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Abstract. Tasks such as action recognition requires high quality fea-
tures for accurate inference. But the use of high resolution and large
volume of video data poses a significant challenge for inference in terms
of storage and computational complexity. In addition, compressive sens-
ing as a potential solution to the aforementioned problems has been
shown to recover signals at higher compression ratios with loss in infor-
mation. Hence, a framework is required that performs good quality action
recognition on compressively sensed data. In this paper, we present
data-driven sensing for spatial multiplexers trained with combined mean
square error (MSE) and perceptual loss using Deep convolutional neural
networks. We employ subpixel convolutional layers with the 2D Convo-
lutional Encoder-Decoder model, that learns the downscaling filters to
bring the input from higher dimension to lower dimension in encoder
and learns the reverse, i.e. upscaling filters in the decoder. We stack
this Encoder with Inflated 3D ConvNet and train the cascaded network
with cross-entropy loss for Action recognition. After encoding data and
undersampling it by over 100 times (10× 10) from the input size, we
obtain 75.05% accuracy on UCF-101 and 50.39% accuracy on HMDB-51
with our proposed architecture setting the baseline for reconstruction
free action recognition with data-driven sensing using deep learning. We
experimentally infer that the encoded information from such spatial mul-
tiplexers can directly be used for action recognition.

Keywords: Data driven compressive sensing (CS) · 3D Deep
Convolutional Neural Networks (DCNN) · Perceptual compression ·
Reconstruction-free action recognition

1 Introduction

Action recognition is a fundamental task in computer vision community with
widespread applications in video surveillance, unmanned aerial vehicles (UAV)
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to name a few. In such applications, instead of using expensive methods for
video compression and transmission implemented at transmitter end, compres-
sive sensing (CS) can be applied to encode the data. The encoded data can
then be decompressed and processed for high-level inference (action recognition).
However, at higher compression ratio the reconstruction based action recogni-
tion framework will provide low quality results as they are not optimized to be
used over compressed measurements or reconstructed data.

Recent works in deep learning have motivated us to perform data-driven CS
for encoding the data and directly performing high-level inference on a large-scale
dataset [1,2]. One of the key advantages data-driven encoder-decoder approach
offers for CS based recognition is that it allows network to learn more com-
plex patterns from data that may not be easily expressible in a model-based
approach [3]. Thus, this paper proposes a novel Data-driven sensing framework
using Deep convolutional neural networks trained with joint MSE and perceptual
loss in the context of reconstruction-free action recognition.

One of the key challenges to perform reconstruction free action recognition
using Deep convolutional neural networks(DCNN) is dimensionality reduction in
convolutional layers. Usually, downsampling is performed in DCNN using max
pooling, average pooling, stochastic pooling or spatial pyramid pooling [1]. Since
the above methods are handcrafted which are designed for achieving translation
invariance or fixed-length feature representation, they do not optimally preserve
signal information while reducing dimensionality [1]. Therefore, learning dimen-
sionality reduction from data itself is desired so as to preserve more information
compared to handcrafted ways that do not use training data for downsampling.
We have used sub-pixel convolutional layer for performing downsampling that
uniformly distributes the samples into multiple dimensions thereby reducing
their scale while increasing the number of channels of the data. This makes
the data more suitable for dimensionality reduction using convolutional encoder
where the higher dimension signal is brought to lower dimension by aggregating
feature maps and then reducing the channels in the data. The signal can be
recovered from undersampled measurements by using convolutional layers and
a sub-pixel convolution layer which learns the upscaling filters and brings the
signal to original dimension [4].

To train the network, we propose to use perceptual loss and mean squared
error loss. The intuition of using perceptual loss is that the reconstructed output
would be similar to the input image as it preserves structural information. In
several works [5,6], it has also been shown that good quality images can be gen-
erated using perceptual loss functions based on differences between high-level
percepts extracted from pre-trained convolutional neural networks, for classifi-
cation, instead of based on per-pixel differences.

