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LEVERAGING CYBER-PHYSICAL
SYSTEM HONEYPOTS TO ENHANCE
THREAT INTELLIGENCE

Michael Haney

Abstract Honeypots and related deception technologies have long been used to
capture and study malicious activity in networks. However, clear re-
quirements for developing effective honeypots for active defense of cyber-
physical systems have not been discussed in the literature. This chapter
proposes a next generation industrial control system honeynet. Enumer-
ated requirements and a reference framework are presented that bring
together the best available honeypot technologies and new adaptations
of existing tools to produce a honeynet suitable for detecting targeted
attacks against cyber-physical systems. The framework supports high-
fidelity simulations and high interactions with attackers while delaying
the discovery of the deception. Data control, capture, collection and
analysis are supported by a novel and effective honeywall system. A hy-
brid honeynet, using virtualized and real programmable logic controllers
that interact with a physical process model, is presented. The benefits
provided by the framework along with the challenges to consider during
honeynet deployment and operation are also discussed.
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1. Introduction
There is growing evidence that attackers, whether individual miscreants,

hactivists, terrorists or state-sponsored actors, are increasingly targeting in-
dustrial control systems via Internet-connected computers to wreak havoc on
critical infrastructure assets [4, 6, 24, 30, 47, 49, 54]. According to recent U.S.
government reports [21, 48], attacks and intrusions as well as fingerprinting and
scanning activities against U.S. critical infrastructure assets continue to rise.
In 2013, more than 250 incidents were reported and analyzed by the U.S. In-
dustrial Control Systems Cyber Emergency Response Team (ICS-CERT) [21],
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primarily in the enterprise networks of industrial companies. In 2017, the U.S.
National Cybersecurity and Communications Integration Center (NCCIC) [48]
detected 447 separate incidents and received roughly 106,000 reports of inci-
dents affecting communications, enterprise and process control systems. In July
2017, officials from the U.S. Department of Homeland Security and the Federal
Bureau of Investigation briefed a number of nuclear and other power systems
operators on ongoing cyber threats [35].

The U.S. Department of Homeland Security reports that many incidents are
not detected due to the lack of adequate detection and logging capabilities,
and because details of detected incidents are insufficient. Much of the dra-
matic rise in incident reporting is the result of increased awareness, detection
technologies and information sharing efforts across government and the private
sector. It is unclear whether the prevailing industrial safety mechanisms are or
will be adequate against complex attack vectors and varying attacker motiva-
tions. Current diagnostic tools are deficient at identifying compound exposure
interactions, creating pathways by which control systems may be attacked or
emergency and safety systems may be defeated or co-opted for use against con-
trol systems. This environment makes threat intelligence a vital area of cyber
security research.

Several proposals have been made to adapt traditional information technol-
ogy security techniques and systems to the operational technologies in cyber-
physical system (CPS) environments. While these proposals may meet the com-
mon requirements of information and operational technologies, some are less
suited than others to meeting the unique operational technology demands, espe-
cially “always on” availability and minimizing the negative impacts of changes.
Patching firmware and rebooting on “Patch Tuesday” every month are not vi-
able for many critical infrastructure systems. In these cases, a more passive
approach can provide greater threat intelligence while minimizing the operation
impact. Honeypots have been used very effectively in information technology
environments. These deceptive systems show promise for defending operational
technology environments.

Over the last fifteen years, honeypots – systems designed to be attacked in
order to learn attacker tactics, techniques and motives – have been proposed,
developed, improved and implemented with great success [3, 5, 9, 20, 25, 26, 29,
33, 36, 37, 44, 51], including in detecting and analyzing the celebrated Stuxnet
attack [30]. By their nature, activity in honeypot systems is malicious, or at
best unintended, except for any background replay traffic or activity. Because
all system resources are devoted to intrusion discovery and the background
activity should be relatively easy to filter out, higher levels of system logging
and other instrumentation can be provided that are not always possible in
production environments. Also, false positive and false negative intrusion alerts
can be drastically reduced if not eliminated. For these reasons, honeypots are
well suited to defending critical infrastructure systems.

However, recent years have seen only incremental advances in honeypot tech-
nologies. Many tools are starting to show their age, incompatible with current
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versions of operating systems and dependent software. Tried-and-true tools
have had little need to change when supporting traditional information tech-
nology systems (e.g., virtual honeypots for Windows and Linux operating sys-
tems such as honeyd), but they are not necessarily suited to industrial control
systems, SCADA (supervisory control and data acquisition) environments and
large-scale networks of embedded devices that are coupled to physical processes.

The intelligence gathering capabilities of the proposed honeypot framework
can dramatically enhance the security of industrial control networks. The
framework is lightweight, highly scalable and designed specifically to protect
industrial control systems.

Several requirements for next generation honeynet technologies are proposed
in this chapter. Many of these requirements are already assumed by current
technologies and approaches; however a formal set of requirements is neces-
sary to drive metric-based advancement. A proof-of-concept architecture is
presented to meet these requirements. The architecture links process simula-
tion tools, an advanced network simulator and a complete monitoring system
to present a complex attack surface for virtualized industrial cyber-physical
systems.

The next six sections discuss industrial control systems, honeypots and hon-
eynets, Security Onion, high-interaction honeypot data collection, virtual net-
works and the Shodan search engine.

