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Abstract. Steganography is an ancient art of communicating a secret
message through an innocent-looking image. On the other hand, ste-
ganalysis is the counter process of the steganography, which targets to
detect hidden trace within a given image. In this paper, a new approach
to steganalysis is presented to learn prominent features and avoid loss of
stego signals. The proposed model uses diverse sized filters to capture all
useful steganalytic features through a densely connected convolutional
network. Moreover, there is no fully connected network in the proposed
model, which allows testing any size of images regardless of the image
size used for training. To justify the applicability of the proposed scheme,
it has been shown experimentally that the proposed scheme outperforms
most of the related state-of-the-art methods.
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Network - DenseNet

1 Introduction

Steganography is the process of concealing secret information within an ordinary
image. The image which is used for hiding the secret information is called a cover
image. The image after embedding a secret message is known as a stego image.
Steganography can be categorized into two types- (1) Spatial domain and (2)
Transform domain steganography. The spatial domain steganography hides the
secret by modifying the pixels of the cover image. The DCT domain steganogra-
phy conceals the secret message within the DCT coefficients [1] of the image. One
of the traditional steganography schemes such as LSB replacement [20] hides the
secret information in the least significant bits (LSB) of the image pixels. Modern
steganography schemes such as HUGO [15], wow [5], SSUNIWARD [6] hides a
secret message by minimizing some heuristically defined distortion function. The
distortion function assigns a high cost when embedding in the smooth regions
in the image whereas a low cost to the noisy areas of the image.
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Steganalysis is the process of detecting the trace of the hidden message in the
given image. Steganalysis can be broadly divided into two types: (1) Blind and
(2) Targeted steganalysis. Blind steganalysis detects the embedding in the image
without knowing the steganographic algorithm used for embedding. The Tar-
gated steganalysis utilizes the knowledge of the steganographic scheme used for
embedding. Steganalysis methods work in two stages. In the first stage, features
are extracted using some tools, and in the second stage, classification is done
based on the extracted features. The distortion function based recent stegano-
graphic schemes are more likely to distribute the secret message in the noisy
or high textured area of the image than the flat areas. Therefore, the steganal-
ysis schemes assume that the steganographic noise lies in the high-frequency
components of the source image, thereby, strive to capture these feature for
steganalysis.

2 Related Works

A lot of steganalysis works have been reported in the literature. These works
can be broadly categorized into two types: (1) Handcrafted feature based and
(2) Deep feature based steganalysis.

The conventional handcrafted feature based methods use some fixed hand-
crafted filters to extract the steganalytic features which are used for steganalytic
classification. Pevny et al. introduced the Subtractive Pixel Adjacency Matrix
(SPAM) [14], which utilized the fact that the steganographic noise alters the
dependencies between the neighboring pixels of an image. Using higher-order
Markov chain [19] these dependencies are captured. The transition probability
matrix of the Markov chain is used as features to train an SVM classifier [4]
for steganalysis. The Spatial Rich Model (SRM) [3] is proposed by Fridrich and
Kodovsky, which uses several linear and non-linear filters to compute noise resid-
ual, followed by 106 different submodels to capture diverse kinds of relationships
between neighboring pixels of noise residual. The submodels are used to train
the Ensemble Classifier (EC) [10] for steganalytic classification. SRM [3] showed
considerable improvement in detecting the trace of steganographic embedding
in images over SPAM [14]. The performance of classifiers depends on the quality
of features supplied to the classifiers. Handcrafted feature based schemes such
as SRM [3] and SPAM [14] which rely on several fixed handcrafted filters, may
be suboptimal in extracting all the precise steganalytic features.

Convolutional Neural Networks (CNN) are known for best automatic fea-
ture extractors which mitigate the problems of handcrafted feature extraction.
Recently, many steganalysis works have been reported in the literature; some of
them are as follows: Qian et al. proposed GNCNN [16], a CNN based model for
steganalysis. The GNCNN [16] comprise of a fixed preprocessing layer and five
convolution layers for feature extraction, followed by three fully connected lay-
ers for classification. GNCNN used a Gaussian activation to capture stego and
cover signals more precisely. The preprocessing layer has a fixed high-pass filter,
which exposes the stego noise and suppresses the image component. GNCNN
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reported a comparable results with SRM [3] on S-UNIWARD [6], HUGO [15],
and WOW [5]. Xu et al. proposed XuNet [21] comprised of a preprocessing layer
with a high-pass filter and five groups of layers for feature extraction followed
by a fully-connected network for classification. Each group consists of a convolu-
tion layer followed by an average pooling and Batch Normalization (BN) [8]. The
first group used an ABS layer to capture all the values of noise residual (negative
as well as positive values) which might be discarded by some of the activation
functions, followed by a convolution layer. Authors claimed a considerable per-
formance over SRM with EC when detecting HILL [11] and S-UNIWARD [6].
Ye et al. [22] proposed a CNN based framework which initializes the first layer of
the model with the filters of SRM [3] to better capture the noise residual. They
also introduced an activation function named truncated linear unit to capture
noise residual with low SNR. Authors reported better performance as compared
to SRM [3] for WOW [5], SS-UNIWARD [6] and HILL [11] embedding. Tian and
Li [18] proposed a CNN based steganalysis using transfer learning. The model
used a Gaussian high-pass filter for the preprocessing of images followed by the
pre-trained Inception-V3 [17] model for steganalytic classification.