Outline of the paper is as follows: Sect. 2 revisits the existing work in this
area. The proposed methodology is explained in Sect. 3. Section 4 presents exper-
imental results to show the effectiveness of the framework and Sect. 5 concludes
the paper.
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2 Prior Work

Mousavi et al. [7] introduced first data driven sensing and recovery using deep
learning framework. They applied stacked denoising autoencoder (SDA) as an
unsupervised learning approach to capture statistical dependencies between the
linear and non-linear measurements and improve the signal recovery compared to
the conventional CS approach. The limitation of this work was that it consisted
of a fully connected network. Kulkarni et al. [8] proposed a novel class of CNN
architecture called ReconNet as decoder which takes in CS measurements of an
image block as input and outputs reconstructed image block. Further the recon-
structed image blocks are arranged appropriately and fed into an off-the-shelf
denoiser to remove the artifacts. Mousavi et al. [1] proposed a deep convolu-
tional neural network to learn a transformation from the original signals/images
to a near-optimal number of undersampled measurements instead of using con-
ventional random linear measurements obtained through a fixed sensing matrix
and learns the inverse transformation for recovery from measurements to orig-
inal signals/images. Learning undersampled measurements from original signal
preserves more information. However their results were limited to 1D signals.

Early research focussed on non-deep learning architectures for recognition.
Kulkarni et al. [9] presented a method for quantifying the geometric properties of
high-dimensional video data in terms of recurrence textures for performing activ-
ity recognition at low data rates. In [10] Kulkarni et al. proposed a correlation-
based framework in compressed domain and avoids reconstruction process. They
showed that Action MACH (Maximum Average Correlation Height) correlation
filters can be implemented in compressed domain to find correlation with com-
pressed measurements using the concept of smashed filtering in the space-time
domain. Recently, researchers have showed focus on deep learning based recogni-
tion on undersampled measurements. In [11] Adler et al. presented an end-to-end
deep learning approach for Compressed Learning for classification of image in
which the training jointly optimizes the sensing matrix and the inference opera-
tor. In [12] Lohit et al. shows that convolutional neural networks can be employed
to extract discriminative non-linear features directly from data-independent ran-
dom CS measurements. They project the CS measurements to the image space
by a fixed projection matrix and later apply CNN to the intermediate projection
to classify images. In [13], Zisselman et al. presented that optimizing the sens-
ing matrix jointly with a nonlinear inference operator using neural networks,
improved upon the methods which used a standard linear projection such as
random sensing, PCA etc. In their experiments, the signals were reshaped to
full dimension prior entering inference stage, since they used redesigned net-
works and added compression-decompression layers. In [3] Lohit et al. designed
a three-stage training algorithm that allows learning the measurement opera-
tor and the reconstruction/inference network jointly such that the system can
operate with adaptive measurement rates.

The proposed approach, shown in Fig. 1, does data-driven sensing and learns
undersampled measurements with perceptual loss for action recognition. More-



Data Driven Sensing for Action Recognition Using DCNN 253

Sub-Pixel Convolution
+

Down-sampling
Convolutional Filters

Sequence
of Frames

I3D

Input Encoder
Encoded

Measurements

Upsampling

Upsampled Encoded
Measurements Classifier

Predictions

Fig. 1. Proposed framework for data-driven sensing and reconstruction free action
recognition

over, the approach directly works on 2D signals which gives us good performance
over compressively sensed UCF-101 and HMDB-51 action recognition datasets.

3 Methodology

3.1 Data-Driven Sensing Through Convolutional Autoencoder
(CAE)

Our data-driven compression involves CAE (Fig. 2) with sub-pixel convolutional
layers and optionally, VGG 16 pre-trained network. The input to the Encoder of
CAE is the original image xεIRH∗W∗3 which is multi-channel and 2-dimensional.
The first layer is sub-pixel convolutional layer that learns to generate aggre-
gated feature maps of reduced dimension. The value of reduced dimension is the
height(H) and width(W ) divided by r, which is the undersampling factor. So
the output of first layer is (H/r) × (W/r) × 3r2. It means the first sub-pixel
convolutional layer divides the length of output feature map by a factor r2 and
increases the number of channels in output feature map by a factor of r2. Math-
ematically, sub-pixel convolutional layer (inverse of pixel shuffle [4]) here can be
described as:

x̂(x, r)i,j,c = x
i∗r+floor(

mod(c,r2)
r ), j ∗ r +mod(mod(c,r2),r),floor( c

r2
) (1)

