algorithm 1 (for DE/rand/1/bin) and Fig. 1 shows
an example for the same.
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Since the number of vertices is always the population size (N), a new trial
vector in the next generation gets represented by the same vertex that used to
represent its corresponding target vector in a previous generation. Thus, vertices
in the graph cannot be related directly to individuals, instead can be interpreted
as place holders, for individuals in newer evolving populations. The graph model,
described in this section, attempts to effectively capture the interactions within
a typical DE algorithm. However the potential of this graph model has not been
amply demonstrated in respective literature.

Algorithm 1. Algorithm for creating graph of a DE run
1: Initialize the population with N randomly generated solutions (called target vec-

tors): X1, X2, .. XN , each with dimension, D
2: Calculate the fitness of the N solutions
3: for gen = 1 to Maxgen do
4: for i = 1 to N do
5: Select 3 distinct random vectors Xr1 , Xr2 , Xr3 for Xi

6: Create mutant vector Vi using differential mutation
7: Create trial vector Ui using binomial crossover between Xi and Vi

8: if fitness(Ui) is better than fitness(Xi) then
9: Create vertices for Xr1 , Xr2 , Xr3 , Xi if they do not exist

10: Create edges from Xr1 , Xr2 , Xr3 to Xi with weight 1 if they do not exist
11: Add 1 to the edge weights of edges from Xr1 , Xr2 , Xr3 to Xi if they already

exist
12: end if
13: end for
14: for i = 1 to N do
15: Replace Xi with Ui if fitness(Ui) ≤ fitness(Xi)
16: Represent Ui by the same vertex that represented Xi

17: end for
18: end for

3 Experimental Design

The critical evaluation of the graph model, outlined in the previous section, calls
for a rigorous, systematic empirical analysis. Towards this, DE/rand/1/bin and
DE/best/1/bin algorithms were used to optimize 25 functions from the CEC2005
benchmark suite [10]. The following parameters were used during the simula-
tions: N = 50, D = 10, F = 0.4, Cr = 0.5 and Maxgen= 5000. 30 runs were exe-
cuted, for each function in the benchmark suite, using both the algorithms. The
graph creation algorithm, described in Algorithm 1, was used to create directed
weighted graphs, for each run-function-algorithm in the benchmark suite. The
following four prominent graph theoretic measures (refer Table 1), proposed in
the literature, have been employed for graph analysis.
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(a) In generation 1, vectors X2,
X3, X4 improves X1. Let the bet-
ter offspring be X

′
1

(b) In generation 2, X
′
1 occupies the

position of X1. Vectors X3, X4, X5

improves X
′
1

Fig. 1. An example for graph creation during DE run with the considered graph model

1. Degree Centrality: Since the average indegree of vertices in a graph is equal to
the average outdegree, we limit our focus to the indegree of vertices. Indegree
of a vertex in a directed weighted graph is the sum of edge weights coming
into that vertex [13].

indeg(u) =
∑

v∈V −{u}
wvu (1)

where V is the set of vertices, and wvu is the weight of the edge vu repre-
senting the number of times the individual at vertex v helped to improve the
individual at vertex u.

2. Clustering Coefficient: The local clustering coefficient of a vertex, in a
weighted directed graph, is computed using the following equation [3]:
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where, i, j and k are three distinct vertices, di
tot is the total degree of vertex

i, di
bidir is the number of bidirectional edges at vertex i.

3. Betweenness Centrality: The betweenness centrality of a vertex, in a weighted
directed graph, is calculated by the following equation [4]:

betw(i) = (
∑ σi

uv

σuv
) × 1

(N − 1)(N − 2)
(3)

where, u, v and i are three distinct vertices, σi
uv is the count of shortest paths

between u and v through i, σuv is the count of shortest paths between u and
v, and N is the number of vertices in the graph.

4. Closeness Centrality: The closeness centrality of a vertex, in a weighted
directed graph, is computed by the following equation [1]:

close(i) =
|R(i)|
N − 1

× |R(i)|∑
u∈R(i)

d(i, u)
(4)
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where, R(i) is the set of vertices reachable from vertex i, N is the number of
vertices in the graph, |R(i)|

N−1 is the normalization for closeness centrality, and
d(i, u) is the shortest distance from i to u.

4 Simulation Results and Analysis

The four identified graph theoretic measures were computed, for every graph
generated per run of DE/best/1/bin and DE/rand/1/bin, while solving CEC2005
functions. The results were plotted across the number of generations. Based on
these plotted results, the analysis, are presented below, for each of the four graph
measures. In all the following figures, showing the plots for 30 runs, red color
solid lines represent convergence, cyan color dashed lines represent premature
convergence and magenta color dashed-dotted lines represent stagnation. Due
to space limitations, the plots in this section have been organized to show few
patterns of growth for each graph measure. It is also worth pointing out that
though each pattern of growth is shown for only one function, the remaining
functions also displayed patterns similar to the ones presented here.