It has been observed from the literature that most of the existing CNN
based steganalysis schemes: (i) Sharply increase the feature space by using a
sequence of kernels in subsequent layers. (ii) Use some fixed-size kernels (with
less variation) which may not be much expressive in learning the stego features
since the stego signal is weak and sparse in nature. A kernel with lower spatial
dimension may not learn, and a kernel with higher spatial dimension may lead
to overfitting. (iii) Use a fully connected layer at the end for classification. The
use of fully-connected layers imposes a constraint that the training and testing
must be carried out on the images with the same spatial dimension. In order to
use images of different sizes, due to the restriction mentioned above, the images
must be resized before testing. However, resizing may lead to loss of stego signals,
conceptually similar to pooling.

In this paper, considering the shortcomings mentioned above, a densely con-
nected convolution network for steganalysis has been proposed for steganalysis.
In contrast to the existing schemes, the proposed scheme makes the following
contributions:

— A densely connected convolutional network without pooling layers is pro-
posed, which progressively captures the steganalytic features at different
scales.

— The fully connected layers are removed, which allows the model to be tested
on any size of images regardless of the size of images used for training.

The proposed scheme is trained and tested on BOSSBase 1.0 [2] dataset and
the steganalytic performance is compared with SRM [3], SPAM [14] against S-
UNIWARD [6], HUGO [15], WOW [5] and HILL [11]. The performance of the
proposed scheme is also compared with a recently proposed scheme of Tian and
Li [18] against WOW [5] and S-UNIWARD [6].
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Fig. 1. The proposed model architecture. The architecture of each block is similar; one
of the blocks (Block 1) is also shown in dotted box. Block consists of 4 x (Conv —
BN — ReLu) with sizes indicated for each convolution block.

3 Proposed Work

This section presents the proposed scheme for targeted steganalysis. The pro-
posed model is inspired by DenseNet [7]. The model architecture of the proposed
scheme is shown in Fig. 1. The proposed model comprises of an image processing
layer followed by four densely connected convolution blocks and a sigmoid layer
at the end for classification. Since the steganalytic classifiers are trained on the
noise residual instead of the image components, a fixed high-pass filter (HPF)
given in Eq. (1) has been used in the image processing layer.

102 -2 2.1
L] 26 86 2
HPF = — | -2 8-12 8 -2 (1)
121 9 6 8 -6 2
1 2 -2 2-1

The kernel of the image processing layer is kept fixed and is not updated while
training. The noise residual extracted from the image processing layer is used
as input to the subsequent dense blocks. The densely connected blocks are used
to avoid the problem of vanishing gradients and stego features. Each block is
connected to all its subsequent blocks. Consequently, all the blocks receive the
feature map from all their preceding blocks. Each block comprises of five convo-
lutional layers. The details of the layers used in each block are given in Table 1.
All the blocks have the same configuration except for the last block (Block 4),
where the output feature size is 1 x 512 x 512. Convolutional layers in each
block are followed by the Batch Normalization [8] for faster convergence and the
ReLU [12] activation. Pooling layer has not been used since the use of pooling
may result in loss of the stego noise. The number of convolutional filters progres-
sively increase as 4, 8, 16,32 and 64, and the kernel size also increases gradually
from 1 x 1 to 5 x 5 as each block slowly increases the scope of the convolution
operator. The different sized kernels help to learn the features at different scales,
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Table 1. Details of the layers in each dense block

Layer # | Input feature size | # of filters | Filter size | Output feature size
1 1 x 512 x 512 4 1x1 4 x 512 x 512
2 4 x 512 x 512 8 2x2 8 X 512 x 512
3 8 x 512 x 512 16 3x3 16 x 512 x 512
4 16 x 512 x 512 32 4 x4 32 x 512 x 512
5 32 x 512 x 512 64 5X%x5 64 x 512 x 512

thereby avoiding the loss of stego signal and capturing more prominent features.
The output of the densely connected blocks is a negative residual map which
is pixel-wise added to noise residual extracted by the image processing layer to
boost the noise components. The resulting output is used as input to the clas-
sification layer (sigmoid layer). The classification layer determines whether the
input image is a stego or cover image by using the mean sigmoid over entire pix-
els. The whole framework is trained by minimizing the cross-entropy loss given
in Eq. (2).

L= p(x).log(g(x)) (2)
VY

where p(x) and ¢g(z) denotes the true and estimated distributions respectively,
over a discrete variable x.