The sub-pixel convolutional layer reduces the input image scale, however
to undersample the input in Encoder, we employ several blocks of convolutional
layers same as Inception module (Fig. 3) used in [14] to reduce the dimensionality
by decreasing the total number of feature maps such that dimension of the output
equals to (H/r)× (W/r)×3. This reduces the total number of measurements by
a factor of r×r and thus the undersampling ratio is r2(r×r). Such sub-sampling
ensures that the channels preserve the structural information of input image.

Once the undersampled measurements are obtained from Encoder, we now
employ several blocks of convolutional layers to extract feature maps in Decoder.
Hence in our architecture we learn to encode and reconstruct images directly to
the measurement domain. Now, the output of encoder lies in IR(H/r)∗(W/r)∗3

domain, however we want to recover the input signal which lies in IR(H)∗(W )∗3

domain. Using the block of convolutional layers in Decoder would boost the
dimensionality to IR(H/r)∗(W/r)∗3r2

. In last we apply sub-pixel convolution
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layer to rearrange the feature maps and generate the output, x̂, which lies in
IR(H)∗(W )∗3.

Mathematically the last layer(pixel shuffle layer [4])can be described as:

x̂(x, r)i,j,c = xfloor(i,r),floor(j,r),c ∗ r2 + r ∗ mod(i,r)+mod(j,r) (2)

We train our CAE with MSE, perceptual and joint loss, weighted combination
of MSE and perceptual loss. The perceptual loss we used here is defined in [5],
that measures high-level perceptual and semantic differences between images.
Their perceptual loss is function of deep convolutional neural networks (VGG
16) pre-trained for image classification. Instead of per-pixel loss between the
output image x̂ and original image x, we use the similar feature representations
as computed by the loss network φ. Let φj(x) be the jth layer activations of
network φ when processing the image x, if j is a convolutional layer then we get
a feature map of size Cj × Hj × Wj as φj(x). The perceptual loss is the sum of
normalized Euclidean distance between feature representations of corresponding
convolutional layers as showed in Eq. 3. That means the perceptual loss is mini-
mum, when the classification output of pre-trained convolutional neural network
(VGG 16 or VGG 19 [15]) for the reconstructed image would be same as that
for the original image.

Fig. 2. Data driven Sensing framework for learning undersampled measurements
(dimensions shown for undersampling ratio of 4× 4)

lφ,j
feat(x̂, x) =

∑

j

1
CjHjWj

||φj(x̂) − φj(x)||2 (3)

The image content and structural information is preserved but color, texture
and exact shape are not preserved while using perceptual loss [5]. Hence we train
our Autoencoder with joint loss (weighted) of MSE loss and perceptual loss as
shown in Eq. 4.

Ljoint(x̂, x) = α

(
1
s

s∑

i=1

||x̂ − x||22
)

+ β
(
lφ,j
feat(x̂, x)

)
(4)
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Fig. 3. Inception module in our CAE architecture

3.2 Learning Action Recognition in Compressed Domain

The convolutional encoder of the reconstruction network is now stacked with
the Inflated 3D (I3D) convolutional neural network [16]. Since the structural
information encoded in the Convolutional Encoder lies in IR(H/r)∗(W/r)∗3, we
upsample the encoded information by r × r times using a nearest neighbour
upsampling layer. The upsampling of encoded feature maps is not equivalent
to reconstruction. The encoder is initialized using learned weights from recon-
struction network. The 3D convolutional network is initialized using pretrained
weights from Imagenet and Kinetics dataset. The classification architecture is
shown in Fig. 4. Further, this action recognition architecture is then trained with
the cross-entropy classification loss using SGD optimizer.
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Fig. 4. Action recognition architecture
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4 Experimental Results

In this section, we report the performance of our proposed framework at dif-
ferent undersampling ratios. Once our framework is end-to-end trained, the
convolutional encoder and trained I3D network can be separated. The convo-
lutional encoder does sensing on unseen data at transmitter end and generates
undersampled measurements that are given to trained I3D network for action
recognition at receiver end. Hence, our input size for action recognition is of
lower dimension compared to the original signal. In Table 1, we compare action
recognition results over UCF-101 [17] and HMDB-51 [18] datasets of different
techniques. Here, STSF [10], Recon [19] + IDT [20] and our proposed approach
are techniques that perform compressive sensing while C3D+ [21], RGB-I3D [16]
are deep learning based action recognition over original signal. MB motion vec-
tors+3DConvNet [22] shows action recognition results over macroblock motion
vectors of H.264 compressed signal.