2. Industrial Control Systems
Industrial control systems is a general term that describes engineering pro-

cess support systems in industrial settings. Modern industrial control systems
generally comprise physical components (e.g., gauges, pumps, valves and other
sensors and actuators) and digital computer components (e.g., embedded sys-
tems). Because of their dual nature, these systems are often referred to as
cyber-physical systems. Nearly all modern critical infrastructure assets (e.g.,
electric grids, water treatment facilities, transportation management systems,
and oil and gas pipelines) are managed by cyber-physical systems, which are
increasingly being interconnected using traditional information technology net-
works.

A SCADA system is a distributed system where digital devices connected to
a process through sensors and actuators communicate over a network to drive
a physical process to a desired state or set point. The idea of using computing
devices to monitor and control physical systems is not new. Digital computers
were used as early as 1959 when computer control was introduced at Texaco’s
Port Arthur refinery [55]. These early systems were supervisory in nature.
Plant loops were controlled by conventional pneumatic or electrical controllers,
but monitored and optimized by computers.

Programmable logic controllers, introduced by Modicon (now Schneider Elec-
tric) in the 1960s, were originally designed to replace circuits used in sequential
control. Modern programmable logic controllers can implement control loops
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Figure 1. Typical process control network.

such as proportional-integral-derivative (PID) as well as logic functions and
sophisticated algorithms.

Communications capabilities were introduced in programmable logic con-
trollers as early as 1979. The Modbus protocol started as a proprietary protocol
for Modicon equipment, but is now maintained by the Modbus Organization, a
vendor-independent non-profit entity. The Modbus specifications [31] provide
a simple communications mechanism for transmitting commands and data be-
tween a master terminal unit (MTU) at a control center and remote terminal
units (RTUs) at field sites. The original protocol specification defines framing,
encoding and error control for transmission over serial lines such as EIA-232
and EIA-485. It also defines standard operations and parameters for MTU-
RTU interactions. More recently, the Modbus Organization defined a version
of the protocol that uses TCP for transmission [31].

Most modern programmable logic controllers carry control and data mes-
sages over TCP/IP using industrial control protocols such as Modbus (widely
used in the oil and gas industry), DNP3 (widely used in the electric power in-
dustry) and closely-related protocols such as Profibus and IEC 61850. Figure 1
shows a typical process control network and its supporting components.

JAMOD is used for prototyping Modbus-based SCADA systems. JAMOD is
a Java Modbus library that supports three transport mechanisms: (i) TCP;(ii)
UDP; and (iii) serial (UDP transport is experimental and is not part of the
Modbus standard). JAMOD can be used to develop three key components of a
SCADA system: (i) a Java class that emulates Modbus-capable programmable
logic controllers with the four types of variables that Modbus defines: discrete
inputs, discrete outputs, analog inputs and registers; (ii) control logic; and (iii)
the process to be controlled. A typical operation cycle has a programmable logic
controller read process variables, use the control logic to compute a control
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action and then pass it to a programmable logic controller output (e.g., an
actuator) to perform an action on the process (e.g., close a valve). Using the
JAMOD functionality and library of configuration settings and capabilities,
many types of programmable logic controllers can be emulated in software.

3. Honeypots and Honeynets
Spitzner [44] defines a honeypot as a “security resource whose value lies in

being probed, attacked or compromised.” While Spitzner formally proposed
honeypots in 1999 as trap systems for discovering information about attackers,
credit is also assigned to Stoll, who published The Cuckoo’s Egg in 1989 [45]
and Cheswick, who authored “An evening with Berferd” in 1992 [8]. These two
works describe how clever system administrators lured and studied attackers in
order to understand their techniques and ultimately discover their identities.
Since the formal creation of the Honeynet Project in 1999 [44], a number of
technologies have been introduced to perform this type of intelligence gathering.

A honeypot is the most basic type of attacker trap – a non-production system
that is set up to record user and software activities that are assumed to be
malicious. Additional terminology has been coined following the “honey” theme
to describe various levels of complexity and interactivity. The simplest is a
“honeytoken” [43], which can be an unused file, registry key, database entry or
email address with some level of additional monitoring to alert when the file is
read, the key or database entry is modified or the email address is stolen and
added to a spammer’s target list.

A “honeyfarm” combines multiple honeypot systems in a cluster or server
farm. A more complex setup, which includes honeypots or honeyfarms net-
worked together with out-of-band management and monitoring systems, is re-
ferred to as a “honeynet.” A honeynet is a complete system of systems with
specific goals of attacker control and data collection. In order to fully monitor
and control hacker interactions with a number of components in a honeyfarm,
a specialized pass-through chokepoint system called a “honeywall” is deployed.

A common way to classify honeypot technologies is according to their levels
of interactions with attackers. A honeytoken is generally a low-interaction
system that simply waits for someone to come along and access it, upon which
it triggers an alarm. Other low-interaction honeypots provide some responses
to attacker stimuli. A common low-interaction honeypot tool is honeyd [37],
which can emulate thousands of networked systems by faking IP addresses and
listening on various ports. It provides various banners to attackers who scan
the IPs and ports, and it may launch other services and scripts in order to
customize responses.