4.1 Degree Centrality

The degree centrality analysis has been proposed, in the literature, to observe
the premature convergence or stagnation, in an evolutionary run (refer Table 1).
Figure 2 shows runs of F15 with DE/rand/1/bin, which resulted in convergence
and premature convergence. Figure 3 shows runs of F25, which resulted in pre-
mature convergence and stagnation. We can see that the state of the DE run
(whether it is convergence/premature convergence/stagnation) is not completely
distinguishable from the figures. As it happens with a typical EA run, initial
generations are marked by faster fitness improvements followed by a long slower
improvement phase. As long as there are fitness improvements in the population,
edges are formed between vertices contributing to indegree growth. The indegree
growth stops if the population gets into convergence/premature convergence as
a single (global/local) solution dominates and takes over the population mak-
ing it to lose diversity in subsequent generations. The indegree growth may also
stop if there is stagnation where the population is still diverse but unable to
evolve further. Figure 4 shows the average fitness (of single run) plotted against
indegree growth, for the function F15. A quick comparison reveals that degree
centrality based graph analysis do not offer advantage over average fitness and
observing the latter in few past generations is suffice between the two to sense
premature convergence/stagnation.
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Fig. 2. Average indegree for 30 runs of
F15 for DE/rand/1/bin

Fig. 3. Average indegree for 30 runs of
F25 for DE/rand/1/bin

Fig. 4. Average indegree and Average fitness of F15 for DE/rand/1/bin

4.2 Clustering Coefficient

It is suggested in the literature (refer Table 1) that clustering coefficient shall
be used to get insights about population diversity. Figure 5 shows the average
weighted clustering coefficient for 30 runs of F14 plotted against generations for
DE/best/1/bin. As the population evolves over generations, the edge weights in
the neighborhood of nodes increases, thereby increasing the average weighted
clustering coefficient. The successful evolution of a population also correlates
with gradual loss of its diversity. This inverse relationship can be observed in
Fig. 6 (diversity calculated using P-measure [11]). The population diversity, when
measured directly and used effectively, is potential enough to serve as an effective
means to understand the dynamics of an EA run.

4.3 Betweenness Centrality

It has been commented in the literature (refer Table 1) that the node having the
highest betweenness incidentally has the best fitness. We observed that quite
often there was no such correlation. In case of the underlying graph model a
node is more like a place holder! The increased contribution of a node, towards
the improvement of another node, is captured by increasing the weight of the
edge between them. On the contrary, the betweenness centrality, which calcu-
lates shortest path, favors the nodes with lesser edge weights. The undertaken
graph model does not address this conflict. The above observation extends to the
closeness centrality measure too. Since this work is intended to analyze the graph
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Fig. 5. Average weighted clustering
coefficient of F14 for DE/best/1/bin

Fig. 6. Average weighted clustering
coefficient and population diversity of
F14 for DE/best/1/bin

Fig. 7. Average betweenness centrality
for 30 runs of F8 for DE/rand/1/bin

Fig. 8. Average betweenness centrality
for 30 runs of F15 for DE/rand/1/bin

model as is, we proceeded with betweenness centrality and closeness centrality
calculations. Figures 7 and 8 show the average betweenness centrality plotted
against generations for F8 and F15 solved by DE/rand/1/bin. At the beginning,
edges are added between nodes leading to increased betweenness values. When
the graph becomes more and more complete during evolution, the betweenness
centrality reduces and then stabilizes.

4.4 Closeness Centrality

Closeness centrality, in literature, has been proposed as a measure of rate of
distribution of information in the population (refer Table 1). Figure 9 shows as
an example, the cumulative closeness centrality for each node in the graph, at the
end of 5000 generations for F1 solved by DE/best/1/bin. It can be observed from
the figures that there are nodes which have displayed very active contribution
in evolution while there are also quite a few nodes which have not contributed
much in the improvement of other nodes. The concept of nodes as place holder
makes this observation not so worthwhile. The behavior of cumulative closeness
of all the N nodes over 5000 generations is shown in Fig. 10. Being cumulative,
it just increases over generations.



372 M. T. Indu et al.

Fig. 9. Cumulative closeness of each
node at the end of one run of F1 for
DE/best/1/bin

Fig. 10. Cumulative closeness of all
nodes over generations during one run
of F1 for DE/best/1/bin

5 Conclusion

This paper presented a critical analysis of an existing prominent graph model of
EAs. Graph theoretic analysis of EAs could be used to verify the empirical and
theoretical analyses’ about EAs and also to complement them in understanding
those algorithms. This also offers the prospect of controlling the dynamics of
EAs, so as to improve the efficacy of EAs leading to better and robust designs.
However the potential of graph based analysis of EAs largely rests with the
underlying graph model. The graph model, analyzed in this paper, represents N
individuals in the population as N vertices in the graph. Since the number of
vertices remain the same, even as the population evolves, the vertices represent
the descendants of each individual in the initial population. Nodes in the graph
serve as place holders for individuals. While this modelling abstraction attempts
to capture interactions within DE, in a cumulative sense, it certainly limits
analysis, because apart from interactions, the evolution of population is also a
critical factor in understanding EAs.

In case of degree centrality, the analysis did seem to provide only a coarse
insight about the convergence of EA runs. Statistical analysis of DE runs could
very well provide better insights into convergence. Since the clustering coeffi-
cient of the modelled graph displayed an inverse relationship with population
diversity, the latter could serve as an effective means to understand the dynam-
ics of an EA run. The betweenness centrality and closeness centrality measures
did not seem to provide any valuable insights about DE runs. It is felt that the
inability of prominent graph properties to provide any worthwhile insight is by
virtue of the adopted graph model, whose potential is largely determined by
its very modelling process. Since graph based analysis of EAs is a prospective
method of analysis, complementing empirical and theoretical analyses, designing
effective graph model of EAs are perceived to be the major attention for future
investigations.
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