Table 1. Performances of different action recognition framework in compressed domain

Framework Input size Accuracy (%)

UCF-101 HMDB51

STSF [10] FBIa – 22.5

Recon [19]+IDT [20] FBI – 57.2

MB motion vectors 242 × 2 × 160 77.5 49.5

+3D ConvNet [22]

C3D+ [21] 1122 × 3 × 16 82.3 –

RGB-I3D [16] 2242 × 3 × 64 95.6 74.8

Proposed (2 × 2) 1122 × 3 × 32 91.25 66.66

Proposed (4 × 4) 562 × 3 × 32 89.53 65.88

Proposed (8 × 8) 282 × 3 × 32 80.84 56.33

Proposed (10 × 10) 222 × 3 × 32 75.05 50.39
aFull Blown Images

In Table 2, recognition results of our proposed approach with different under-
sampling ratios of original signal for different reconstruction loss has been pre-
sented. The accuracy for 2× 2 and 4× 4 undersampling ratio is similar, since
there is not much change in Encoder parameters. In Table 2, we observe that
the accuracy decreases in small amount at higher undersampling ratio and con-
clude that the information is correctly captured by the Encoder parameters.
We present the same for both datasets displaying the efficiency of our proposed
approach. Table 2 shows that when Encoder is trained with joint loss, the per-
formance of action recognition pipeline increases as perceptual loss makes sure
that the encoder captures more structural information. Table 3 compares the
performance of sensing network with different number of Inception submodules
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Table 2. Avg. Accuracy on UCF101 splits

Undersampling
ratio

CAE RMSE
loss

CAE
perceptual loss

CAE joint
loss

Encoder
complexity (W)

4 (2× 2) 87.89 90.85 91.25 3,651

16 (4× 4) 89.40 88.79 89.53 14,894

64 (8× 8) 80.78 76.50 80.84 179,408

100 (10× 10) 73.62 73.96 75.05 404,278

in CAE, using reconstruction loss and action recognition accuracy as an eval-
uation metric over UCF-101 dataset splits at compression ratio of 4 × 4. The
performance in Table 3 infers that optimal sensing is obtained with 3 Inception
submodules in data-driven sensing encoder.

4.1 Implementation Details

For training CAE, we use ADAM optimizer with initial learning rate set to 10−3

which is reduced by 10−1 when validation loss gets saturated. While training
CAE with joint loss function as shown in Eq 4, α = 1 and β = 0.04 gives us the
best results. To train the stacked network of Encoder and I3D for classification,
we employ standard SGD with momentum set to 0.9 and initial learning rate
set to 10−2. All the networks were implemented in TensorFlow [23] and ran on
nvidia-docker [24] for Tensorflow on NVIDIA DGX-1.

Table 3. Performance with respect to number of Inception modules in Proposed data-
driven sensing encoder

No. of Inception
submodules

Joint loss
(CAE)

Accuracy on
UCF-101 (%)

Encoder
complexity (W)

1 7.5649 89.21 1,252

2 4.0129 85.94 4,322

3 4.2220 89.53 14,894

4 4.5798 87.84 53,766

5 Conclusion

A data-driven CS framework for reconstruction free action recognition is pre-
sented in the paper. Our proposed architecture preserves more structural infor-
mation utilizing the joint loss function, based on perceptual loss and MSE loss,
that provides better performance as compared to individual losses. Experimental
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results on UCF-101 and HMDB-51 are presented to show the effectiveness of the
framework at various undersampling ratios. For future work, our undersampling
ratio specific architecture can be modified to a generic architecture which works
with different undersampling ratios.
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