High-interaction honeypots are often deployed as fully functional operating
systems within virtual machines or on “bare metal.” Virtual machines offer the
advantage of being able to scale up more honeypots while limiting the hardware
resources that are required. They also offer a means for taking snapshots of sys-
tem state and rolling back the honeypot systems after compromises. However,
they cannot be scaled beyond a handful of systems.
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In order to support the management of a honeynet and contain attackers that
break into honeypots, a modified approach to a firewall – called a “honeywall”
is employed. Although several systems or tools can be used to construct a
honeywall, Honeywall, developed by the Honeynet Project, is a specific system
build with supporting tools on a single CD-ROM that runs as a live operating
system (i.e., read-only). Two major versions of Honeywall have been released –
Eeyore and Roo. Honeywall Roo [7] was designed to embody the requirements
for GenIII honeynet technologies (discussed later in this chapter). Note that
the general term, honeywall, is used to define the proposed data control and
collection gateway system.

The first explicit requirement – data control – for a honeynet is to ensure
that a compromised honeypot system does not cause harm to other systems
in the network. One of the main concerns with deploying a honeypot is the
liability and legality of deploying a known-vulnerable system that is intended
to be hacked. As stated by Cheswick [8], “[d]ata control always takes priority
over data capture.” Specific requirements include having both automated and
manual control mechanisms and two-deep protection to safeguard against the
failure of any one control.

Honeywall Roo is designed to work on a system with three physical network
interface cards. Two network cards are configured to bridge two networks, one
is the upstream connection to the Internet and the other is the honeynet. The
third network card is designated for connections to manage the system and is
“out of band” from the other two networks.

Honeywall Roo handles data control using iptables for routing and firewall
functions and snort inline, a tool that is no longer actively supported. The
snort inline tool is a modified version of Snort[41], an open-source intrusion
detection system, that reads packets from iptables and, based on the configured
rules, updates the firewall to drop unwanted connections. Note that iptables is
configured to provide rate limits for connections outbound from the honeynet
to minimize the effects of denial-of-service attacks. As described later, the
proposed approach incorporates these design elements, but also makes some
significant improvements.

The second explicit requirement for GenIII honeynets is data capture. Cap-
ture is the recording of all (or as much as possible) activity in a honeynet. This
includes system activity as well all the data entering and leaving the honeynet.
An important part of the data capture requirement is that it should be done
“without attackers knowing they are being watched” [19].

The third closely related requirement for honeynets is information sharing
between disparate honeynets in a standardized way. This supports a community
via the disclosure of pertinent threat information. It can lead to shared details
about specific malware or targeted attacks from advanced attackers that can
benefit other organizations. Honeywall Roo supports data captures and analy-
ses in a number of ways. The primary method is via two Snort processes that
listen on the bridge interface, one configured to perform full packet captures
and the other configured to match traffic against the enabled rules to generate
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alerts. It also provides Argus [39], a network flow processing tool that provides
connection summaries and statistics such as bandwidth and packets per second
for each observed network flow. This data is tracked in a database managed by
Hflow2 so that complete network sessions of flows that match a Snort signature
can be reviewed in a web-based tool called Walleye.

Although Honeywall Roo provides excellent support for GenIII honeynets
along with a menu-driven system-wide configuration capability [1], there are
several problems with the current distribution that render it unusable. The
first problem is that Honeywall Roo is based on Fedora Core v3, which reached
its end-of-life in January 2006. It also uses Snort v2.6 (which has no available
rulesets) and snort inline for data control (which is no longer supported).
For these reasons alone, the deployment of Honeywall Roo is ill-advised. Ad-
ditionally, the Walleye web-based management and analysis interface must be
run on the honeywall system, but it only enables data from the single honeywall
system to be collected and reviewed. It is not currently possible to separate
data control, data capture and data analysis functions on different systems.

A key contribution of this research is a honeywall system design that pro-
vides much-improved data analysis capabilities while meeting the data control
requirement.

4. Security Onion
Several advanced intrusion detection and network security monitoring tech-

niques and tools [2] can be leveraged to study honeynet data, especially when
dealing with unknown attacks. Security Onion is a Linux distribution that
combines many tools in a single platform to support out-of-the-box network
security monitoring capabilities.

Security Onion provides a network sensor and storage system with utilities
for PCAP recording and manipulation, stream identification and flow analy-
sis, passive host identification, payload parsing and signature-based intrusion
detection. Two core tools included with Security Onion are Snort and Ar-
gus, similar to Honeywall Roo. However, Security Onion offers many advanced
management tools and a slew of analysis tools that make the difficult task of
network security analysis more manageable.

A significant feature of Security Onion is its three-tier architecture that pro-
vides separation and secure communications between sensors, the server and
the client. Security Onion Sensor provides applications, libraries and kernel
modules for performing full network data captures. Network streams are fed
to Bro, Snort or Suricata, Argus and others for processing against policies and
signatures that can be updated daily. Security Onion Server provides central-
ized storage and processing for many sensors. Alerts and connection summary
data are written to a MySQL database. Apache hosts multiple web-based ap-
plications for presenting data to analysts. Security Onion Client provides the
front-end graphical user interface and command-line tools for processing PCAP
files and analyzing network flows. In addition to the Sguil monitoring tool,
the Security Onion Client includes Wireshark and NetworkMiner for brows-
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ing through network traces and reviewing embedded artifacts. Together with
the web-based analysis and visualization tools of the ELK stack (Elasticsearch,
Logstash and Kibana), tremendous capabilities are provided for network data
analysis in an environment that is much more scalable and manageable than
Honeywall Roo.