4 Implementation Details and Results

4.1 Experimental Setup

The experiments are carried out on BOSSBase v1.0 dataset [2]. The dataset
consists of 10,000 cover images of size 512 x 512. The steganographic embedding
algorithms' S-UNIWARD [6], HUGO [15], WOW [5] and HILL [11] are used to
obtain stego images. Further, 10000 cover-stego pairs of images are divided into
training: 5000, validation: 1000 and testing: 4000 cover-stego pairs. To compare
the performance with the proposed model SRM [3] and SPAM [14] are imple-
mented along with Ensemble Classifier v.2.0 [10], with the same split (5000 pairs
for training and 5000 pairs for testing) as for proposed model. The proposed
model is trained using Pytorch [13] on a standard workstation having NVIDIA
Quadro M-4000 GPU (8 GB) for 90 epochs. The learning rate is initially set to
0.001 and decays by a factor of 10 every 30 epochs. The batch size is empirically
kept as 8 (4 cover and 4 stego). Adam Optimizer [9] is used to optimize the
proposed network parameters when training.

! Steganographic algorithms, feature extractors such as SRM, SPAM and Ensemble
classifier can be found at: http://dde.binghamton.edu/download/.
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Table 2. Steganalytic classification accuracy (in %) of the proposed scheme is com-
pared to SRM [3] with Emsemble classifier [10] and SPAM [14] with Ensemble classifier
against SSUNIWARD [6], HUGO [15], WOW [5] and HILL [11].

Scheme Payload (bpp) | Proposed scheme | SRM with EC | SPAM with EC
S-UNIWARD | 0.1 66.50% 59.05% 54.24%
0.2 68.50% 62.17% 58.92%
0.3 70.75% 65.80% 63.44%
0.4 75.25% 73.70% 67.51%
HUGO 0.1 63.50% 60.03% 52.36%
0.2 70.25% 67.98% 56.00%
0.3 74.00% 74.46% 60.03%
0.4 77.25% 78.30% 63.98%
WOW 0.1 67.25% 60.97% 52.46%
0.2 70.75% 65.77% 55.82%
0.3 74.00% 69.26% 58.98%
0.4 76.50% 75.12% 62.33%
HILL 0.1 61.50% 55.45% 52.28%
0.2 65.75% 61.37% 55.26%
0.3 69.50% 67.11% 58.41%
0.4 75.00% 72.58% 61.37%

Table 3. Comparison of the proposed scheme with Tian and Li [18] in terms of ste-
ganalytic classification accuracy (in %) against WOW [5] and S-UNIWARD [6].

Payload | WOW S-UNIWARD

bpp Proposed scheme | Tian and Li [18] | Proposed | Tian and Li [18]
0.1 67.25% 67.90% 66.50% | 65.10%

0.3 74.00% 69.00% 70.75% | 67.20%

0.4 76.50% 71.4% 75.25% | 69.80%

4.2 Results

The quantitative results for the proposed model are given in Table2 when
compared to the SRM with EC [3] and SPAM [14] with EC [10] against S-
UNIWARD [6], HUGO [15], WOW [5], and HILL [11] steganographic schemes
with different embedding rates. The results are measured in terms of percentage
(%) classification accuracy. The best result is shown in the red color, and the
blue color represents the second best result. A series of graphs are also given in
Fig. 2 for a visual presentation where the proposed scheme is shown in red color,
SRM with EC [3] is shown in green color and SPAM with EC [14] is shown in
blue color. Results are evident that the proposed scheme outperformed SRM [3]
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Fig. 2. Steganalytic performance comparison of the proposed scheme (Red) with SRM
with EC ( ) and SPAM with EC (Blue) against: (a) SS-UNIWARD (b) HUGO
(¢) WOW and (d) HILL steganography on embedding rates - {0.1, 0.2, 0.3, 0.4} bpp
(Color figure online)

as well as SPAM [14] for most of the steganographic algorithms. The steganalytic
performance of the proposed scheme is also compared with a recent work by Tian
and Li [18], which has the same experimental setup in their work as the pro-
posed scheme. The comparison is done against WOW [5] and S-UNIWARD |[6]
on embedding rates - {0.1, 0.3, 04} bits per pixel (bpp). The results are given
in Table 3, the best result is shown in red color, and the next best is shown in
blue color. The proposed scheme has comparable performance against WOW [5]
on 0.1 bpp, and for the rest of steganographic embedding and payloads, the
proposed scheme clearly outperformed Tian and Li [18].

5 Conclusion

In this paper, a densely connected convolution network based steganalysis is
presented. The proposed model captures complex dependencies that are more
appropriate for steganalysis, and the learned features avoid the loss of stego
signals. The proposed model has no fully connected layer which adds advantage
that the model can be tested on any size of the image unlike with fully-connected
layers where the image size used for training and testing must be same. The
steganalytic performance of the proposed scheme is compared with SRM, SPAM
with Ensemble Classifier and a recent scheme by Tian and Li against different
steganographic algorithm on different embedding rates. The proposed model
outperforms the existing schemes with a considerable margin.
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