However, Security Onion is not designed to control a honeynet in an in-line
deployment – it supports network data collection on a receive-only network
interface card connected to a SPAN port or network tap. Another contribution
of this research is a design for deploying Security Onion in an in-line manner.

5. High-Interaction Honeypot Data Collection
A full packet capture in a network is invaluable, but it does not offer complete

visibility of system activity. Just as network and systems administrators have
migrated from cleartext to encrypted protocols (e.g., from Telnet to SSH), so
have attackers who often connect to vulnerable sshd systems or use stolen or
guessed user credentials to gain access. Once in, the attackers install their own,
sometimes highly modified, versions of sshd or other encrypted remote access
tools. This is done deliberately to obfuscate attacks from conventional network
monitoring.

The Honeynet Project provides a solution to this problem in a tool called
Sebek [18]. Sebek runs on a target honeypot system and collects attacker
keystrokes and filesystem access data. Because this is done at the end node, it
is possible to view and process data after it has been decrypted by the network
software. This provides a critical monitoring capability that is not possible
with network-only approaches. Sebek operates stealthily – like a rootkit, it
runs in kernel space on a honeypot, hides from users and sends logs covertly to
a Sebek server.

However, Sebek is detectable as an unlinked kernel module and because
network statistics are increased significantly when keystroke logs are transmit-
ted. Fortunately, many of these shortcomings have been addressed in other
tools. For example, Qebek [42] adds hooks to the Qemu system emulator and
Ether [13] does the same for Xen. These tools provide the necessary stealth
logging in honeynets by addressing data capture in virtual machines.

6. Virtual Networks with IMUNES
Virtual networks of communicating nodes can be generated quickly using

the Integrated Multiprotocol Network Emulator and Simulator (IMUNES), a
general-purpose network simulation architecture for large-scale real-time exper-
iments [38]. Built on FreeBSD, the simulator offers kernel-level network stack
virtualization without the overhead associated with frameworks that make ex-
tensive use of virtual machines. This is achieved using virtual nodes in chroot
jails that have the same capabilities as the underlying kernel. Each IMUNES
node can run an independent replica of the FreeBSD network stack as well as
unique instances of user-level applications.
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Figure 2. IMUNES graphical user interface.

IMUNES has a user-friendly graphical user interface (Figure 2) that enables
arbitrary network topologies to be designed and deployed rapidly. The interface
provides seven basic building blocks: (i) workstations; (ii) servers; (iii) hubs;
(iv) switches; (v) routers; (vi) physical communications links (i.e., wires); and
(vii) connectors for associating physical networks on host systems with virtual
networks. Each building block can be reconfigured quickly by right-clicking a
node and modifying it in a pop-up window.

Figure 3 shows a more complex model of an advanced metering infrastructure
(AMI). IMUNES models can scale to 10,000+ nodes on a moderately powered
workstation.

After a network topology has been defined and configured in IMUNES, the
simulation is instantiated and executed. During the execution, it is possible to
open a shell on any node and run installed applications. Wireshark and the
Links web browser run by default on any node. Router nodes use Quagga to
fully emulate routers while server nodes can be configured to run DHCP, an
HTTP server and other services. It is then possible, by manipulating configu-
ration scripts in IMUNES, to install additional FreeBSD packages in the root
virtual filesystem used by each node. This mechanism has been used in this re-
search to incorporate Java and JAMOD, additional industrial control protocols
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Figure 3. Advanced metering infrastructure model.

and network security tools for system monitoring and logging, including Sebek.
Additional details are provided later when discussing the proposed honeynet
architecture.

7. Shodan Search Engine
The Shodan search engine (www.shodanhq.com) finds Internet-facing sys-

tems of certain types (e.g., by manufacturer, operating system, application and
configuration) using web-crawling and system fingerprinting techniques. The
crawlers scan the Internet for ports 80 (HTTP) and 443 (HTTPS) like most
search engines, but also port 22 (SSH), port 53 (DNS), port 161 (SNMP), port
502 (Modbus/TCP) and many others. They query the ports for banners and
elicit other responses (e.g., performing an SNMP-walk), and display the results
in a searchable format.

For example, if the search term “Debian port:22” is entered, results for
thousands of systems that are listening on port 22 and run the Debian operating
system are presented. Shodan then creates clickable links to the IP addresses
and, if available, provides latitude and longitude coordinates from GeoIP data.

When Shodan scans an IP address and finds an open Modbus port 502, it fol-
lows up with two Modbus queries to identify the system via its device ID and
other string outputs. Often, the results show “DEVICE FUNCTION FAILURE.”
However, a quick search using “port:502” can actually discover systems, such
as when they return responses like “Schneider Electric BMX P342020.” De-
tails from the whois database for IP addresses are also provided in the Shodan
results, letting a searcher know, for example, that one such device is available
on AT&T’s U-Verse home fiber optic service. This may suggest that the pro-



Haney 219

grammable logic controller is at a home with a smart meter installed. A click
on the GeoIP coordinates takes the searcher to a Google Maps satellite image
of the home.

The Shodan search engine is powerful and it actively scours the Internet. As
discussed later, these facts should be considered when building cyber-physical
system honeynets.

8. Requirements and Prototype Architecture
This section presents the architecture of a next generation hybrid cyber-

physical honeynet.

8.1 Next Generation Honeynet Requirements
The formal requirements adopted by the Honeynet Project for GenIII hon-

eynets (third-generation technology) incorporate the essentials of successful
honeypotting [19]. These are: (i) data control; (ii) data capture; and (iii) data
collection. Additionally, several informal requirements are taken for granted or
included as sub-requirements. While these requirements are certainly met by
the most successful honeynets, they are not formally specified in the literature.

Therefore, three additional requirements are proposed for next generation
honeynets: (iv) realism; (v) scalability; and (vi) detection resistance. These
requirements are met by the proof-of-concept design; but they are likely met
by other technologies as well. The three additional requirements are essential to
updating honeynet deployments to make them viable as an additional network
defense layer and as valuable research tools:

Realism: GenIV honeynets should appear to would-be attackers as real
production systems that are worth investigating. This requirement is
prioritized based on the types of attacks that are desired to be attracted.
Some systems on the Internet are very clearly set up as honeypots. While
these systems may be effective at catching automated malware and initial
reconnaissance scans, they would not fool active attackers who are seeking
targets for manual exploitation. An attacker could find such systems by
searching for “honeyd” in Shodan and avoid their IP addresses altogether.

Realism in the context of industrial control systems suggests that a hon-
eypot should have basic services such as HTTP, SSH and Telnet, but that
the fake programmable logic controllers should be indistinguishable from
real ones in network scans. This would mean constructing systems with
the same open ports and providing the same responses that real systems
provide to Shodan.

Another aspect of realism is consistency. Specifically, each service must be
realistic and the services running together in a honeynet must be consis-
tent. An example honeypot system that is easily discoverable by Shodan
would present a Microsoft IIS FTP server on port 21, Debian SSH server
listening on port 22 and an open webserver on port 80 that lists pages for
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all manner of PHP and database management tools (e.g., different ver-
sions of phpmyadmin running simultaneously). Potential attackers would
avoid this system because it is obviously a honeypot.
CryPLH [5] effectively imitates a Siemens S7 programmable logic con-
troller by providing proper SNMP responses, HTTP and HTTPS pages
and an emulation of the SIMATIC Step7 protocol over ISO-TSAP. The
techniques used for reverse engineering a real programmable logic con-
troller to create a honeypot are easily replicated for other cyber-physical
systems. Another approach involves using Ettercap to record traffic to
a real programmable logic controller and then automatically generate a
system that provides the same or similar responses [50].

Scalability: GenIV honeynets scale to realistic sizes. Attackers would
expect to see dozens or hundreds of programmable logic controllers, not
just one or two. However, when deploying full virtual machines it is
difficult to meet the realism and consistency requirements – especially
if 100 systems in the network are seen to have the same hostname or
other identical features. Thus, scalability implies not simply running
many virtual systems in the honeynet, but configuring diversity in the
deployed systems, possibly by automatically changing configuration files
that dictate their “personality” or appearance in the network.

Detection Resistance: GenIV honeynets should not be detectable by
attackers. In the official requirements for GenIII honeynets [19], a sub-
requirement under data control says to “control connections in a manner
as difficult as possible to be detected by attackers.” Because of the sig-
nificance of this need and the tools and methods by which it may be met,
this item is upgraded to a stand-alone requirement.
Much research has focused on detecting the presence of a virtual ma-
chine versus a physical computer. It has also been shown that many of
the GenIII honeynet technologies are identifiable by attackers. For ex-
ample, honeyd and Sebek are technologies used exclusively in honeynets
and are key components for meeting the monitoring and data capture
requirements. However, research has shown that, with some effort, these
systems can be identified by attackers, possibly redirecting them to other
production systems [17, 37].
Thus, a critical requirement for GenIV honeynets is detection resistance.
Artifacts are bound to be present in any production system. However, the
artifacts should, by design, present themselves in the absolute minimum
way. For example, honeyd users must replace the initial configuration to
hide basic facts that are presented by default, such as known timestamps
of filesystem artifacts, protocol unimplemented functions and service ban-
ners that present the string “honeyd.” Detection resistance also stipulates
that software used in honeynets must be updated to address new research
that publishes how to fingerprint a service such as Sebek, which led to
the release of version 3.
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Figure 4. Next generation industrial control system honeynet architecture.

8.2 Proposed Honeynet Design
The proposed honeynet architecture has five components: (i) honeyfarm,

comprising a number of virtual honeypots generated by the IMUNES network
emulator; (ii) physical honeypot components (e.g., programmable logic con-
trollers); (iii) simulated physical process, which is kept separate from the cyber
components of the network; (iv) modernized honeywall running updated data
collection tools and providing control of the environment; and (v) manage-
ment network segment providing separated data analysis tools and access for
honeynet operators to connect in an out-of-band manner to the various compo-
nents. Figure 4 shows the proposed next generation industrial control system
honeynet architecture.
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8.3 Honeypots
The prototype GenIV honeynet design incorporates a scalable number of

individual honeypot systems. The majority of these systems correspond to
virtual IMUNES nodes. Some additional hosts may be provided by Qemu,
Virtual Box and/or VMware. The remainder are physical devices, such as
single programmable logic controller units, that are plugged into a hub or switch
downstream from the honeywall.

IMUNES for Virtual Nodes: The prototype honeynet centers on an
IMUNES network emulator running on a FreeBSD workstation with two
physical network interface cards. The first network interface card is used
for connections from the honeypot management network segment (e.g.,
operator workstations) to manage the base FreeBSD system, which is
invisible to the honeynet. The second network interface card is bound
to an Ethernet adapter node in IMUNES and given an Internet-routable
address range.

The IMUNES script prepare vroot 10.sh was modified to include ad-
ditional packages for installation in vroot of the virtual network nodes.
Basic packages were included, such as bash shell, Quagga for router emu-
lation and Wireshark for troubleshooting. Additionally, netcat, honeyd,
ftelnetd, kojoney and other tools were incorporated. OpenJDK was in-
stalled as the Java runtime environment. The script prepared the virtual
node filesystems in chroot jails. IMUNES was used to create default
network configurations for the nodes. After adjusting the first node’s
network with a publicly-available IP address, additional nodes connected
to the same subnet were automatically configured with incremental IP
addresses and a matching subnet mask and default route. After the net-
work topology was configured in IMUNES, the honeywall was adjusted
to enable packets to be forwarded to this range of IP addresses.

IMUNES meets the scalability requirement by enabling additional tools
to be quickly added to each vhost node in the environment. As a honey-
pot operator decides to expand or modify the services offered, additional
packages can be installed on all vhost nodes or individual files may be
added instantly while the system is operating. These files are created
by IMUNES in each virtual node filesystem; changes in each node are
isolated to the node, including file deletions, additions and modifications.
Additional nodes may be added by simply dragging and dropping nodes
into the network topology. This makes it possible to rapidly modify the
state of the honeynet and maintain customizations unique to each node or
groups of nodes. This is far more manageable than running fully separate
virtual machines; indeed, it is a key benefit of the proposed approach.

IMUNES Honey Tools and Realism: The goal of the proof-of-
concept honeynet is to obtain information about threats to critical in-
frastructure systems. While providing general-purpose honeypots with
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a variety of services to entice attackers, the main focus is on attract-
ing attackers interested in launching Modbus attacks. In order to meet
the realism requirement, supplemental services typically found in cyber-
physical systems must be incorporated. Full services such as telnetd
and sshd can run on each vhost, providing high-interaction honeypot
functionality.

The initial proof-of-concept experiments sought to emulate only a realistic
network fingerprint. Therefore, it was decided to implement ftelnetd
(fake Telnet) and kojoney (fake SSH) [10]. The two services present the
usual banners to attackers upon initial connection and proceed to log
the usernames and passwords; the login attempts always fail. Web-based
management tools were scraped from real programmable logic controllers
and hosted in the IMUNES nodes using lighttpd.

The first step in this effort is to mimic the TCP/IP stack options used by
the real devices, which is accomplished using FreeBSD pf. Also, by scrap-
ing any web-based management interfaces, these tools can be recreated
and deployed with lighttp in running IMUNES nodes.

Another aspect of realism and enticement is the context in which a hon-
eypot is deployed. A honeypot must blend into its surroundings. Thus,
the prototype honeynet was deployed on an Internet-reachable subnet of
the university network. If the goal is to masquerade as an oil refinery
or water treatment facility, the honeynet should certainly not be located
in the network address block of a university’s computer science depart-
ment. A realistic honeynet should be deployed in the IP address space
of an actual industrial facility to maintain realism and consistency. This
is accomplished using a layer-2 virtual private network to forward traffic
bound to an unused IP address range at an asset owner’s site to the hon-
eynet laboratory environment, which would be invisible to the attacker.

JAMOD for Modbus Slave Devices: JAMOD is a critical component
of the honeynet design because it can emulate a production cyber-physical
system. The library enables customized ladder logic to run on multiple
IMUNES virtual nodes, simulating master and slave devices in a working
implementation of the Modbus/TCP protocol. A master program on one
node is configured to connect to slave programs on other nodes, querying
and setting various data registers. Slave devices can be configured to
be “vulnerable” to remote queries and set points to be writeable by any
remote master process. Attackers may then interact with any of the
slave devices in the network by sending Modbus/TCP commands to the
open ports of the nodes. It is also important to write JAMOD code that
implements Modbus functions such as Slave ID, which are used in Shodan
queries and by other scanning methods. Other tools such as Conpot [9],
OpenPLC [40] and opendnp3 [11] can also be deployed at IMUNES nodes
to emulate other programmable logic controller platforms.
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HMI on a Windows XP Virtual Machine: Documented attacks
on industrial control systems, including Stuxnet [14] and others, often
attempt to compromise the human-machine interfaces (HMIs) used by
operators to manage cyber-physical components. A human-machine in-
terface running on a full Windows XP virtual machine was employed to
meet the realism and detection resistance requirements; this is not much
different from what is used by other honeypots. The proof-of-concept
honeynet has a custom interface built in LabVIEW [32]. The virtual ma-
chine executes on the same FreeBSD cluster that hosts IMUNES, but it
is managed by the VirtualBox hypervisor.

Physical Switch/PLCs and Scalability: Another important design
element incorporated in the prototype honeynet is a switch or hub down-
stream from the honeywall so that multiple systems can be added to
the honeynet quickly and easily. This also provides a rapid manual data
control mechanism – a system can be physically separated from the net-
work if needed. The design element contributes to scalability because
additional devices can be added to the honeynet without modifying the
honeywall significantly; only the iptables rules need to be updated in
order to forward traffic to the new honeypots.

The initial experiments employed a Direct Logic programmable logic con-
troller. This device provides an Ethernet connection and includes a web
server on port 80 and Modbus listener on port 502. The web server pro-
vides access to a configuration interface that requires no authentication
so that values can be set via an HTTP form using POST commands. The
Modbus listener provides responses to valid queries. All network traffic
to and from the programmable logic controller is automatically recorded
by the honeywall system without any extra configuration effort.

8.4 Simulated Physical Process
While simply positioning a Windows XP virtual machine in the cloud or con-

necting a typical programmable logic controller to the Internet would certainly
draw attacks, they would not attract advanced threat actors who specifically
target industrial processes. The honeynet architecture leverages a research
simulation to construct a physical process that can be controlled via digital au-
tomation. This method for representing a real physical process is a significant
contribution to the honeynet literature. The deployment of simulation software
is shielded in a unique way from attacks – by converting signals from digital to
analog and back again, which emulates real-world sensors and actuators.

Established methodologies and tools are available for modeling and simula-
tion: (i) continuous process control systems, which typically involve differential
equations and have real-time constraints; (ii) discrete systems, which keep a
process under control using feedback from sensors to send commands to actua-
tors; and (iii) communications networks, which use TCP/IP or direct-link serial
lines. While the distributed nature and communications of a large-scale cyber-
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Figure 5. Cyber-physical system testbed for simulation and analysis.

physical system are handled by IMUNES, the honeynet implements a process
simulator with an API for programmed sensors and actuators associated with
real-world process components.

Models of power system buses and breakers (e.g., IEEE test buses [15])
have been created using software packages such as MATLAB and Simulink.
Human-machine interface and power system simulators have been developed
in LabVIEW [32] or acquired from entities such as Western Services Corpora-
tion [53]. Modelica, an object-oriented, equation-based language has been used
to model complex physical systems [12, 16]. However, modeling and simulation
tools do not always scale well and do not prioritize the goal of mimicking a
physical process in a manner that deceives attackers.

Several testbeds have been developed for modeling and simulating physical
systems such as electricity generation and transmission facilities, as well as
cyber-physical systems that provide virtual representations of physical compo-
nents [27, 28]. Simulators require modifications or new interfaces that share
control and sensor feedback information with the virtual network. Simulations
developed using MATLAB with Simulink [23, 46] and other platforms can be
adapted for this purpose. Simulink modules provide the physical equations to
create virtual systems that masquerade as a real physical process to attack-
ers. Programmed transformations implementing digital-to-analog (D/A) and
analog-to-digital (A/D) conversions provide an interface and convert data from
the physical simulator to the cyber (relay) domain, enabling the modeled phys-
ical process to remain separate and unexposed, except via instrumentation.
Figure 5 shows the cyber-physical system testbed for simulation and analysis.

8.5 Honeywall Design
Three novel aspects of the honeywall design are: (i) honeynet control; (ii)

honeynet data capture; and (iii) honeynet data analysis:

Honeynet Control: A GenIII honeynet should not be compromised
by attackers to wreak more havoc on other unsuspecting users. How-
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ever, the honeynet should also capture the full range of attacker tech-
niques, which often involve making outbound connections to command-
and-control servers that contain tools for download. Outbound connec-
tions from the honeypots to the Internet must be permitted, but auto-
matic and manual intervention mechanisms must cut off attackers if they
go too far.

Honeywall Roo was designed to be used with a layer-2 bridge interface to
provide data control and data capture, sniffing traffic as it is forwarded
from the Internet to the honeynet internals. Support for in-line monitor-
ing and control using a network bridge interface is not supported by Secu-
rity Onion. Nevertheless, it is possible to install the Security Onion Sensor
package and tools such as network bridge support and SnortSam [22] to
provide data capture and data control. The honeywall provides this con-
trol using Linux netfilter capabilities via iptables and SnortSam, a tool
that dynamically adds firewall rules based on Snort alerts. The design
incorporates an Ubuntu Server v16.04-LTS on a hardware configuration
that mirrors that of Honeywall Roo and requires three network interface
cards. The first network interface card provides the management connec-
tions; the other two cards are then bridged together using bridge-utils
at layer 2 as in the case of Honeywall Roo.

Honeynet Data Capture: The Security Onion Sensor package was
installed on the Ubuntu system in order to perform data capture and col-
lection. After manually modifying the network configuration for bridging
two interfaces, the br0 interface was selected to monitor inbound and out-
bound traffic on the bridge. This enables the installed tools to operate
in an in-line manner, although this configuration is officially unsupported
by Security Onion. The sebekd tool was then installed from the Hon-
eywall Roo distribution with the necessary modifications to run on the
Ubuntu platform. A Perl script was written to parse the sebekd data
received by the honeywall without modification. The Sebek client was
ported to FreeBSD and compiled into the honeypot kernel. It was then
made available on every vhost node running in IMUNES.

Honeynet Data Analysis: Data analysis employs a second system con-
figured and installed with the Security Onion Server and Client packages.
The system provides the database and web-based applications, and re-
ceives data from a sensor over an encrypted SSH tunnel. This enables
data collection, offline storage and detailed analysis to be performed with-
out impacting the honeywall. Additionally, multiple honeywall sensors
may be deployed across a network and data can be securely aggregated
for analysis at a primary system. This design supports the scalability
requirement while maintaining good data control.

Because the new honeywall analysis system includes Bro and ELSA [34],
analyses can leverage many more queries than are supported by Walleye,
which relies entirely on Snort to generate intrusion alerts. However, to



Haney 227

further support analyses, several customized Snort signatures were in-
corporated to alert to connections to open ports (e.g., 22, 23, 80 and
502), as well as connection attempts (e.g., SYN packets without the full
connection-establishment handshakes indicative of scans) with messages
such as “HONEYNET Connection established to port 80.” This enables
quick investigations of all attacker connections whether or not the con-
nections match intrusion signatures. Analysis can be performed on all
signatures matching “HONEYNET” and the sessions can be extracted
quickly from the stored PCAP files via CapMe for offline examination
using tools such as Wireshark or NetworkMiner.

9. Results and Analysis
A prototype honeynet conforming to the proposed architecture was con-

structed and deployed on the university development network from whence it
was exposed directly to the Internet. Attackers began probing the honeynet
almost immediately – the first scan was detected just 19 minutes after the Inter-
net connection was made. The results presented in this section do not provide
new insights into attacker tactics or techniques; rather, they demonstrate the
utility of the prototype.

9.1 Modbus Scanning via Shodan
Within two days of deploying the honeynet on an IP address range that

was not used on the Internet for several years, the Shodan web crawler engines
found the honeynet, scanned it for the primary list of ports – including Modbus
port 502 – and performed fingerprinting techniques (e.g., banner grabbing) to
make data about the honeynet available in its search results.

Over the course of two weeks, the honeynet received connections from most
of the systems census1.shodan.io through census12.shodan.io. These sys-
tems are located in the United States based on GeoIP and whois database
records.

The fact that Modbus was scanned so quickly suggests that attackers can
reliably search for industrial control system victims before performing any di-
rect system reconnaissance or fingerprinting them. This should be taken into
account when planning honeypot deployments as well as operational network
defenses. No other systems connected to port 502 during the two-week period
of the experiments.

9.2 Brute Force Login Attacks
The ftelnetd tool logged the usernames and passwords presented by at-

tackers during Telnet connection attempts. More than 22,300 Telnet-only lo-
gins were attempted from 333 unique IP addresses in 55 countries. Because
the connections may have come from Tor network exit nodes or addresses from
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Table 1. Top ten brute force Telnet attacks by country.

Source Country IP Addresses Login Attempts

China 356 6,456
India 59 1,927
Viet Nam 48 1,245
Mexico 35 1,414
United States 31 1,321
Columbia 24 723
Malaysia 20 1,425
Turkey 18 506
Korea 16 67
Russia (tied) 8 1,394
Taiwan (tied) 8 8

other proxies and privacy networks, correctly attributing the countries of origin
and unique attackers would be difficult to impossible.

Table 1 provides a breakdown of the Telnet connection attempts during the
two weeks of experiments. The most login attempts (744) came from a single
IP address in Belarus. It is notable that only 419 distinct username-password
combinations were recorded; many of them were attempted hundreds of times.
Since automated attack tools tend to draw from the massive stolen username-
password lists posted on the Internet, the small number of distinct username-
password combinations suggests that a specialized list of login credentials has
been tailored for industrial control systems that may be reachable via their
Telnet ports while also listening on Modbus port 502.

Table 2. Most common usernames and passwords.

Username Count Password Count

admin 2,229 password 709
root 2,138 <blank> 612
cusadmin 343 admin 572
MGR 253 1234 455
support 168 12345 393
FIELD 96 123456 385
Administrator 91 Root 248
MANAGER 77 smcadmin 217
guest 60 dreambox 195
OPERATOR 55 highspeed 178

Table 2 lists the most common usernames and passwords used in the Tel-
net connection attempts. Note that limited results are reported here because
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future research with the honeynet would be impacted by the publication of
detailed information. Published information about the honeynet would likely
lead potential attackers to deliberately change their tactics.

10. Conclusions
Honeypots and other deception technologies have long been used to study

malicious activity in networks, but clear requirements for honeypots that im-
plement active defenses of industrial control systems have not been discussed.
Existing honeynet requirements as well as new requirements for next gener-
ation honeynets specified in this chapter have been employed to develop a
realistic, scalable and detection-resistant GenIV honeynet with an advanced
honeywall and three-tier data collection subnet. The architecture incorporates
a physical process simulation that is lacking in existing honeynets for cyber-
physical-systems. It also supports the inclusion of additional physical systems
to present a robust, hybrid cyber-physical target for attackers. Indeed, deploy-
ments of this honeynet architecture could provide valuable advanced threat
intelligence for securing critical infrastructure assets.
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